hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
5d36d6dbf217342990cb49eda55af38f42824619
4,238
py
Python
pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_nd_fields.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_nd_fields.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_nd_fields.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
import sys import unittest from dynd import nd, ndt """ class TestFields(unittest.TestCase): def test_simple(self): a = nd.array([ (1, 2, 'a', 'b'), (3, 4, 'ab', 'cd'), (5, 6, 'def', 'ghi')], type='3 * {x: int32, y: int32, z: string, w: string}') # Selecting a single field b = nd.fields(a, 'x') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.int32], ['x'])) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) # Selecting two fields b = nd.fields(a, 'z', 'y') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.string, ndt.int32], ['z', 'y'])) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) # Selecting three fields b = nd.fields(a, 'w', 'y', 'z') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.string, ndt.int32, ndt.string], ['w', 'y', 'z'])) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) # Reordering all four fields b = nd.fields(a, 'w', 'y', 'x', 'z') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.string, ndt.int32, ndt.int32, ndt.string], ['w', 'y', 'x', 'z'])) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) def test_fixed_var(self): a = nd.array([ [(1, 2, 'a', 'b'), (3, 4, 'ab', 'cd')], [(5, 6, 'def', 'ghi')], [(7, 8, 'alpha', 'beta'), (9, 10, 'X', 'Y'), (11, 12, 'the', 'end')]], type='3 * var * {x: int32, y: int32, z: string, w: string}') # Selecting a single field b = nd.fields(a, 'x') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.int32], ['x'])))) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) # Selecting two fields b = nd.fields(a, 'z', 'y') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.string, ndt.int32], ['z', 'y'])))) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) # Selecting three fields b = nd.fields(a, 'w', 'y', 'z') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.string, ndt.int32, ndt.string], ['w', 'y', 'z'])))) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) # Reordering all four fields b = nd.fields(a, 'w', 'y', 'x', 'z') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.string, ndt.int32, ndt.int32, ndt.string], ['w', 'y', 'x', 'z'])))) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) def test_bad_field_name(self): a = nd.array([ (1, 2, 'a', 'b'), (3, 4, 'ab', 'cd'), (5, 6, 'def', 'ghi')], type='3 * {x: int32, y: int32, z: string, w: string}') self.assertRaises(RuntimeError, nd.fields, a, 'y', 'v') """ if __name__ == '__main__': unittest.main()
42.808081
76
0.464606
617
4,238
3.051864
0.111831
0.084971
0.127456
0.201806
0.893255
0.893255
0.893255
0.893255
0.893255
0.893255
0
0.02387
0.34757
4,238
98
77
43.244898
0.657143
0
0
0
0
0
0.078431
0
0
0
0
0
0
1
0
true
0
0.6
0
0.6
0
0
0
0
null
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
10
5d579c372853402ecfd7e953a09a9d04c6d7c725
114
py
Python
nintendeals/noa/api/__init__.py
Pooroomoo/nintendeals
993f4d159ff405ed82cd2bb023c7b75d921d0acb
[ "MIT" ]
37
2020-04-30T13:48:02.000Z
2022-03-09T04:55:54.000Z
nintendeals/noa/api/__init__.py
Pooroomoo/nintendeals
993f4d159ff405ed82cd2bb023c7b75d921d0acb
[ "MIT" ]
4
2020-05-09T03:17:44.000Z
2021-04-28T00:53:55.000Z
nintendeals/noa/api/__init__.py
Pooroomoo/nintendeals
993f4d159ff405ed82cd2bb023c7b75d921d0acb
[ "MIT" ]
5
2020-07-22T06:42:27.000Z
2022-02-07T22:35:57.000Z
from .algolia import search_by_nsuid from .algolia import search_by_platform from .algolia import search_by_query
28.5
39
0.868421
18
114
5.166667
0.444444
0.354839
0.548387
0.741935
0.806452
0
0
0
0
0
0
0
0.105263
114
3
40
38
0.911765
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
9
538ed9ab23e9e71ee700c89f6a7e07b38fae61a0
50,485
py
Python
cloudroast/objectstorage/smoke/object_smoke.py
RULCSoft/cloudroast
30f0e64672676c3f90b4a582fe90fac6621475b3
[ "Apache-2.0" ]
null
null
null
cloudroast/objectstorage/smoke/object_smoke.py
RULCSoft/cloudroast
30f0e64672676c3f90b4a582fe90fac6621475b3
[ "Apache-2.0" ]
null
null
null
cloudroast/objectstorage/smoke/object_smoke.py
RULCSoft/cloudroast
30f0e64672676c3f90b4a582fe90fac6621475b3
[ "Apache-2.0" ]
null
null
null
""" Copyright 2015 Rackspace Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import calendar import time import zlib from hashlib import md5 import unittest from cafe.drivers.unittest.decorators import ( DataDrivenFixture, data_driven_test) from cloudcafe.objectstorage.objectstorage_api.common.constants import \ Constants from cloudroast.objectstorage.fixtures import ObjectStorageFixture from cloudroast.objectstorage.generators import ( ObjectDatasetList, CONTENT_TYPES) CONTAINER_DESCRIPTOR = 'object_smoke_test' STATUS_CODE_MSG = ('{method} expected status code {expected}' ' received status code {received}') @DataDrivenFixture class ObjectSmokeTest(ObjectStorageFixture): @classmethod def setUpClass(cls): super(ObjectSmokeTest, cls).setUpClass() cls.default_obj_name = Constants.VALID_OBJECT_NAME_WITH_UNICODE @staticmethod def generate_chunk_data(): for i in range(10): yield "Test chunk %s\r\n" % i @data_driven_test(ObjectDatasetList()) def ddtest_object_retrieval_with_valid_object_name( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) response = self.client.get_object(container_name, object_name) method = 'object creation with valid object name' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList(exclude=['dlo', 'slo'])) def ddtest_object_retrieval_with_if_match( self, object_type, generate_object): """ Bug filed for dlo/slo support of If-match Header: https://bugs.launchpad.net/swift/+bug/1279076 """ container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name obj_info = generate_object(container_name, object_name) headers = {'If-Match': obj_info.get('etag')} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'object retrieval with if match header' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList(exclude=['dlo', 'slo'])) def ddtest_object_retrieval_with_if_none_match( self, object_type, generate_object): """ Bug filed for dlo/slo support of If-match Header: https://bugs.launchpad.net/swift/+bug/1279076 """ container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_info = generate_object(container_name, object_name) headers = {'If-None-Match': 'grok'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'object retrieval with if none match header' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) headers = {'If-None-Match': object_info.get('etag')} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'object should be flagged as not modified' expected = 304 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_object_retrieval_with_if_modified_since( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'If-Modified-Since': 'Fri, 17 Aug 2001 18:44:42 GMT'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'object retrieval with if modified since header (past date)' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_object_not_modified_with_if_modified_since( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'If-Modified-Since': 'Fri, 17 Aug 2101 18:44:42 GMT'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'object retrieval with if modified since header (future date)' expected = 304 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_object_retrieval_with_if_unmodified_since( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'If-Unmodified-Since': 'Fri, 17 Aug 2101 18:44:42 GMT'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'object retrieval with if unmodified since header' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_object_retrieval_fails_with_if_unmodified_since( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'If-Unmodified-Since': 'Fri, 17 Aug 2001 18:44:42 GMT'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = ('object retrieval precondition fail with if unmodified' ' since header') expected = 412 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_partial_object_retrieval_with_start_range( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'Range': 'bytes=5-'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'partial object retrieval with start range' expected = 206 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_partial_object_retrieval_with_end_range( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'Range': 'bytes=-4'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'partial object retrieval with end range' expected = 206 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_partial_object_retrieval_with_range( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'Range': 'bytes=5-8'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'partial object retrieval with start and end range' expected = 206 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_partial_object_retrieval_with_complete_range( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'Range': 'bytes=99-0'} response = self.client.get_object( container_name, self.default_obj_name, headers=headers) method = 'partial object retrieval with complete range' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_object_creation_with_valid_object_name( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_info = generate_object(container_name, object_name) response = object_info.get('response') method = 'object creation with valid object name' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object( container_name, self.default_obj_name) method = 'object retrieval' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response_md5 = md5(response.content).hexdigest() self.assertEqual( object_info.get('md5'), response_md5, msg='should return identical object') @data_driven_test(ObjectDatasetList(exclude=['dlo', 'slo'])) def ddtest_object_update_with_valid_object_name( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) updated_object_data = 'Updated test file data' updated_content_length = str(len(updated_object_data)) headers = {'Content-Length': updated_content_length, 'Content-Type': CONTENT_TYPES.get('text')} response = self.client.create_object( container_name, self.default_obj_name, headers=headers, data=updated_object_data) method = 'object update with valid object name' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_object_creation_with_etag( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_info = generate_object(container_name, object_name) response = object_info.get('response') method = 'object creation with etag header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) response = self.client.get_object( container_name, self.default_obj_name) self.assertIn( 'etag', response.headers, msg="Etag header was set") if object_type == 'standard': expected = object_info.get('etag') else: expected = '"{0}"'.format(object_info.get('etag')) received = response.headers.get('etag') self.assertEqual( expected, received, msg='object created with Etag header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList(exclude=['dlo', 'slo'])) def test_object_creation_with_uppercase_etag(self): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_data = "valid_data" data_md5 = md5(object_data).hexdigest() upper_etag = data_md5.upper() headers = {"ETag": upper_etag} create_response = self.client.create_object(container_name, object_name, data=object_data, headers=headers) method = 'object creation with uppercase etag header' expected = 201 received = create_response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) object_response = self.client.get_object( container_name, self.default_obj_name) self.assertIn( 'etag', object_response.headers, msg="Etag header was set") expected = data_md5 received = object_response.headers.get('etag') self.assertEqual( expected, received, msg='object created with Etag header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_creation_with_access_control_allow_credentials( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = {'Access-Control-Allow-Credentials': 'true'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with Access-Control-Allow-Credentials header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Access-Control-Allow-Credentials', response.headers, msg="Access-Control-Allow-Credentials