Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
| language: | |
| - ace | |
| - bg | |
| - da | |
| - fur | |
| - ilo | |
| - lij | |
| - mzn | |
| - qu | |
| - su | |
| - vi | |
| - af | |
| - bh | |
| - de | |
| - fy | |
| - io | |
| - lmo | |
| - nap | |
| - rm | |
| - sv | |
| - vls | |
| - als | |
| - bn | |
| - diq | |
| - ga | |
| - is | |
| - ln | |
| - nds | |
| - ro | |
| - sw | |
| - vo | |
| - am | |
| - bo | |
| - dv | |
| - gan | |
| - it | |
| - lt | |
| - ne | |
| - ru | |
| - szl | |
| - wa | |
| - an | |
| - br | |
| - el | |
| - gd | |
| - ja | |
| - lv | |
| - nl | |
| - rw | |
| - ta | |
| - war | |
| - ang | |
| - bs | |
| - eml | |
| - gl | |
| - jbo | |
| - nn | |
| - sa | |
| - te | |
| - wuu | |
| - ar | |
| - ca | |
| - en | |
| - gn | |
| - jv | |
| - mg | |
| - no | |
| - sah | |
| - tg | |
| - xmf | |
| - arc | |
| - eo | |
| - gu | |
| - ka | |
| - mhr | |
| - nov | |
| - scn | |
| - th | |
| - yi | |
| - arz | |
| - cdo | |
| - es | |
| - hak | |
| - kk | |
| - mi | |
| - oc | |
| - sco | |
| - tk | |
| - yo | |
| - as | |
| - ce | |
| - et | |
| - he | |
| - km | |
| - min | |
| - or | |
| - sd | |
| - tl | |
| - zea | |
| - ast | |
| - ceb | |
| - eu | |
| - hi | |
| - kn | |
| - mk | |
| - os | |
| - sh | |
| - tr | |
| - ay | |
| - ckb | |
| - ext | |
| - hr | |
| - ko | |
| - ml | |
| - pa | |
| - si | |
| - tt | |
| - az | |
| - co | |
| - fa | |
| - hsb | |
| - ksh | |
| - mn | |
| - pdc | |
| - ug | |
| - ba | |
| - crh | |
| - fi | |
| - hu | |
| - ku | |
| - mr | |
| - pl | |
| - sk | |
| - uk | |
| - zh | |
| - bar | |
| - cs | |
| - hy | |
| - ky | |
| - ms | |
| - pms | |
| - sl | |
| - ur | |
| - csb | |
| - fo | |
| - ia | |
| - la | |
| - mt | |
| - pnb | |
| - so | |
| - uz | |
| - cv | |
| - fr | |
| - id | |
| - lb | |
| - mwl | |
| - ps | |
| - sq | |
| - vec | |
| - be | |
| - cy | |
| - frr | |
| - ig | |
| - li | |
| - my | |
| - pt | |
| - sr | |
| multilinguality: | |
| - multilingual | |
| size_categories: | |
| - 10K<100k | |
| task_categories: | |
| - token-classification | |
| task_ids: | |
| - named-entity-recognition | |
| pretty_name: WikiAnn | |
| # Dataset Card for "tner/wikiann" | |
| ## Dataset Description | |
| - **Repository:** [T-NER](https://github.com/asahi417/tner) | |
| - **Paper:** [https://aclanthology.org/P17-1178/](https://aclanthology.org/P17-1178/) | |
| - **Dataset:** WikiAnn | |
| - **Domain:** Wikipedia | |
| - **Number of Entity:** 3 | |
| ### Dataset Summary | |
| WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project. | |
| - Entity Types: `LOC`, `ORG`, `PER` | |
| ## Dataset Structure | |
| ### Data Instances | |
| An example of `train` of `ja` looks as follows. | |
| ``` | |
| { | |
| 'tokens': ['#', '#', 'ユ', 'リ', 'ウ', 'ス', '・', 'ベ', 'ー', 'リ', 'ッ', 'ク', '#', '1', '9','9','9'], | |
| 'tags': [6, 6, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6] | |
| } | |
| ``` | |
| ### Label ID | |
| The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikiann/raw/main/dataset/label.json). | |
| ```python | |
| { | |
| "B-LOC": 0, | |
| "B-ORG": 1, | |
| "B-PER": 2, | |
| "I-LOC": 3, | |
| "I-ORG": 4, | |
| "I-PER": 5, | |
| "O": 6 | |
| } | |
| ``` | |
| ### Data Splits | |
| | language | train | validation | test | | |
| |:-------------|--------:|-------------:|-------:| | |
