SMILES
stringlengths 18
150
| Ki
float64 -4.86
1.89
|
|---|---|
CN(C)Cc1ccccc1Sc1ccc(C#N)cc1N
| -0.041393
|
CN(C)Cc1ccccc1Sc1ccc(C(F)(F)F)cc1N
| 0.481486
|
COc1ccc(Sc2ccccc2CN(C)C)c(N)c1
| -0.276462
|
CN(C)Cc1ccccc1Sc1ccc(Cl)cc1N
| 0.568636
|
Fc1ccc([C@@H]2CCNC[C@H]2COc2ccc3c(c2)OCO3)cc1
| 0.661986
|
c1ccc(CC(c2ccccc2)c2ccncc2)cc1
| -2.959041
|
c1ccc(C(c2ccccc2)c2ccccn2)cc1
| -4.544068
|
c1ccc(C(c2ccccc2)c2ccncc2)cc1
| -3.064458
|
c1ccc(C(c2ccccc2)c2cccnc2)cc1
| -4.100371
|
CN(CCOC(c1ccccc1)c1ccccc1)C1CCN(CCCc2ccccc2)CC1
| -3.146128
|
OC1(c2ccc(Cl)cc2)c2cccc(F)c2C2=NCCN21
| -1.580925
|
OC1(c2ccc(Cl)cc2)c2ccccc2C2=NCCN21
| -1.684247
|
Fc1ccc(CCNC2CCN(CCOC(c3ccccc3)c3ccccc3)CC2)cc1
| -2.342423
|
Oc1ccc(C2(O)c3ccccc3C3=NCCCN32)cc1
| -1.886491
|
CN(CCCc1ccccc1)C1CCN(CCOC(c2ccccc2)c2ccccc2)CC1
| -1.939519
|
c1ccc(CCCNC2CCN(CCOC(c3ccccc3)c3ccccc3)CC2)cc1
| -1.740363
|
COc1cccc2c1C1=NCCN1C2(O)c1ccc(Cl)cc1
| -2.939519
|
Fc1ccc(CCN2CCCC(CNCCOC(c3ccccc3)c3ccccc3)C2)cc1
| -2.544068
|
COc1ccc(C2(O)c3ccccc3C3=NCCCN32)cc1
| -1.747412
|
OC1(c2ccccc2)c2ccccc2C2=NCCN21
| -3.245513
|
c1ccc(CN2CCC(NCCOC(c3ccccc3)c3ccccc3)CC2)cc1
| -3.334454
|
CN1CCC(=C2c3ccccc3C=Cc3ccccc32)CC1
| -3.612784
|
CN(C)CCCN1c2ccccc2CCc2ccccc21
| -0.78665
|
c1ccc(CCCN2CCCC(CNCCOC(c3ccccc3)c3ccccc3)C2)cc1
| -2.322219
|
c1ccc2c(c1)Cc1ccccc1C21CCNC1
| -3.591065
|
OC1(c2ccc(Cl)cc2)c2ccccc2C2=NCCCN21
| -1.591065
|
OC1(c2ccc(Cl)cc2)c2cc(Cl)c(Cl)cc2C2=NCCN21
| -3.129368
|
COC(=O)C1C(c2ccc(OC)c(OC)c2)CC2CCC1N2C
| -1.662758
|
c1ccc(CCCNCC2CCCN(CCOC(c3ccccc3)c3ccccc3)C2)cc1
| -2.50515
|
COc1ccc2c(c1)C(O)(c1ccc(Cl)cc1)N1CCN=C21
| -3.012837
|
Fc1ccc(CCNCC2CCCN(CCOC(c3ccccc3)c3ccccc3)C2)cc1
| -2.94939
|
CN(CCc1ccc(F)cc1)CC1CCCN(CCOC(c2ccccc2)c2ccccc2)C1
| -2.724276
|
COc1cccc2c1C(O)(c1ccc(Cl)cc1)N1CCN=C21
| -3.298853
|
Clc1ccc(C2c3ccccc3C3=NCCN32)cc1
| -1.414973
|
OC1(c2ccc(Cl)cc2)c2ccc3ccccc3c2C2=NCCCN21
| -0.740363
|
COc1ccc2[nH]c(-c3ccccc3)c(CCN(C)C)c2c1
| -3.672098
|
COc1cccc2c1O[C@@H](CN1C3C=C(n4ccc5cc(F)ccc54)CC1CC3)CO2
| -0.929419
|
OC1(c2ccc3ccccc3c2)c2ccc3ccccc3c2C2=NCCN21
| -1.041393
|
OC1(c2ccc(Cl)cc2)c2ccc3ccccc3c2C2=NCCN21
| -2.350248
|
COc1cccc2c1O[C@@H](CN1C3C=C(c4ccc(Cl)c(Cl)c4)CC1CC3)CO2
| -0.671173
|
COc1cccc2c1O[C@@H](CN1C3C=C(c4ccc5ccccc5c4)CC1CC3)CO2
| -0.146128
|