header was set") expected = 'true' received = response.headers.get('Access-Control-Allow-Credentials') self.assertEqual( expected, received, msg='object created with Access-Control-Allow-Credentials header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_creation_with_access_control_allow_methods( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = { 'Access-Control-Allow-Methods': 'GET, POST, OPTIONS'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with Access-Control-Allow-Methods header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Access-Control-Allow-Methods', response.headers, msg="Access-Control-Allow-Methods header was set") expected = 'GET, POST, OPTIONS' received = response.headers.get('Access-Control-Allow-Methods') self.assertEqual( expected, received, msg='object created with Access-Control-Allow-Methods header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_creation_with_access_control_allow_origin( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = { 'Access-Control-Allow-Origin': 'http://example.com'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with Access-Control-Allow-Origin header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Access-Control-Allow-Origin', response.headers, msg="Access-Control-Allow-Origin header was set") expected = 'http://example.com' received = response.headers.get('Access-Control-Allow-Origin') self.assertEqual( expected, received, msg='object created with Access-Control-Allow-Origin header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_creation_with_access_control_expose_headers( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = {'Access-Control-Expose-Headers': 'X-Foo-Header'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with Access-Control-Expose-Headers header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Access-Control-Expose-Headers', response.headers, msg="Access-Control-Expose-Headers header was set") expected = 'X-Foo-Header' received = response.headers.get('Access-Control-Expose-Headers') self.assertEqual( expected, received, msg='object created with Access-Control-Expose-Headers header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_creation_with_access_controle_max_age( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = {'Access-Control-Max-Age': '5'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with Access-Control-Max-Age header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Access-Control-Max-Age', response.headers, msg="Access-Control-Max-Age header was set") expected = '5' received = response.headers.get('Access-Control-Max-Age') self.assertEqual( expected, received, msg='object created with Access-Control-Max-Age header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_creation_with_access_control_request_headers( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = {'Access-Control-Request-Headers': 'x-requested-with'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with Access-Control-Request-Headers header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Access-Control-Request-Headers', response.headers, msg="Access-Control-Request-Headers header was set") expected = 'x-requested-with' received = response.headers.get('Access-Control-Request-Headers') self.assertEqual( expected, received, msg='object created with Access-Control-Request-Headers header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_creation_with_access_control_request_method( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = {'Access-Control-Request-Method': 'GET'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with Access-Control-Request-Method header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Access-Control-Request-Method', response.headers, msg="Access-Control-Request-Method header was set") expected = 'GET' received = response.headers.get('Access-Control-Request-Method') self.assertEqual( expected, received, msg='object created with Access-Control-Request-Method header' ' value expected: {0} received: {1}'.format( expected, received)) @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object-cors') def ddtest_object_retrieval_with_origin( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name headers = {'access-control-allow-origin': 'http://example.com', 'access-control-expose-headers': 'X-Trans-Id'} generate_object(container_name, object_name, headers=headers) headers = {'Origin': 'http://example.com'} response = self.client.get_object_metadata( container_name, object_name, headers=headers) self.assertIn( 'access-control-expose-headers', response.headers, msg="access-control-expose-headers header should be set") self.assertIn( 'access-control-allow-origin', response.headers, msg="access-control-allow-origin header should be set") expected = 'http://example.com' received = response.headers.get('access-control-allow-origin') self.assertEqual( expected, received, msg='access-control-allow-origin header should reflect origin' ' expected: {0} received: {1}'.format(expected, received)) @data_driven_test(ObjectDatasetList(exclude=['dlo', 'slo'])) def ddtest_object_creation_with_file_compression( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name def object_data_op(data, extra_data): data = zlib.compress(data) return (data, extra_data) object_headers = {'Content-Encoding': 'gzip'} object_info = generate_object(container_name, object_name, data_op=object_data_op, headers=object_headers) response = object_info.get('response') method = 'object creation with Content-Encoding header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Content-Encoding', response.headers, msg="Content-Encoding header was set") expected = 'gzip' received = response.headers.get('Content-Encoding') self.assertEqual( expected, received, msg='object created with Content-Encoding header value' ' expected: {0} received: {1}'.format(expected, received)) @data_driven_test(ObjectDatasetList()) def ddtest_object_creation_with_content_disposition( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = { 'Content-Disposition': 'attachment; filename=testdata.txt'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with content disposition header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'Content-Disposition', response.headers, msg="Content-Disposition header was set") expected = 'attachment; filename=testdata.txt' received = response.headers.get('Content-Disposition') self.assertEqual( expected, received, msg='object created with Content-Disposition header value' ' expected: {0} received: {1}'.format(expected, received)) @data_driven_test(ObjectDatasetList()) def ddtest_object_creation_with_x_delete_at( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name start_time = calendar.timegm(time.gmtime()) future_time = str(int(start_time + 60)) object_headers = {'X-Delete-At': future_time} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with X-Delete-At header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'X-Delete-At', response.headers, msg="X-Delete-At header was set") expected = future_time received = response.headers.get('X-Delete-At') self.assertEqual( expected, received, msg='object created with X-Delete-At header value' ' expected: {0} received: {1}'.format(expected, received)) @data_driven_test(ObjectDatasetList()) def ddtest_object_creation_with_delete_after( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name object_headers = {'X-Delete-After': '60'} object_info = generate_object(container_name, object_name, headers=object_headers) response = object_info.get('response') method = 'object creation with X-Delete-After header' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'X-Delete-At', response.headers, msg="X-Delete-At header was set") @data_driven_test(ObjectDatasetList()) @ObjectStorageFixture.required_features('object_versioning') def ddtest_versioned_container_creation_with_valid_data( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_history_container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) headers = {'X-Versions-Location': object_history_container_name} self.client.set_container_metadata(container_name, headers=headers) # list objects in non-current container response = self.client.list_objects( object_history_container_name) method = 'list on empty versioned container' expected = 204 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) # Create an object (version 1) object_name = self.default_obj_name ver1_info = generate_object(container_name, object_name) response = ver1_info.get('response') method = 'object version one creation' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) # Update an object (version 2) object_name = self.default_obj_name ver2_info = generate_object(container_name, object_name) response = ver2_info.get('response') method = 'update version one object' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.list_objects(object_history_container_name) method = 'list on versioned container' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @unittest.skip('Problem with this tests assertion, needs review') @data_driven_test(ObjectDatasetList()) def ddtest_put_copy_object(self, object_type, generate_object): src_container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) dest_container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) src_object_name = '{0}_source'.format(self.default_obj_name) generate_object(src_container_name, src_object_name) dest_obj_name = '{0}_destination'.format(self.default_obj_name) source = '/{0}/{1}'.format(src_container_name, src_object_name) hdrs = {'X-Copy-From': source, 'Content-Length': '0'} response = self.client.copy_object( dest_container_name, dest_obj_name, headers=hdrs) method = 'put copy object' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object( dest_container_name, dest_obj_name) method = 'copied object retrieval' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_copy_object(self, object_type, generate_object): src_container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) dest_container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) src_object_name = '{0}_source'.format(self.default_obj_name) generate_object(src_container_name, src_object_name) dest_object_name = '{0}_destination'.format(self.default_obj_name) dest = '/{0}/{1}'.format(dest_container_name, dest_object_name) headers = {'Destination': dest} response = self.client.copy_object( src_container_name, src_object_name, headers=headers) method = 'copy object' expected = 201 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object( dest_container_name, dest_object_name) method = 'copied object retrieval' expected = 200 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_object_deletion_with_valid_object( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) response = self.client.delete_object( container_name, object_name) method = 'delete object' expected = 204 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object( container_name, self.default_obj_name) method = 'object retrieval' expected = 404 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) @data_driven_test(ObjectDatasetList()) def ddtest_obj_metadata_update_with_object_possessing_metadata( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name, headers={'X-Object-Meta-Grok': 'Drok'}) response = self.client.get_object_metadata( container_name, object_name) self.assertIn( 'X-Object-Meta-Grok', response.headers, msg="object not created with X-Object-Meta-Grok header") expected = 'Drok' received = response.headers.get('X-Object-Meta-Grok') self.assertEqual( expected, received, msg='object created with X-Object-Meta-Grok header value' ' expected: {0} received: {1}'.format(expected, received)) headers = {'X-Object-Meta-Foo': 'Bar'} response = self.client.set_object_metadata( container_name, self.default_obj_name, headers=headers) method = 'set object metadata' expected = 202 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'X-Object-Meta-Foo', response.headers, msg="object updated with X-Object-Meta-Foo header") expected = 'Bar' received = response.headers.get('X-Object-Meta-Foo') self.assertEqual( expected, received, msg='object X-Object-Meta-Foo header value expected: {0}' ' received: {1}'.format(expected, received)) @data_driven_test(ObjectDatasetList()) def