| | ace | 100 | 100 | 100 | | |
| | bg | 20000 | 10000 | 10000 | | |
| | da | 20000 | 10000 | 10000 | | |
| | fur | 100 | 100 | 100 | | |
| | ilo | 100 | 100 | 100 | | |
| | lij | 100 | 100 | 100 | | |
| | mzn | 100 | 100 | 100 | | |
| | qu | 100 | 100 | 100 | | |
| | su | 100 | 100 | 100 | | |
| | vi | 20000 | 10000 | 10000 | | |
| | af | 5000 | 1000 | 1000 | | |
| | bh | 100 | 100 | 100 | | |
| | de | 20000 | 10000 | 10000 | | |
| | fy | 1000 | 1000 | 1000 | | |
| | io | 100 | 100 | 100 | | |
| | lmo | 100 | 100 | 100 | | |
| | nap | 100 | 100 | 100 | | |
| | rm | 100 | 100 | 100 | | |
| | sv | 20000 | 10000 | 10000 | | |
| | vls | 100 | 100 | 100 | | |
| | als | 100 | 100 | 100 | | |
| | bn | 10000 | 1000 | 1000 | | |
| | diq | 100 | 100 | 100 | | |
| | ga | 1000 | 1000 | 1000 | | |
| | is | 1000 | 1000 | 1000 | | |
| | ln | 100 | 100 | 100 | | |
| | nds | 100 | 100 | 100 | | |
| | ro | 20000 | 10000 | 10000 | | |
| | sw | 1000 | 1000 | 1000 | | |
| | vo | 100 | 100 | 100 | | |
| | am | 100 | 100 | 100 | | |
| | bo | 100 | 100 | 100 | | |
| | dv | 100 | 100 | 100 | | |
| | gan | 100 | 100 | 100 | | |
| | it | 20000 | 10000 | 10000 | | |
| | lt | 10000 | 10000 | 10000 | | |
| | ne | 100 | 100 | 100 | | |
| | ru | 20000 | 10000 | 10000 | | |
| | szl | 100 | 100 | 100 | | |
| | wa | 100 | 100 | 100 | | |
| | an | 1000 | 1000 | 1000 | | |
| | br | 1000 | 1000 | 1000 | | |
| | el | 20000 | 10000 | 10000 | | |
| | gd | 100 | 100 | 100 | | |
| | ja | 20000 | 10000 | 10000 | | |
| | lv | 10000 | 10000 | 10000 | | |
| | nl | 20000 | 10000 | 10000 | | |
| | rw | 100 | 100 | 100 | | |
| | ta | 15000 | 1000 | 1000 | | |
| | war | 100 | 100 | 100 | | |
| | ang | 100 | 100 | 100 | | |
| | bs | 15000 | 1000 | 1000 | | |
| | eml | 100 | 100 | 100 | | |
| | gl | 15000 | 10000 | 10000 | | |
| | jbo | 100 | 100 | 100 | | |
| | map-bms | 100 | 100 | 100 | | |
| | nn | 20000 | 1000 | 1000 | | |
| | sa | 100 | 100 | 100 | | |
| | te | 1000 | 1000 | 1000 | | |
| | wuu | 100 | 100 | 100 | | |
| | ar | 20000 | 10000 | 10000 | | |
| | ca | 20000 | 10000 | 10000 | | |
| | en | 20000 | 10000 | 10000 | | |
| | gn | 100 | 100 | 100 | | |
| | jv | 100 | 100 | 100 | | |
| | mg | 100 | 100 | 100 | | |
| | no | 20000 | 10000 | 10000 | | |
| | sah | 100 | 100 | 100 | | |
| | tg | 100 | 100 | 100 | | |
| | xmf | 100 | 100 | 100 | | |
| | arc | 100 | 100 | 100 | | |
| | cbk-zam | 100 | 100 | 100 | | |
| | eo | 15000 | 10000 | 10000 | | |
| | gu | 100 | 100 | 100 | | |
| | ka | 10000 | 10000 | 10000 | | |
| | mhr | 100 | 100 | 100 | | |
| | nov | 100 | 100 | 100 | | |
| | scn | 100 | 100 | 100 | | |
| | th | 20000 | 10000 | 10000 | | |
| | yi | 100 | 100 | 100 | | |
| | arz | 100 | 100 | 100 | | |
| | cdo | 100 | 100 | 100 | | |
| | es | 20000 | 10000 | 10000 | | |
| | hak | 100 | 100 | 100 | | |
| | kk | 1000 | 1000 | 1000 | | |
| | mi | 100 | 100 | 100 | | |
| | oc | 100 | 100 | 100 | | |
| | sco | 100 | 100 | 100 | | |
| | tk | 100 | 100 | 100 | | |
| | yo | 100 | 100 | 100 | | |
| | as | 100 | 100 | 100 | | |
| | ce | 100 | 100 | 100 | | |
| | et | 15000 | 10000 | 10000 | | |
| | he | 20000 | 10000 | 10000 | | |
| | km | 100 | 100 | 100 | | |
| | min | 100 | 100 | 100 | | |
| | or | 100 | 100 | 100 | | |
| | sd | 100 | 100 | 100 | | |
| | tl | 10000 | 1000 | 1000 | | |