OC1(c2ccc(Cl)cc2)c2ccccc2C2=N[C@H]3CCCC[C@@H]3N21
| -2.778151
|
OC1(c2ccc3ccccc3c2)c2ccccc2C2=NCCN21
| -0.361728
|
COc1cccc2c1O[C@@H](CN1C3C=C(c4cccc5ccccc45)CC1CC3)CO2
| -1.414973
|
COc1cccc2c1O[C@@H](CN1C3C=C(c4cccc5cccnc45)CC1CC3)CO2
| -1.518514
|
Fc1ccc(C(OCCC2CCN(Cc3cc4ccccc4s3)CC2)c2ccc(F)cc2)cc1
| -2.390935
|
Fc1ccc(C(OCCC2CCN(Cc3cc4ccccc4[nH]3)CC2)c2ccc(F)cc2)cc1
| -1.944483
|
Fc1ccc(C(OCCN2CCN(CCCc3ccccc3)CC2)c2ccc(F)cc2)cc1
| -2.10721
|
Fc1ccc(C(OCCC2CCN(CCCc3ccccc3)CC2)c2ccc(F)cc2)cc1
| -1.832509
|
Fc1ccc(C(OCCC2CCN(C/C=C/c3ccco3)CC2)c2ccc(F)cc2)cc1
| -1.612784
|
Fc1ccc(C(OCCC2CCN(Cc3cccc4ccccc34)CC2)c2ccc(F)cc2)cc1
| -2.568202
|
Fc1ccc(C(OCCC2CCN(Cc3ccc4ccccc4c3)CC2)c2ccc(F)cc2)cc1
| -2.359835
|
Fc1ccc(C(OCCC2CCN(C/C=C/c3cccs3)CC2)c2ccc(F)cc2)cc1
| -1.653213
|
Fc1ccc(C(OCCC2CCN(CC#Cc3ccccc3)CC2)c2ccc(F)cc2)cc1
| -2.214844
|
Fc1ccc(C(OCCC2CCN(C/C=C/c3ccccc3)CC2)c2ccc(F)cc2)cc1
| -1.672098
|
Fc1ccc(C(OCCC2CCN(Cc3cc4ccccc4o3)CC2)c2ccc(F)cc2)cc1
| -1.929419
|
CN1C2CCC1C(C(=O)Oc1ccccc1)C(c1ccc(Cl)cc1)C2
| -2.591065
|
Fc1ccc(C(OCCNCCCNCCc2ccccc2)c2ccc(F)cc2)cc1
| -2.09691
|
O=C1CN(CCc2ccccc2)CCN1CCOC(c1ccc(F)cc1)c1ccc(F)cc1
| -2.056905
|
CN(CCCc1ccccc1)CCCN(C)CCOC(c1ccccc1)c1ccccc1
| -2.641474
|
COC(=O)C1C(c2ccc(/C=C\Br)cc2)CC2CCC1N2C
| 1.09691
|
O=C(Cc1ccccc1)NCCCNCCOC(c1ccc(F)cc1)c1ccc(F)cc1
| -3.060698
|
O=C(Cc1ccccc1)NCCNCCOC(c1ccc(F)cc1)c1ccc(F)cc1
| -2.745075
|
CN(CCCN(C)CCc1ccccc1)CCOC(c1ccccc1)c1ccccc1
| -3.184691
|
O=C(CCc1ccccc1)NCCNCCOC(c1ccc(F)cc1)c1ccc(F)cc1
| -2.718502
|
COC(=O)C1C(c2ccc(/C=C\I)cc2)CC2CCC1N2C
| 0.958607
|
CN(CCOC(c1ccccc1)c1ccccc1)CCN(C)CCc1ccc(F)cc1
| -2.740363
|
CN(CCOC(c1ccc(F)cc1)c1ccc(F)cc1)CCN(C)CCOC(c1ccc(F)cc1)c1ccc(F)cc1
| -2.886491
|
O=C(Cc1ccc(F)cc1)NCCNCCOC(c1ccc(F)cc1)c1ccc(F)cc1
| -2.545307
|
O=C1CN(CCOC(c2ccccc2)c2ccccc2)CCN1CCCc1ccccc1
| -3.770852
|
COC(=O)C1C2CCC(CC1c1ccc(C=C(Br)Br)cc1)N2
| 1.09691
|
C[C@H]1CC[C@H](C)N1CCCOc1ccc(-c2ccc(C(=O)N3CCOCC3)cc2)cc1
| -3.55
|
COC(=O)C1C(c2ccc(C=C(Br)Br)cc2)CC2CCC1N2C
| -0.130334
|
O=C(CCc1ccc(Br)cc1)N/C=C/NCCOC(c1ccc(F)cc1)c1ccc(F)cc1
| -2.770852
|
COC(=O)C1C2CCC(CC1c1ccc(/C=C\Br)cc1)N2
| 1.39794
|
CN1C2CCC1C(C(=O)NCCCCCCNC(=O)C1C(c3ccc(Cl)cc3)CC3CCC1N3C)C(c1ccc(Cl)cc1)C2
| -2.009876
|
CN1C2CCC1C(C(=O)NCCCCNC(=O)C1C(c3ccc(Cl)cc3)CC3CCC1N3C)C(c1ccc(Cl)cc1)C2