ddtest_obj_metadata_update(self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object_name = self.default_obj_name generate_object(container_name, object_name) headers = {'X-Object-Meta-Grok': 'Drok'} response = self.client.set_object_metadata( container_name, object_name, headers=headers) method = 'set object metadata X-Object-Meta-Grok: Drok' expected = 202 received = response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) response = self.client.get_object_metadata( container_name, self.default_obj_name) self.assertIn( 'X-Object-Meta-Grok', response.headers, msg="object updated with X-Object-Meta-Grok header") expected = 'Drok' received = response.headers.get('X-Object-Meta-Grok') self.assertEqual( expected, received, msg='object X-Object-Meta-Grok header value expected: {0}' ' received: {1}'.format(expected, received)) @data_driven_test(ObjectDatasetList()) def ddtest_content_type_not_detected_without_detect_content_type_header( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object1_name = 'object1.txt' object1_headers = {'Content-Type': 'application/x-www-form-urlencoded'} generate_object(container_name, object1_name, headers=object1_headers) object2_name = 'object2.txt' object2_headers = {'X-Detect-Content-Type': False, 'Content-Type': 'application/x-www-form-urlencoded'} generate_object(container_name, object2_name, headers=object2_headers) response = self.client.get_object( container_name, object1_name) expected = 'application/x-www-form-urlencoded' received = response.headers.get('content-type') self.assertEqual( expected, received, msg='object created should have content type: {0}' ' received: {1}'.format(expected, received)) response = self.client.get_object( container_name, object2_name) self.assertEqual( expected, received, msg='object created should have content type: {0}' ' received: {1}'.format(expected, received)) @data_driven_test(ObjectDatasetList()) def ddtest_content_type_detected_with_detect_content_type( self, object_type, generate_object): container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) object1_name = 'object1.txt' object1_headers = {'X-Detect-Content-Type': True, 'Content-Type': 'application/x-www-form-urlencoded'} generate_object(container_name, object1_name, headers=object1_headers) response = self.client.get_object( container_name, object1_name) expected = 'text/plain' received = response.headers.get('content-type') self.assertEqual( expected, received, msg='object created should have content type: {0}' ' received: {1}'.format(expected, received)) object2_name = 'object2.txt' object2_headers = {'X-Detect-Content-Type': True} generate_object(container_name, object2_name, headers=object2_headers) response = self.client.get_object( container_name, object2_name) expected = 'text/plain' received = response.headers.get('content-type') self.assertEqual( expected, received, msg='object created should have content type: {0}' ' received: {1}'.format(expected, received)) def test_object_creation_via_chunked_transfer(self): """ Scenario: Create an object using chunked transfer encoding. Expected Results: Return a 201 status code and a single object should be created. """ container_name = self.create_temp_container( descriptor=CONTAINER_DESCRIPTOR) headers = {"Transfer-Encoding": "chunked"} create_response = self.client.create_object( container_name, self.default_obj_name, headers=headers, data=self.generate_chunk_data()) method = 'Object creation via chunked transfer' expected = 201 received = create_response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received))) object_response = self.client.get_object(container_name, self.default_obj_name) method = 'Object retrieval' expected = 200 received = object_response.status_code self.assertEqual( expected, received, msg=STATUS_CODE_MSG.format( method=method, expected=expected, received=str(received)))
34.273591
79
0.605051
4,979
50,485
5.887728
0.060253
0.057206
0.058332
0.042367
0.883404
0.860583
0.836568
0.817602
0.797749
0.780488
0
0.00876
0.314886
50,485
1,472
80
34.296875
0.838788
0.019669
0
0.775993
0
0
0.131571
0.033242
0
0
0
0
0.069315
1
0.032967
false
0
0.007608
0
0.042265
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
539324c139f4acda8b0dbb87e42e77a126f0fc1b
155
py
Python
tests/__init__.py
egor43/PyImageComparsion
5270f5646c40391cc5ac225305d7be9b0b7de140
[ "BSD-2-Clause" ]
null
null
null
tests/__init__.py
egor43/PyImageComparsion
5270f5646c40391cc5ac225305d7be9b0b7de140
[ "BSD-2-Clause" ]
null
null
null
tests/__init__.py
egor43/PyImageComparsion
5270f5646c40391cc5ac225305d7be9b0b7de140
[ "BSD-2-Clause" ]
null
null
null
from . import test_helpers from . import test_image_opener from . import test_image_metrick from . import test_compare_tools from . import test_compare_api
31
32
0.845161
24
155
5.083333
0.416667
0.409836
0.57377
0.311475
0
0
0
0
0
0
0
0
0.122581
155
5
33
31
0.897059
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
7
53a287190d58a2db9d8427aaa2bd973ac3e2cd59
59
py
Python
__init__.py
csalyk/nirspec
58661371871d29103afe42bfccc0bff9ff773914
[ "MIT-0" ]
null
null
null
__init__.py
csalyk/nirspec
58661371871d29103afe42bfccc0bff9ff773914
[ "MIT-0" ]
null
null
null
__init__.py
csalyk/nirspec
58661371871d29103afe42bfccc0bff9ff773914
[ "MIT-0" ]
null
null
null
from .nirspec import divspec from .nirspec import gluespec
19.666667
29
0.830508
8
59
6.125
0.625
0.44898
0.693878
0
0
0
0
0
0
0
0
0
0.135593
59
2
30
29.5
0.960784
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
53b0797fa1d2b73bd60c7d0448335bb8ff3970e6
2,995
py
Python
tests/bucket/test_bucket.py
WillChilds-Klein/mistress-mapreduce
c991a502545bd0d3ec4f914cdc63faf6a40e77ae
[ "Apache-2.0" ]
2
2018-12-02T11:10:15.000Z
2019-02-21T22:24:00.000Z
tests/bucket/test_bucket.py
WillChilds-Klein/mistress-mapreduce
c991a502545bd0d3ec4f914cdc63faf6a40e77ae
[ "Apache-2.0" ]
1
2019-02-21T22:23:36.000Z
2019-02-21T22:23:36.000Z
tests/bucket/test_bucket.py
WillChilds-Klein/mistress-mapreduce
c991a502545bd0d3ec4f914cdc63faf6a40e77ae
[ "Apache-2.0" ]
3
2018-04-26T16:02:10.000Z
2018-12-02T11:10:16.000Z
from mrs.bucket import WriteBucket from mrs import BinWriter, HexWriter def test_writebucket(): b = WriteBucket(0, 0) b.addpair((4, 'test')) b.collect([(3, 'a'), (1, 'This'), (2, 'is')]) values = ' '.join(value for key, value in b) assert values == 'test a This is' b.sort() values = ' '.join(value for key, value in b) assert values == 'This is a test' def test_write_only(): b = WriteBucket(0, 0) b.addpair((4, 'test'), write_only=True) b.collect([(3, 'a'), (1, 'This'), (2, 'is')], write_only=True) values = ' '.join(value for key, value in b) assert values == '' readonly_copy = b.readonly_copy() assert readonly_copy.url is None def test_writing(tmpdir): b = WriteBucket(2, 4, dir=tmpdir.strpath, format=BinWriter) prefix = b.prefix() assert prefix == 'source_2_split_4_' listdir = tmpdir.listdir() assert listdir == [] b.addpair((1, 2)) filename = prefix + '.mrsb' path = tmpdir.join(filename).strpath listdir = tmpdir.listdir() assert listdir == [path] readonly_copy = b.readonly_copy() assert readonly_copy.url == path def test_roundtrip(tmpdir): b = WriteBucket(2, 4, dir=tmpdir.strpath, format=BinWriter) prefix = b.prefix() assert prefix == 'source_2_split_4_' listdir = tmpdir.listdir() assert listdir == [] b.addpair((4, 'test')) b.collect([(3, 'a'), (1, 'This'), (2, 'is')]) values = ' '.join(value for key, value in b) assert values == 'test a This is' b.close_writer(do_sync=False) filename = prefix + '.mrsb' path = tmpdir.join(filename).strpath listdir = tmpdir.listdir() assert listdir == [path] readonly_copy = b.readonly_copy() assert readonly_copy.url == path values = ' '.join(value for key, value in readonly_copy) assert values == 'test a This is' values = ' '.join(value for key, value in readonly_copy.stream()) assert values == 'test a This is' b.clean() listdir = tmpdir.listdir() assert listdir == [] def test_roundtrip_write_only(tmpdir): b = WriteBucket(7, 1, dir=tmpdir.strpath, format=HexWriter) prefix = b.prefix() assert prefix == 'source_7_split_1_' listdir = tmpdir.listdir() assert listdir == [] b.addpair((4, 'test'), write_only=True) b.collect([(3, 'a'), (1, 'This'), (2, 'is')], write_only=True) values = ' '.join(value for key, value in b) assert values == '' b.close_writer(do_sync=False) filename = prefix + '.mrsx' path = tmpdir.join(filename).strpath listdir = tmpdir.listdir() assert listdir == [path] readonly_copy = b.readonly_copy() assert readonly_copy.url == path values = ' '.join(value for key, value in readonly_copy) assert values == '' values = ' '.join(value for key, value in readonly_copy.stream()) assert values == 'test a This is' b.clean() listdir = tmpdir.listdir() assert listdir == [] # vim: et sw=4 sts=4
26.741071
69
0.621035
409
2,995
4.440098
0.149144
0.105727
0.074339
0.089207
0.863987
0.863987
0.84196
0.84196
0.792952
0.749449
0
0.015544
0.226711
2,995
111
70
26.981982
0.768566
0.00601
0
0.825
0
0
0.068235
0
0
0
0
0
0.3
1
0.0625
false
0
0.025
0
0.0875
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
53bf55da72ae86acb1c699435bc12016f38e84ea
146
py
Python
DataQualityTester/views/pages.py
pwyf/data-quality-tester
d7674849c64d4d41ff4e4b6b12631994c7ce0a92
[ "MIT" ]
null
null
null
DataQualityTester/views/pages.py
pwyf/data-quality-tester
d7674849c64d4d41ff4e4b6b12631994c7ce0a92
[ "MIT" ]
53
2017-04-07T09:41:38.000Z
2022-02-11T14:26:46.000Z
DataQualityTester/views/pages.py
pwyf/iati-simple-tester
ef7f06ebbd4dd45e6ca76d93a3f624abc33d961c
[ "MIT" ]
3
2017-07-19T13:43:14.000Z
2019-10-29T15:25:49.000Z
from flask import render_template def home(): return render_template('upload.html') def about(): return render_template('about.html')
14.6
41
0.726027
19
146
5.421053
0.578947
0.407767
0.38835
0
0
0
0
0
0
0
0
0
0.164384
146
9
42
16.222222
0.844262
0
0
0
0
0
0.143836
0
0
0
0
0
0
1
0.4
true
0
0.2
0.4
1
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
1
1
0
0
8
071593280ef30a4532ccbb4b6f3c6b4f7d728fa5
4,251
py
Python
image_quality/handlers/data_generator.py
mbartoli/image-quality-assessment
b957c781ac8a11f8668f58345524f33503338b3b
[ "Apache-2.0" ]
1
2021-03-27T15:09:30.000Z
2021-03-27T15:09:30.000Z
image_quality/handlers/data_generator.py
welcotravel/image-quality-assessment
b9e17de93578220e5ae142725d9153098759e7c8
[ "Apache-2.0" ]
null
null
null
image_quality/handlers/data_generator.py
welcotravel/image-quality-assessment
b9e17de93578220e5ae142725d9153098759e7c8
[ "Apache-2.0" ]
1
2020-10-05T03:20:53.000Z
2020-10-05T03:20:53.000Z
import os import numpy as np import tensorflow as tf from image_quality.utils import utils class TrainDataGenerator(tf.keras.utils.Sequence): '''inherits from Keras Sequence base object, allows to use multiprocessing in .fit_generator''' def __init__(self, samples, img_dir, batch_size, n_classes, basenet_preprocess, img_load_dims=(256, 256), img_crop_dims=(224, 224), shuffle=True): self.samples = samples self.img_dir = img_dir self.batch_size = batch_size self.n_classes = n_classes self.basenet_preprocess = basenet_preprocess # Keras basenet specific preprocessing function self.img_load_dims = img_load_dims # dimensions that images get resized into when loaded self.img_crop_dims = img_crop_dims # dimensions that images get randomly cropped to self.shuffle = shuffle self.on_epoch_end() # call ensures that samples are shuffled in first epoch if shuffle is set to True def __len__(self): return int(np.ceil(len(self.samples) / self.batch_size)) # number of batches per epoch def __getitem__(self, index): batch_indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # get batch indexes batch_samples = [self.samples[i] for i in batch_indexes] # get batch samples X, y = self.__data_generator(batch_samples) return X, y def on_epoch_end(self): self.indexes = np.arange(len(self.samples)) if self.shuffle is True: np.random.shuffle(self.indexes) def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_crop_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join(self.img_dir, '{}'.format(sample['image_id'])) img = utils.load_image(img_file, self.img_load_dims) if img is not None: img = utils.random_crop(img, self.img_crop_dims) img = utils.random_horizontal_flip(img) X[i, ] = img # normalize labels y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y class TestDataGenerator(tf.keras.utils.Sequence): '''inherits from Keras Sequence base object, allows to use multiprocessing in .fit_generator''' def __init__(self, samples, img_dir, batch_size, n_classes, basenet_preprocess, img_load_dims=(224, 224)): self.samples = samples self.img_dir = img_dir self.batch_size = batch_size self.n_classes = n_classes self.basenet_preprocess = basenet_preprocess # Keras basenet specific preprocessing function self.img_load_dims = img_load_dims # dimensions that images get resized into when loaded self.on_epoch_end() # call ensures that samples are shuffled in first epoch if shuffle is set to True def __len__(self): return int(np.ceil(len(self.samples) / self.batch_size)) # number of batches per epoch def __getitem__(self, index): batch_indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # get batch indexes batch_samples = [self.samples[i] for i in batch_indexes] # get batch samples X, y = self.__data_generator(batch_samples) return X, y def on_epoch_end(self): self.indexes = np.arange(len(self.samples)) def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_load_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join(self.img_dir, '{}'.format(sample['image_id'])) img = utils.load_image(img_file, self.img_load_dims) if img is not None: X[i, ] = img # normalize labels if sample.get('label') is not None: y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y