| | zea | 100 | 100 | 100 | | |
| | ast | 1000 | 1000 | 1000 | | |
| | ceb | 100 | 100 | 100 | | |
| | eu | 10000 | 10000 | 10000 | | |
| | hi | 5000 | 1000 | 1000 | | |
| | kn | 100 | 100 | 100 | | |
| | mk | 10000 | 1000 | 1000 | | |
| | os | 100 | 100 | 100 | | |
| | sh | 20000 | 10000 | 10000 | | |
| | tr | 20000 | 10000 | 10000 | | |
| | zh-classical | 100 | 100 | 100 | | |
| | ay | 100 | 100 | 100 | | |
| | ckb | 1000 | 1000 | 1000 | | |
| | ext | 100 | 100 | 100 | | |
| | hr | 20000 | 10000 | 10000 | | |
| | ko | 20000 | 10000 | 10000 | | |
| | ml | 10000 | 1000 | 1000 | | |
| | pa | 100 | 100 | 100 | | |
| | si | 100 | 100 | 100 | | |
| | tt | 1000 | 1000 | 1000 | | |
| | zh-min-nan | 100 | 100 | 100 | | |
| | az | 10000 | 1000 | 1000 | | |
| | co | 100 | 100 | 100 | | |
| | fa | 20000 | 10000 | 10000 | | |
| | hsb | 100 | 100 | 100 | | |
| | ksh | 100 | 100 | 100 | | |
| | mn | 100 | 100 | 100 | | |
| | pdc | 100 | 100 | 100 | | |
| | simple | 20000 | 1000 | 1000 | | |
| | ug | 100 | 100 | 100 | | |
| | zh-yue | 20000 | 10000 | 10000 | | |
| | ba | 100 | 100 | 100 | | |
| | crh | 100 | 100 | 100 | | |
| | fi | 20000 | 10000 | 10000 | | |
| | hu | 20000 | 10000 | 10000 | | |
| | ku | 100 | 100 | 100 | | |
| | mr | 5000 | 1000 | 1000 | | |
| | pl | 20000 | 10000 | 10000 | | |
| | sk | 20000 | 10000 | 10000 | | |
| | uk | 20000 | 10000 | 10000 | | |
| | zh | 20000 | 10000 | 10000 | | |
| | bar | 100 | 100 | 100 | | |
| | cs | 20000 | 10000 | 10000 | | |
| | fiu-vro | 100 | 100 | 100 | | |
| | hy | 15000 | 1000 | 1000 | | |
| | ky | 100 | 100 | 100 | | |
| | ms | 20000 | 1000 | 1000 | | |
| | pms | 100 | 100 | 100 | | |
| | sl | 15000 | 10000 | 10000 | | |
| | ur | 20000 | 1000 | 1000 | | |
| | bat-smg | 100 | 100 | 100 | | |
| | csb | 100 | 100 | 100 | | |
| | fo | 100 | 100 | 100 | | |
| | ia | 100 | 100 | 100 | | |
| | la | 5000 | 1000 | 1000 | | |
| | mt | 100 | 100 | 100 | | |
| | pnb | 100 | 100 | 100 | | |
| | so | 100 | 100 | 100 | | |
| | uz | 1000 | 1000 | 1000 | | |
| | be-x-old | 5000 | 1000 | 1000 | | |
| | cv | 100 | 100 | 100 | | |
| | fr | 20000 | 10000 | 10000 | | |
| | id | 20000 | 10000 | 10000 | | |
| | lb | 5000 | 1000 | 1000 | | |
| | mwl | 100 | 100 | 100 | | |
| | ps | 100 | 100 | 100 | | |
| | sq | 5000 | 1000 | 1000 | | |
| | vec | 100 | 100 | 100 | | |
| | be | 15000 | 1000 | 1000 | | |
| | cy | 10000 | 1000 | 1000 | | |
| | frr | 100 | 100 | 100 | | |
| | ig | 100 | 100 | 100 | | |
| | li | 100 | 100 | 100 | | |
| | my | 100 | 100 | 100 | | |
| | pt | 20000 | 10000 | 10000 | | |
| | sr | 20000 | 10000 | 10000 | | |
| | vep | 100 | 100 | 100 | | |
| ### Citation Information | |
| ``` | |
| @inproceedings{pan-etal-2017-cross, | |
| title = "Cross-lingual Name Tagging and Linking for 282 Languages", | |
| author = "Pan, Xiaoman and | |
| Zhang, Boliang and | |
| May, Jonathan and | |
| Nothman, Joel and | |
| Knight, Kevin and | |
| Ji, Heng", | |
| booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", | |
| month = jul, | |
| year = "2017", | |
| address = "Vancouver, Canada", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://aclanthology.org/P17-1178", | |
| doi = "10.18653/v1/P17-1178", | |
| pages = "1946--1958", | |
| abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.", | |
| } | |
| ``` |