| -3.496335
|
CN1C2CCC1C(C(=O)NCCCCCCCCNC(=O)C1C(c3ccc(Cl)cc3)CC3CCC1N3C)C(c1ccc(Cl)cc1)C2
| -0.897627
|
CN1C2CCC1C(C(=O)NCCCNC(=O)C1C(c3ccc(Cl)cc3)CC3CCC1N3C)C(c1ccc(Cl)cc1)C2
| -2.552668
|
CNCCC(Oc1cccc2ccccc12)c1cccc(OC)c1
| -0.342423
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C=C(\C)c4ccc(F)cc4F)CC3)[C@@H]1CO2
| -0.732394
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C(C)=C/c4cccnc4)CC3)[C@@H]1CO2
| -1.799341
|
CNCCC(Oc1cccc2ccccc12)c1ccc(Br)cc1
| -0.612784
|
CNCCC(Oc1cccc2ccccc12)c1nccs1
| -0.80618
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C=C/c4cccc(F)c4)CC3)[C@@H]1CO2
| -0.39794
|
CNCCC(Oc1cccc2ccccc12)c1cccc(C)c1
| -0.60206
|
CNCC[C@H](Oc1cccc2c(OC)c(O)ccc12)c1cccs1
| -3.563481
|
CNCCC(Oc1cccc2ccccc12)c1cccc(C(F)(F)F)c1
| -1.278754
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C=C/c4ccc(Cl)cc4)CC3)[C@@H]1CO2
| -0.113943
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C=C(\C)c4ccccc4OC)CC3)[C@@H]1CO2
| -1.70757
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C(C)=C/c4cccc(F)c4F)CC3)[C@@H]1CO2
| -0.851258
|
CNCCC(Oc1cccc2ccccc12)c1ccccc1
| -0.380211
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C(C)=C/c4ccco4)CC3)[C@@H]1CO2
| -1.322219
|
CNCCC(Oc1cccc2ccccc12)c1ccccc1C(F)(F)F
| -1
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C(C)=C/c4cccs4)CC3)[C@@H]1CO2
| -0.431364
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C(C)=C/c4ccsc4)CC3)[C@@H]1CO2
| -0.278754
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C=C(\C)c4ccsc4)CC3)[C@@H]1CO2
| -0.681241
|
COc1cc2c(cc1OC)C1=NO[C@@H](CN3CCN(C/C=C/c4ccccc4F)CC3)[C@@H]1CO2
| -1.113943
|
CNCCC(Oc1cccc2ccccc12)c1cccc(Br)c1
| -0.880814
|
Cc1ccc(CN2CCN(CC(=O)N3c4ccccc4C[C@H]3C)CC2)cc1
| -2.725912
|
MoleculeACE ChEMBL228 Ki
ChEMBL228 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.
The task is to predict the inhibitor constant (Ki) of molecules against the Sodium-dependent serotonin transporter target.
| Characteristic | Description |
|---|---|
| Tasks | 1 |
| Task type | regression |
| Total samples | 1704 |
| Recommended split | activity_cliff |
| Recommended metric | RMSE |
References
[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004.
[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073.
- Downloads last month
- 68