40.485714
106
0.713479
630
4,251
4.592063
0.188889
0.058071
0.034221
0.025925
0.887314
0.853094
0.853094
0.853094
0.853094
0.853094
0
0.009316
0.191955
4,251
104
107
40.875
0.832897
0.26088
0
0.760563
0
0
0.011261
0
0
0
0
0
0
1
0.140845
false
0
0.056338
0.028169
0.309859
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
072bd117dea823ba3412148c4dbda51e774d2a1f
11,707
py
Python
cohorts_proj/datasets/migrations/0009_auto_20200824_0617.py
zferic/harmonization-website
f6a081481df3a3a62cb075fbb63ad0470b0d4e06
[ "MIT" ]
1
2020-09-20T02:32:01.000Z
2020-09-20T02:32:01.000Z
cohorts_proj/datasets/migrations/0009_auto_20200824_0617.py
zferic/harmonization-website
f6a081481df3a3a62cb075fbb63ad0470b0d4e06
[ "MIT" ]
20
2020-04-17T14:01:41.000Z
2022-03-12T00:30:23.000Z
cohorts_proj/datasets/migrations/0009_auto_20200824_0617.py
zferic/harmonization-website
f6a081481df3a3a62cb075fbb63ad0470b0d4e06
[ "MIT" ]
3
2020-10-08T00:24:51.000Z
2021-06-02T20:07:30.000Z
# Generated by Django 3.0.7 on 2020-08-24 06:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('datasets', '0008_auto_20200821_1427'), ] operations = [ migrations.AddField( model_name='rawdar', name='AsB', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='AsB_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='AsB_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Ba', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Ba_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Ba_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Cs', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Cs_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Cs_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='DMA', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='DMA_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='DMA_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='MMA', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='MMA_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='MMA_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Sr', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Sr_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Sr_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='iAs', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='iAs_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='iAs_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ag', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ag_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Al', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Al_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='As', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='As_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Be', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Be_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cd', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cd_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Co', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Co_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cr', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cr_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cu', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cu_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Fe', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Fe_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Hg', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Hg_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mo', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mo_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ni', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ni_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Pb', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Pb_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sb', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sb_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Se', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Se_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Tl', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Tl_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='U', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='U_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='V', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='V_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='W', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='W_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Zn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Zn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='urine_specific_gravity', field=models.FloatField(blank=True, null=True), ), ]
33.353276
154
0.522337
1,096
11,707
5.468978
0.076642
0.099099
0.165165
0.209209
0.971471
0.971471
0.971471
0.954955
0.954955
0.954955
0
0.007698
0.345349
11,707
350
155
33.448571
0.7744
0.003844
0
0.787791
1
0
0.09494
0.003859
0
0
0
0
0
1
0
false
0
0.002907
0
0.011628
0
0
0
0
null
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
9
4ae8e1876538896679e757644a54528296f6f24d
62,352
py
Python
gpMgmt/bin/gppylib/test/unit/test_unit_gpcrondump.py
nurikk/gpdb
04fe0202c59721826d1eda2b19d73e5572893fcb
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
gpMgmt/bin/gppylib/test/unit/test_unit_gpcrondump.py
nurikk/gpdb
04fe0202c59721826d1eda2b19d73e5572893fcb
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
gpMgmt/bin/gppylib/test/unit/test_unit_gpcrondump.py
nurikk/gpdb
04fe0202c59721826d1eda2b19d73e5572893fcb
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os import imp gpcrondump_path = os.path.abspath('gpcrondump') gpcrondump = imp.load_source('gpcrondump', gpcrondump_path) import unittest2 as unittest from datetime import datetime from gppylib import gplog from gpcrondump import GpCronDump from gppylib.operations.utils import DEFAULT_NUM_WORKERS from mock import patch, Mock from gppylib.operations.dump import MailDumpEvent from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file import mock logger = gplog.get_unittest_logger() class GpCronDumpTestCase(unittest.TestCase): class Options: def __init__(self): self.masterDataDirectory = "" self.interactive = False self.clear_dumps_only = False self.post_script = None self.dump_config = False self.history = False self.pre_vacuum = False self.post_vacuum = False self.rollback = False self.compress = True self.free_space_percent = None self.clear_dumps = False self.cleanup_date = None self.cleanup_total = None self.dump_schema = False self.dump_databases = ['testdb'] self.bypass_disk_check = True self.backup_set = None self.dump_global = False self.clear_catalog_dumps = False self.batch_default = DEFAULT_NUM_WORKERS self.include_dump_tables = None self.exclude_dump_tables = None self.include_dump_tables_file = None self.exclude_dump_tables_file = None self.backup_dir = None self.encoding = None self.output_options = None self.report_dir = None self.timestamp_key = None self.list_backup_files = None self.quiet = False self.verbose = False self.local_dump_prefix = '' self.list_filter_tables = None self.include_email_file = None self.email_details = None self.include_schema_file = None self.exclude_schema_file = None self.exclude_dump_schema = None self.dump_stats = None ## Enterprise init self.incremental = False self.ddboost = False self.ddboost_hosts = None self.ddboost_user = None self.ddboost_config_remove = False self.ddboost_verify = False self.ddboost_remote = None self.ddboost_ping = None self.ddboost_backupdir = None self.replicate = None self.max_streams = None self.netbackup_service_host = None self.netbackup_policy = None self.netbackup_schedule = None self.netbackup_block_size = None self.netbackup_keyword = None @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.GpCronDump.validate_dump_schema') @patch('gpcrondump.validate_current_timestamp') def test_option_schema_filter_1(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_schema_file = '/tmp/foo' options.incremental = True with self.assertRaisesRegexp(Exception, '--schema-file option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.GpCronDump.validate_dump_schema') @patch('gpcrondump.validate_current_timestamp') def test_option_schema_filter_2(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_schema_file = '/tmp/foo' options.incremental = True with self.assertRaisesRegexp(Exception, '--exclude-schema-file option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_3(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, '-S option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_4(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, '-s option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_5(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-s can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_6(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-s can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_7(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_dump_schema = 'foo' with self.assertRaisesRegexp(Exception, '-s can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_8(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.exclude_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-S can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_9(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-S can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_10(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--exclude-schema-file can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_11(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_12(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_13(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_14(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_15(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_16(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_17(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_18(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_19(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_20(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_21(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_22(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_23(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_24(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_25(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_26(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_27(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = ['information_schema'] with self.assertRaisesRegexp(Exception, "can not specify catalog schema 'information_schema' using -s option"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_28(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = ['information_schema'] with self.assertRaisesRegexp(Exception, "can not specify catalog schema 'information_schema' using -S option"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_lines_from_file', return_value=['public', 'information_schema']) def test_options_schema_filter_29(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, "can not exclude catalog schema 'information_schema' in schema file '/tmp/foo'"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_lines_from_file', return_value=['public', 'information_schema']) def test_options_schema_filter_30(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, "can not include catalog schema 'information_schema' in schema file '/tmp/foo'"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_31(self, mock, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertEquals(file, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_32(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = ['public'] gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_33(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = '/tmp/foo' write_lines_to_file('/tmp/foo', ['public']) gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) if os.path.exists('/tmp/foo'): os.remove('/tmp/foo') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_include_schema_list_from_exclude_schema', return_value=['public']) def test_options_schema_filter_34(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_schema_file = '/tmp/foo' write_lines_to_file('/tmp/foo', ['public']) gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) if os.path.exists('/tmp/foo'): os.remove('/tmp/foo') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_include_schema_list_from_exclude_schema', return_value=['public']) def test_options_schema_filter_35(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'public' gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_lines_from_file', return_value=['public']) @patch('gpcrondump.get_user_table_list_for_schema', return_value=['public', 'table1', 'public', 'table2']) def test_options_schema_filter_36(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() gpcd = GpCronDump(options, None) dbname = 'foo' schema_file = '/tmp/foo' inc = gpcd.generate_include_table_list_from_schema_file(dbname, schema_file) self.assertTrue(inc.startswith('/tmp/include_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options1(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'include table list can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options2(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'exclude table list can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options3(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables_file = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'include table file can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options4(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables_file = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'exclude table file can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options10(self, mock, mock2): options = GpCronDumpTestCase.Options() options.local_dump_prefix = 'foo' options.incremental = False options.list_filter_tables = True try: with self.assertRaisesRegexp(Exception, 'list filter tables option requires --prefix and --incremental'): cron = GpCronDump(options, None) finally: options.list_filter_tables = False @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20121225090000') def test_options11(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.incremental = True cron = GpCronDump(options, None) self.assertEquals(cron.full_dump_timestamp, '20121225090000') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options12(self, mock, mock2): options = GpCronDumpTestCase.Options() options.incremental = True options.dump_databases = 'bkdb,fulldb' with self.assertRaisesRegexp(Exception, 'multi-database backup is not supported with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20120330090000') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_master_port') def test_options13(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.incremental = True options.dump_databases = ['bkdb'] #If this is successful then it should not raise an exception GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options14(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = 'bkdb' options.incremental = False #If this is successful then it should not raise an exception GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options15(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = 'bkdb,fulldb' options.incremental = False #If this is successful then it should not raise an exception GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options16(self, mock, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.backup_dir = '/foo1' gpcd = GpCronDump(options, None) self.assertEquals(gpcd.getBackupDirectoryRoot(), '/foo1') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options17(self, mock, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.backup_dir = None gpcd = GpCronDump(options, None) self.assertEquals(gpcd.getBackupDirectoryRoot(), '/tmp/foobar') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options18(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, '-s option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options19(self, mock, mock2): options = GpCronDumpTestCase.Options() options.clear_dumps = True options.incremental = True with self.assertRaisesRegexp(Exception, '-c option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options20(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = [] options.incremental = True with self.assertRaisesRegexp(Exception, 'Must supply -x <database name> with incremental option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options21(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = False options.max_streams = 20 with self.assertRaisesRegexp(Exception, '--max-streams must be specified along with --replicate'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options22(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = True options.max_streams = None with self.assertRaisesRegexp(Exception, '--max-streams must be specified along with --replicate'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options23(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = True options.max_streams = 0 with self.assertRaisesRegexp(Exception, '--max-streams must be a number greater than zero'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options24(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = True options.max_streams = "abc" with self.assertRaisesRegexp(Exception, '--max-streams must be a number greater than zero'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options25(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = False options.replicate = False options.max_streams = 20 with self.assertRaisesRegexp(Exception, '--replicate and --max-streams cannot be used without --ddboost'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options26(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.list_backup_files = True options.timestamp_key = None with self.assertRaisesRegexp(Exception, 'Must supply -K option when listing backup files'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options27(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = 'bkdb,fulldb' options.timestamp_key = True with self.assertRaisesRegexp(Exception, 'multi-database backup is not supported with -K option'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options28(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = ['bkdb'] options.timestamp_key = True options.ddboost = True options.list_backup_files = True with self.assertRaisesRegexp(Exception, 'list backup files not supported with ddboost option'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options29(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = ['bkdb'] options.timestamp_key = True options.ddboost = True options.netbackup_service_host = "mdw" options.netbackup_policy = "test_policy" options.netbackup_schedule = "test_schedule" with self.assertRaisesRegexp(Exception, '--ddboost is not supported with NetBackup'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_include_exclude_for_dump_database00(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertEquals(inc, None) self.assertEquals(exc, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/include_dump_tables_file') @patch('gpcrondump.get_lines_from_file', return_value=['public.t1', 'public.t2']) def test_get_include_exclude_for_dump_database01(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.include_dump_tables_file = '/mydir/incfile' gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(inc.startswith('/tmp/include_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/include_dump_tables_file') @patch('gpcrondump.get_lines_from_file') def test_get_include_exclude_for_dump_database02(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.include_dump_tables = ['public.t1', 'public.t2', 'public.t3'] gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(inc.startswith('/tmp/include_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20121225090000') def test_get_include_exclude_for_dump_database03(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.incremental = True gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertEquals(inc, '/tmp/dirty') self.assertEquals(exc, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/exclude_dump_tables_file') @patch('gpcrondump.get_lines_from_file', return_value=['public.t1', 'public.t2']) def test_get_include_exclude_for_dump_database04(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.exclude_dump_tables_file = '/odir/exfile' gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(exc.startswith('/tmp/exclude_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/exclude_dump_tables_file') @patch('gpcrondump.get_lines_from_file') def test_get_include_exclude_for_dump_database06(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.exclude_dump_tables = ['public.t4', 'public.t5', 'public.t6'] gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(exc.startswith('/tmp/exclude_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_table_names_from_partition_list', side_effect = [['public.aot1', 'public.aot2'], ['public.cot1', 'public.cot2']]) def test_verify_tablenames_00(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) ao_partition_list = ['public, aot1, 2190', 'public, aot2, 3190'] co_partition_list = ['public, cot1, 2190', 'public, cot2, 3190'] heap_partition_list = ['public.heapt1', 'public.heapt2'] cron._verify_tablenames(ao_partition_list, co_partition_list, heap_partition_list) #Should not raise an exception @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_table_names_from_partition_list', side_effect = [['public.aot1:asd', 'public.aot2'], ['public.cot1', 'public.cot2:asd']]) def test_verify_tablenames_00_bad(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) ao_partition_list = ['public, aot1!asd, 2190', 'public, aot2, 3190'] co_partition_list = ['public, cot1, 2190', 'public, cot2\nasd, 3190'] heap_partition_list = ['public, heapt1, 2190', 'public, heapt2!asdasd , 3190'] with self.assertRaisesRegexp(Exception, ''): cron._verify_tablenames(ao_partition_list, co_partition_list, heap_partition_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_inserts_with_incremental(self, mock, mock2): options = GpCronDumpTestCase.Options() options.output_options = ['--inserts'] options.incremental = True with self.assertRaisesRegexp(Exception, '--inserts, --column-inserts, --oids cannot be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_oids_with_incremental(self, mock, mock2): options = GpCronDumpTestCase.Options() options.output_options = ['--oids'] options.incremental = True with self.assertRaisesRegexp(Exception, '--inserts, --column-inserts, --oids cannot be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_column_inserts_with_incremental(self, mock, mock2): options = GpCronDumpTestCase.Options() options.output_options = ['--column-inserts'] options.incremental = True with self.assertRaisesRegexp(Exception, '--inserts, --column-inserts, --oids cannot be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_table_names_from_partition_list_00(self, mock1, mock2): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) partition_list = ['public, aot1, 2190', 'public, aot2:aot, 3190'] expected_output = ['public.aot1', 'public.aot2:aot'] result = cron._get_table_names_from_partition_list(partition_list) self.assertEqual(result, expected_output) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_table_names_from_partition_list_01(self, mock1, mock2): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) partition_list = ['public, aot1, 2190', 'public, aot2,aot, 3190'] with self.assertRaisesRegexp(Exception, 'Invalid partition entry "public, aot2,aot, 3190"'): cron._get_table_names_from_partition_list(partition_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter1(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.include_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-t can not be selected with --table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter2(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.exclude_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-t can not be selected with --exclude-table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter3(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables = 'foo' options.exclude_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-T can not be selected with --exclude-table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter4(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables = 'foo' options.include_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-T can not be selected with --table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter5(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.exclude_dump_tables = 'foo' with self.assertRaisesRegexp(Exception, '-t can not be selected with -T option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter6(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables_file = 'foo' options.exclude_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '--table-file can not be selected with --exclude-table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_timestamp_object1(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' gpcd = GpCronDump(options, None) timestamp = gpcd._get_timestamp_object(options.timestamp_key) self.assertEquals(timestamp, datetime(2013, 1, 1, 1, 1, 1)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_timestamp_object2(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010' gpcd = GpCronDump(options, None) with self.assertRaisesRegexp(Exception, 'Invalid timestamp key'): gpcd._get_timestamp_object(options.timestamp_key) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_timestamp_object3(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None gpcd = GpCronDump(options, None) timestamp = gpcd._get_timestamp_object(options.timestamp_key) self.assertTrue(isinstance(timestamp, datetime)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_files_file_list1(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_status_1_1_20130101010101' % options.masterDataDirectory] self.assertEqual(files_file_list, expected_files_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_files_file_list2(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo2' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo2:%s/db_dumps/20130101/gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_status_1_1_20130101010101' % options.masterDataDirectory] self.assertEqual(files_file_list, expected_files_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20130101000000') def test_get_files_file_list3(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' options.incremental = True options.masterDataDirectory = '/data/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, None, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_status_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101000000_increments' % options.masterDataDirectory] self.assertEqual(sorted(files_file_list), sorted(expected_files_list)) @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gppylib.operations.backup_utils.get_latest_full_dump_timestamp', return_value='20130101000000') def test_get_files_file_list_with_filter(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' options.local_dump_prefix = 'metro' options.include_dump_tables_file = 'bar' options.masterDataDirectory = '/data/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/metro_gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_status_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_filter' % options.masterDataDirectory] self.assertEqual(sorted(files_file_list), sorted(expected_files_list)) @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20130101000000') @patch('gpcrondump.GpCronDump._get_master_port') def test_get_files_file_list_with_prefix(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' options.incremental = True options.local_dump_prefix = 'metro' options.masterDataDirectory = '/data/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, None, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/metro_gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_status_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101000000_increments' % options.masterDataDirectory] self.assertEqual(sorted(files_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list1(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo2' mock_segs = [] timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo2:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory] self.assertEqual(pipes_file_list, expected_files_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list2(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' mock_segs = [Mock(), Mock()] for id, seg in enumerate(mock_segs): seg.getSegmentDataDirectory.return_value = '/bar' seg.getSegmentHostName.return_value = 'foo1' seg.getSegmentDbId.return_value = id + 1 timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory, 'foo1:/bar/db_dumps/20130101/gp_dump_0_1_20130101010101.gz', 'foo1:/bar/db_dumps/20130101/gp_dump_0_2_20130101010101.gz'] self.assertEqual(sorted(pipes_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list3(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.dump_global = True options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' mock_segs = [Mock(), Mock()] for id, seg in enumerate(mock_segs): seg.getSegmentDataDirectory.return_value = '/bar' seg.getSegmentHostName.return_value = 'foo1' seg.getSegmentDbId.return_value = id + 1 timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_global_1_1_20130101010101' % options.masterDataDirectory, 'foo1:/bar/db_dumps/20130101/gp_dump_0_1_20130101010101.gz', 'foo1:/bar/db_dumps/20130101/gp_dump_0_2_20130101010101.gz'] self.assertEqual(sorted(pipes_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list4(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' options.dump_config = True gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' mock_segs = [Mock(), Mock()] for id, seg in enumerate(mock_segs): seg.getSegmentDataDirectory.return_value = '/bar' seg.getSegmentHostName.return_value = 'foo1' seg.getSegmentDbId.return_value = id + 1 timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_master_config_files_20130101010101.tar' % options.masterDataDirectory, 'foo1:/bar/db_dumps/20130101/gp_segment_config_files_0_1_20130101010101.tar', 'foo1:/bar/db_dumps/20130101/gp_segment_config_files_0_2_20130101010101.tar', 'foo1:/bar/db_dumps/20130101/gp_dump_0_1_20130101010101.gz', 'foo1:/bar/db_dumps/20130101/gp_dump_0_2_20130101010101.gz'] self.assertEqual(sorted(pipes_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_gpcrondump_init0(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.local_dump_prefix = 'foo' options.ddboost = False options.ddboost_verify = False options.ddboost_config_remove = False options.ddboost_user = False options.ddboost_host = False options.max_streams = None options.list_backup_files = False gpcd = GpCronDump(options, None) self.assertEqual(gpcd.dump_prefix, 'foo_') @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) @patch('gpcrondump.yaml.load', return_value={'EMAIL_DETAILS': [{'FROM': 'RRP_MPE2_DCA_1', 'DBNAME': 'testdb100', 'SUBJECT': "backup completed for Database 'testdb100'"}]}) def test_validate_parse_email_File00(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" m = mock.MagicMock() with patch('__builtin__.open', m, create=True): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=False) @patch('gpcrondump.GpCronDump._get_master_port') def test_validate_parse_email_File01(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" with self.assertRaisesRegexp(Exception, "\'%s\' file does not exist." % options.include_email_file): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) def test_validate_parse_email_File02(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc" with self.assertRaisesRegexp(Exception, "'%s' is not '.yaml' file. File containing email details should be '.yaml' file." % options.include_email_file): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=0) def test_validate_parse_email_File03(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" with self.assertRaisesRegexp(Exception, "'%s' file is empty." % options.include_email_file): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) @patch('gpcrondump.yaml.load', return_value={'EMAIL_DETAILS': [{'FROM': 'RRP_MPE2_DCA_1', 'NAME': 'testdb100', 'SUBJECT': "backup completed for Database 'testdb100'"}]}) def test_validate_parse_email_File04(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" m = mock.MagicMock() with self.assertRaisesRegexp(Exception, "\'%s\' file is not formatted properly." % options.include_email_file): with patch('__builtin__.open', m, create=True): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) @patch('gpcrondump.yaml.load', return_value={'EMAIL_DETAILS': [{'FROM': 'RRP_MPE2_DCA_1', 'DBNAME': None, 'SUBJECT': "backup completed for Database 'testdb100'"}]}) def test_validate_parse_email_File05(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" m = mock.MagicMock() with self.assertRaisesRegexp(Exception, "\'%s\' file is not formatted properly." % options.include_email_file): with patch('__builtin__.open', m, create=True): cron = GpCronDump(options, None) @patch('gpcrondump.MailDumpEvent') @patch('gpcrondump.GpCronDump._get_master_port') def test_send_email00(self, mock1, MailDumpEvent): options = GpCronDumpTestCase.Options() dump_database = 'testdb1' current_exit_status = 0 time_start = '12:07:09' time_end = '12:08:18' cron = GpCronDump(options, None) cron._send_email(dump_database, current_exit_status, time_start, time_end) #------------------------------- Mainline -------------------------------- if __name__ == '__main__': unittest.main()
52.264878
175
0.697203
6,899
62,352
6.016814
0.058269
0.082751
0.062033
0.068128
0.906697
0.889207
0.881306
0.869164
0.855167
0.841845
0
0.041937
0.200346
62,352
1,192
176
52.308725
0.790594
0.005052
0
0.713222
0
0.004655
0.291444
0.194425
0
0
0
0
0.088454
1
0.09311
false
0.000931
0.010242
0
0.105214
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
db874da91d4a01e76e9bd18e99b073b83ddddd62
6,050
py
Python
AutomationFramework/tests/interfaces/test_if_subif.py
sbarguil/Testing-framework
f3ef69f1c4f0aeafd02e222d846162c711783b15
[ "Apache-2.0" ]
1
2020-04-23T15:22:16.000Z
2020-04-23T15:22:16.000Z
AutomationFramework/tests/interfaces/test_if_subif.py
sbarguil/Testing-framework
f3ef69f1c4f0aeafd02e222d846162c711783b15
[ "Apache-2.0" ]
44
2020-08-13T19:35:41.000Z
2021-03-01T09:08:00.000Z
AutomationFramework/tests/interfaces/test_if_subif.py
sbarguil/Testing-framework
f3ef69f1c4f0aeafd02e222d846162c711783b15
[ "Apache-2.0" ]
6
2020-04-23T15:29:38.000Z
2022-03-03T14:23:38.000Z
import pytest from AutomationFramework.page_objects.interfaces.interfaces import Interfaces from AutomationFramework.tests.base_test import BaseTest class TestInterfacesSubInterfaces(BaseTest): test_case_file = 'if_subif.yml' @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_description', 'page_object_class': Interfaces}]) def test_if_subif_description(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_enabled', 'page_object_class': Interfaces}]) def test_if_subif_enabled(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_ip_prefix_length', 'page_object_class': Interfaces}]) def test_if_subif_ip_prefix_length(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('multiple_create_page_objects_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_ip_state', 'page_object_rpcs_classes': [Interfaces, Interfaces], 'rpc_clean_order': None, }]) def test_if_subif_ip_state(self, multiple_create_page_objects): for page_object in multiple_create_page_objects: page_object.execute_interface_rpc() assert page_object.validate_rpc(), page_object.get_test_case_description() @pytest.mark.parametrize('multiple_create_page_objects_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_origin', 'page_object_rpcs_classes': [Interfaces, Interfaces], 'rpc_clean_order': None, }]) def test_if_subif_origin(self, multiple_create_page_objects): for page_object in multiple_create_page_objects: page_object.execute_interface_rpc() assert page_object.validate_rpc(), page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_dhcp_client', 'page_object_class': Interfaces}]) def test_if_subif_dhcp_client(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_mtu', 'page_object_class': Interfaces}]) def test_if_subif_mtu(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_vlan_id', 'page_object_class': Interfaces}]) def test_if_subif_vlan_id(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_inner_outer_vlan_id', 'page_object_class': Interfaces}]) def test_if_subif_inner_outer_vlan_id(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_match_vlan_id', 'page_object_class': Interfaces}]) def test_if_subif_match_vlan_id(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description()
72.02381
120
0.615372
638
6,050
5.219436
0.092476
0.174174
0.192192
0.096096
0.916517
0.905105
0.899099
0.899099
0.840541
0.840541
0
0
0.315207
6,050
83
121
72.891566
0.803765
0
0
0.647887
0
0
0.154876
0.06
0
0
0
0
0.140845
1
0.140845
false
0
0.042254
0
0.211268
0
0
0
0
null
0
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
915d6d3e43279c39fd9d72fc48c527f4f811ec46
180
py
Python
rta/provision/__init__.py
XiaoguTech/rta-sandbox
2783a3ba8920bf64273761ce7392e51c9c8fb1f7
[ "MIT" ]
null
null
null
rta/provision/__init__.py
XiaoguTech/rta-sandbox
2783a3ba8920bf64273761ce7392e51c9c8fb1f7
[ "MIT" ]
null
null
null
rta/provision/__init__.py
XiaoguTech/rta-sandbox
2783a3ba8920bf64273761ce7392e51c9c8fb1f7
[ "MIT" ]
null
null
null
from rta.provision.utils import * from rta.provision.passwd import * from rta.provision.influxdb import * from rta.provision.grafana import * from rta.provision.kapacitor import *
30
37
0.805556
25
180
5.8
0.36
0.241379
0.551724
0.606897
0
0
0
0
0
0
0
0
0.111111
180
5
38
36
0.90625
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.2
1
0
1
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
9
91820c594379b0529582b42b9cc165d4cd520738
33,871
py
Python
tests/compute/test_sampler.py
buaaqt/dgl
64f6f3c1a8c2c3e08ec0750b902f3e2c63fd2cd7
[ "Apache-2.0" ]
1
2020-07-21T03:03:15.000Z
2020-07-21T03:03:15.000Z
tests/compute/test_sampler.py
buaaqt/dgl
64f6f3c1a8c2c3e08ec0750b902f3e2c63fd2cd7
[ "Apache-2.0" ]
null
null
null
tests/compute/test_sampler.py
buaaqt/dgl
64f6f3c1a8c2c3e08ec0750b902f3e2c63fd2cd7
[ "Apache-2.0" ]
null
null
null
import backend as F import numpy as np import scipy as sp import dgl from dgl import utils import unittest from numpy.testing import assert_array_equal np.random.seed(42) def generate_rand_graph(n): arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64) return dgl.DGLGraph(arr, readonly=True) def test_create_full(): g = generate_rand_graph(100) full_nf = dgl.contrib.sampling.sampler.create_full_nodeflow(g, 5) assert full_nf.number_of_nodes() == g.number_of_nodes() * 6 assert full_nf.number_of_edges() == g.number_of_edges() * 5 def test_1neighbor_sampler_all(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler( g, 1, g.number_of_nodes(), neighbor_type='in', num_workers=4)): seed_ids = subg.layer_parent_nid(-1) assert len(seed_ids) == 1 src, dst, eid = g.in_edges(seed_ids, form='all') assert subg.number_of_nodes() == len(src) + 1 assert subg.number_of_edges() == len(src) assert seed_ids == subg.layer_parent_nid(-1) child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all') assert F.array_equal(child_src, subg.layer_nid(0)) src1 = subg.map_to_parent_nid(child_src) assert F.array_equal(src1, src) def is_sorted(arr): return np.sum(np.sort(arr) == arr, 0) == len(arr) def verify_subgraph(g, subg, seed_id): seed_id = F.asnumpy(seed_id) seeds = F.asnumpy(subg.map_to_parent_nid(subg.layer_nid(-1))) assert seed_id in seeds child_seed = F.asnumpy(subg.layer_nid(-1))[seeds == seed_id] src, dst, eid = g.in_edges(seed_id, form='all') child_src, child_dst, child_eid = subg.in_edges(child_seed, form='all') child_src = F.asnumpy(child_src) # We don't allow duplicate elements in the neighbor list. assert(len(np.unique(child_src)) == len(child_src)) # The neighbor list also needs to be sorted. assert(is_sorted(child_src)) # a neighbor in the subgraph must also exist in parent graph. src = F.asnumpy(src) for i in subg.map_to_parent_nid(child_src): assert F.asnumpy(i) in src def test_1neighbor_sampler(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in', num_workers=4): seed_ids = subg.layer_parent_nid(-1) assert len(seed_ids) == 1 assert subg.number_of_nodes() <= 6 assert subg.number_of_edges() <= 5 verify_subgraph(g, subg, seed_ids) def test_prefetch_neighbor_sampler(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in', num_workers=4, prefetch=True): seed_ids = subg.layer_parent_nid(-1) assert len(seed_ids) == 1 assert subg.number_of_nodes() <= 6 assert subg.number_of_edges() <= 5 verify_subgraph(g, subg, seed_ids) def test_10neighbor_sampler_all(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 10, g.number_of_nodes(), neighbor_type='in', num_workers=4): seed_ids = subg.layer_parent_nid(-1) assert F.array_equal(seed_ids, subg.map_to_parent_nid(subg.layer_nid(-1))) src, dst, eid = g.in_edges(seed_ids, form='all') child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all') src1 = subg.map_to_parent_nid(child_src) assert F.array_equal(src1, src) def check_10neighbor_sampler(g, seeds): # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 10, 5, neighbor_type='in', num_workers=4, seed_nodes=seeds): seed_ids = subg.layer_parent_nid(-1) assert subg.number_of_nodes() <= 6 * len(seed_ids) assert subg.number_of_edges() <= 5 * len(seed_ids) for seed_id in seed_ids: verify_subgraph(g, subg, seed_id) def test_10neighbor_sampler(): g = generate_rand_graph(100) check_10neighbor_sampler(g, None) check_10neighbor_sampler(g, seeds=np.unique(np.random.randint(0, g.number_of_nodes(), size=int(g.number_of_nodes() / 10)))) def _test_layer_sampler(prefetch=False): g = generate_rand_graph(100) nid = g.nodes() src, dst, eid = g.all_edges(form='all', order='eid') n_batches = 5 batch_size = 50 seed_batches = [np.sort(np.random.choice(F.asnumpy(nid), batch_size, replace=False)) for i in range(n_batches)] seed_nodes = np.hstack(seed_batches) layer_sizes = [50] * 3 LayerSampler = getattr(dgl.contrib.sampling, 'LayerSampler') sampler = LayerSampler(g, batch_size, layer_sizes, 'in', seed_nodes=seed_nodes, num_workers=4, prefetch=prefetch) for sub_g in sampler: assert all(sub_g.layer_size(i) < size for i, size in enumerate(layer_sizes)) sub_nid = F.arange(0, sub_g.number_of_nodes()) assert all(np.all(np.isin(F.asnumpy(sub_g.layer_nid(i)), F.asnumpy(sub_nid))) for i in range(sub_g.num_layers)) assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_nid(sub_nid)), F.asnumpy(nid))) sub_eid = F.arange(0, sub_g.number_of_edges()) assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_eid(sub_eid)), F.asnumpy(eid))) assert any(np.all(np.sort(F.asnumpy(sub_g.layer_parent_nid(-1))) == seed_batch) for seed_batch in seed_batches) sub_src, sub_dst = sub_g.all_edges(order='eid') for i in range(sub_g.num_blocks): block_eid = sub_g.block_eid(i) block_src = sub_g.map_to_parent_nid(F.gather_row(sub_src, block_eid)) block_dst = sub_g.map_to_parent_nid(F.gather_row(sub_dst, block_eid)) block_parent_eid = sub_g.block_parent_eid(i) block_parent_src = F.gather_row(src, block_parent_eid) block_parent_dst = F.gather_row(dst, block_parent_eid) assert np.all(F.asnumpy(block_src == block_parent_src)) n_layers = sub_g.num_layers sub_n = sub_g.number_of_nodes() assert sum(F.shape(sub_g.layer_nid(i))[0] for i in range(n_layers)) == sub_n n_blocks = sub_g.num_blocks sub_m = sub_g.number_of_edges() assert sum(F.shape(sub_g.block_eid(i))[0] for i in range(n_blocks)) == sub_m def test_layer_sampler(): _test_layer_sampler() _test_layer_sampler(prefetch=True) @unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="Error occured when multiprocessing") def test_nonuniform_neighbor_sampler(): # Construct a graph with # (1) A path (0, 1, ..., 99) with weight 1 # (2) A bunch of random edges with weight 0. edges = [] for i in range(99): edges.append((i, i + 1)) for i in range(1000): edge = (np.random.randint(100), np.random.randint(100)) if edge not in edges: edges.append(edge) src, dst = zip(*edges) g = dgl.DGLGraph() g.add_nodes(100) g.add_edges(src, dst) g.readonly() g.edata['w'] = F.cat([ F.ones((99,), F.float64, F.cpu()), F.zeros((len(edges) - 99,), F.float64, F.cpu())], 0) # Test 1-neighbor NodeFlow with 99 as target node. # The generated NodeFlow should only contain node i on layer i. sampler = dgl.contrib.sampling.NeighborSampler( g, 1, 1, 99, 'in', transition_prob='w', seed_nodes=[99]) nf = next(iter(sampler)) assert nf.num_layers == 100 for i in range(nf.num_layers): assert nf.layer_size(i) == 1 assert F.asnumpy(nf.layer_parent_nid(i)[0]) == i # Test the reverse direction sampler = dgl.contrib.sampling.NeighborSampler( g, 1, 1, 99, 'out', transition_prob='w', seed_nodes=[0]) nf = next(iter(sampler)) assert nf.num_layers == 100 for i in range(nf.num_layers): assert nf.layer_size(i) == 1 assert F.asnumpy(nf.layer_parent_nid(i)[0]) == 99 - i def test_setseed(): g = generate_rand_graph(100) nids = [] dgl.random.seed(42) for subg in dgl.contrib.sampling.NeighborSampler( g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1): nids.append( tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3))) # reinitialize dgl.random.seed(42) for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler( g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1)): item = tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3)) assert item == nids[i] for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler( g, 5, 3, num_hops=2, neighbor_type='in', num_workers=4)): pass def check_head_tail(g): lsrc, ldst, leid = g.all_edges(form='all', order='eid') lsrc = np.unique(F.asnumpy(lsrc)) head_nid = np.unique(F.asnumpy(g.head_nid)) assert len(head_nid) == len(g.head_nid) np.testing.assert_equal(lsrc, head_nid) ldst = np.unique(F.asnumpy(ldst)) tail_nid = np.unique(F.asnumpy(g.tail_nid)) assert len(tail_nid) == len(g.tail_nid) np.testing.assert_equal(tail_nid, ldst) def check_negative_sampler(mode, exclude_positive, neg_size): g = generate_rand_graph(100) num_edges = g.number_of_edges() etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64) g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu()) pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid') pos_map = {} for i in range(len(pos_geid)): pos_d = int(F.asnumpy(pos_gdst[i])) pos_e = int(F.asnumpy(pos_geid[i])) pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i])) EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler') # Test the homogeneous graph. batch_size = 50 total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, negative_mode=mode, reset=False, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid') assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)), F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc), F.gather_row(pos_edges.parent_nid, pos_ldst)))) neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) for i in range(len(neg_eid)): neg_d = int(F.asnumpy(neg_dst)[i]) neg_e = int(F.asnumpy(neg_eid)[i]) assert (neg_d, neg_e) in pos_map if exclude_positive: assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)] check_head_tail(neg_edges) pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid) neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid) pos_tails = np.sort(F.asnumpy(pos_tails)) neg_tails = np.sort(F.asnumpy(neg_tails)) np.testing.assert_equal(pos_tails, neg_tails) exist = neg_edges.edata['false_neg'] if exclude_positive: assert np.sum(F.asnumpy(exist) == 0) == len(exist) else: assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist) total_samples += batch_size assert total_samples <= num_edges # check replacement = True # with reset = False (default setting) total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=False, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = False # with reset = False (default setting) total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=False, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = True # with reset = True total_samples = 0 max_samples = 2 * num_edges for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) <= batch_size total_samples += len(pos_leid) if (total_samples >= max_samples): break assert total_samples >= max_samples # check replacement = False # with reset = True total_samples = 0 max_samples = 2 * num_edges for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) <= batch_size total_samples += len(pos_leid) if (total_samples >= max_samples): break assert total_samples >= max_samples # Test the knowledge graph. total_samples = 0 for _, neg_edges in EdgeSampler(g, batch_size, negative_mode=mode, reset=False, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) exists = neg_edges.edata['false_neg'] neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid) for i in range(len(neg_eid)): u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i]) if g.has_edge_between(u, v): eid = g.edge_id(u, v) etype = g.edata['etype'][eid] exist = neg_edges.edata['etype'][i] == etype assert F.asnumpy(exists[i]) == F.asnumpy(exist) total_samples += batch_size assert total_samples <= num_edges def check_weighted_negative_sampler(mode, exclude_positive, neg_size): g = generate_rand_graph(100) num_edges = g.number_of_edges() num_nodes = g.number_of_nodes() edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu()) node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu()) etype = np.random.randint(0, 10, size=num_edges, dtype=np.int64) g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu()) pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid') pos_map = {} for i in range(len(pos_geid)): pos_d = int(F.asnumpy(pos_gdst[i])) pos_e = int(F.asnumpy(pos_geid[i])) pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i])) EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler') # Correctness check # Test the homogeneous graph. batch_size = 50 # Test the knowledge graph with edge weight provied. total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid') assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)), F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc), F.gather_row(pos_edges.parent_nid, pos_ldst)))) neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) for i in range(len(neg_eid)): neg_d = int(F.asnumpy(neg_dst[i])) neg_e = int(F.asnumpy(neg_eid[i])) assert (neg_d, neg_e) in pos_map if exclude_positive: assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)] check_head_tail(neg_edges) pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid) neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid) pos_tails = np.sort(F.asnumpy(pos_tails)) neg_tails = np.sort(F.asnumpy(neg_tails)) np.testing.assert_equal(pos_tails, neg_tails) exist = neg_edges.edata['false_neg'] if exclude_positive: assert np.sum(F.asnumpy(exist) == 0) == len(exist) else: assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist) total_samples += batch_size assert total_samples <= num_edges # Test the knowledge graph with edge weight provied. total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) exists = neg_edges.edata['false_neg'] neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid) for i in range(len(neg_eid)): u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i]) if g.has_edge_between(u, v): eid = g.edge_id(u, v) etype = g.edata['etype'][eid] exist = neg_edges.edata['etype'][i] == etype assert F.asnumpy(exists[i]) == F.asnumpy(exist) total_samples += batch_size assert total_samples <= num_edges # Test the knowledge graph with edge/node weight provied. total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight, node_weight=node_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) exists = neg_edges.edata['false_neg'] neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid) for i in range(len(neg_eid)): u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i]) if g.has_edge_between(u, v): eid = g.edge_id(u, v) etype = g.edata['etype'][eid] exist = neg_edges.edata['etype'][i] == etype assert F.asnumpy(exists[i]) == F.asnumpy(exist) total_samples += batch_size assert total_samples <= num_edges # check replacement = True with pos edges no-uniform sample # with reset = False total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=False, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = True with pos edges no-uniform sample # with reset = True total_samples = 0 max_samples = 4 * num_edges for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=True, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) if total_samples >= max_samples: break assert total_samples == max_samples # check replacement = False with pos/neg edges no-uniform sample # reset = False total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=False, edge_weight=edge_weight, node_weight=node_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = False with pos/neg edges no-uniform sample # reset = True total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=True, edge_weight=edge_weight, node_weight=node_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) if total_samples >= max_samples: break assert total_samples == max_samples # Check Rate dgl.random.seed(0) g = generate_rand_graph(1000) num_edges = g.number_of_edges() num_nodes = g.number_of_nodes() edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu()) edge_weight[0] = F.sum(edge_weight, dim=0) node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu()) node_weight[-1] = F.sum(node_weight, dim=0) / 200 etype = np.random.randint(0, 20, size=num_edges, dtype=np.int64) g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu()) # Test w/o node weight. max_samples = num_edges // 5 total_samples = 0 # Test the knowledge graph with edge weight provied. edge_sampled = np.full((num_edges,), 0, dtype=np.int32) node_sampled = np.full((num_nodes,), 0, dtype=np.int32) for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, edge_weight=edge_weight, shuffle=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=False, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid') if 'head' in mode: neg_src = neg_edges.parent_nid[neg_lsrc] np.add.at(node_sampled, F.asnumpy(neg_src), 1) else: neg_dst = neg_edges.parent_nid[neg_ldst] np.add.at(node_sampled, F.asnumpy(neg_dst), 1) np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) total_samples += batch_size if total_samples > max_samples: break # Check rate here edge_rate_0 = edge_sampled[0] / edge_sampled.sum() edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum() edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum() assert np.allclose(edge_rate_0, 0.5, atol=0.05) assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05) node_rate_0 = node_sampled[0] / node_sampled.sum() node_tail_half_cnt = node_sampled[node_sampled.shape[0] // 2:-1].sum() node_rate_tail_half = node_tail_half_cnt / node_sampled.sum() assert node_rate_0 < 0.02 assert np.allclose(node_rate_tail_half, 0.5, atol=0.02) # Test the knowledge graph with edge/node weight provied. edge_sampled = np.full((num_edges,), 0, dtype=np.int32) node_sampled = np.full((num_nodes,), 0, dtype=np.int32) total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, edge_weight=edge_weight, node_weight=node_weight, shuffle=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=False, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid') if 'head' in mode: neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) np.add.at(node_sampled, F.asnumpy(neg_src), 1) else: neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) np.add.at(node_sampled, F.asnumpy(neg_dst), 1) np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) total_samples += batch_size if total_samples > max_samples: break # Check rate here edge_rate_0 = edge_sampled[0] / edge_sampled.sum() edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum() edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum() assert np.allclose(edge_rate_0, 0.5, atol=0.05) assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05) node_rate = node_sampled[-1] / node_sampled.sum() node_rate_a = np.average(node_sampled[:50]) / node_sampled.sum() node_rate_b = np.average(node_sampled[50:100]) / node_sampled.sum() # As neg sampling does not contain duplicate nodes, # this test takes some acceptable variation on the sample rate. assert np.allclose(node_rate, node_rate_a * 5, atol=0.002) assert np.allclose(node_rate_a, node_rate_b, atol=0.0002) def check_positive_edge_sampler(): g = generate_rand_graph(1000) num_edges = g.number_of_edges() edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu()) edge_weight[num_edges-1] = num_edges ** 3 EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler') # Correctness check # Test the homogeneous graph. batch_size = 128 edge_sampled = np.full((num_edges,), 0, dtype=np.int32) for pos_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) truth = np.full((num_edges,), 1, dtype=np.int32) edge_sampled = edge_sampled[:num_edges] assert np.array_equal(truth, edge_sampled) edge_sampled = np.full((num_edges,), 0, dtype=np.int32) for pos_edges in EdgeSampler(g, batch_size, reset=False, shuffle=True, edge_weight=edge_weight): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) truth = np.full((num_edges,), 1, dtype=np.int32) edge_sampled = edge_sampled[:num_edges] assert np.array_equal(truth, edge_sampled) @unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support item assignment") def test_negative_sampler(): check_negative_sampler('chunk-head', False, 10) check_negative_sampler('head', True, 10) check_negative_sampler('head', False, 10) check_weighted_negative_sampler('chunk-head', False, 10) check_weighted_negative_sampler('head', True, 10) check_weighted_negative_sampler('head', False, 10) check_positive_edge_sampler() #disable this check for now. It might take too long time. #check_negative_sampler('head', False, 100) if __name__ == '__main__': test_create_full() test_1neighbor_sampler_all() test_10neighbor_sampler_all() test_1neighbor_sampler() test_10neighbor_sampler() test_layer_sampler() test_nonuniform_neighbor_sampler() test_setseed() test_negative_sampler()
46.783149
103
0.575507
4,447
33,871
4.093996
0.063414
0.028562
0.018675
0.020598
0.818412
0.778919
0.754092
0.730913
0.716522
0.703614
0
0.016596
0.322193
33,871
723
104
46.847856
0.776418
0.059638
0
0.686242
1
0
0.016981
0
0
0
0
0
0.147651
1
0.031879
false
0.001678
0.011745
0.001678
0.04698
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
9186884237c62f08e8e5c91cdb86f2cf165aa0f6
173
py
Python
examples/simple_lakehouse/simple_lakehouse/repo.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
2
2021-06-21T17:50:26.000Z
2021-06-21T19:14:23.000Z
examples/simple_lakehouse/simple_lakehouse/repo.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-06-21T18:30:02.000Z
2021-06-25T21:18:39.000Z
examples/simple_lakehouse/simple_lakehouse/repo.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-08-18T17:21:57.000Z
2021-08-18T17:21:57.000Z
from dagster import repository from simple_lakehouse.pipelines import simple_lakehouse_pipeline @repository def simple_lakehouse(): return [simple_lakehouse_pipeline]
21.625
64
0.849711
20
173
7.05
0.5
0.425532
0.326241
0
0
0
0
0
0
0
0
0
0.109827
173
7
65
24.714286
0.915584
0
0
0
0
0
0
0
0
0
0
0
0
1
0.2
true
0
0.4
0.2
0.8
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
1
1
0
0
8
91b2c92f668693110e6ccdfb6fa82e177d314e5d
8,510
py
Python
z2/part2/interactive/jm/random_fuzzy_arrows_1/554539540.py
kozakusek/ipp-2020-testy
09aa008fa53d159672cc7cbf969a6b237e15a7b8
[ "MIT" ]
1
2020-04-16T12:13:47.000Z
2020-04-16T12:13:47.000Z
z2/part2/interactive/jm/random_fuzzy_arrows_1/554539540.py
kozakusek/ipp-2020-testy
09aa008fa53d159672cc7cbf969a6b237e15a7b8
[ "MIT" ]
18
2020-03-06T17:50:15.000Z
2020-05-19T14:58:30.000Z
z2/part2/interactive/jm/random_fuzzy_arrows_1/554539540.py
kozakusek/ipp-2020-testy
09aa008fa53d159672cc7cbf969a6b237e15a7b8
[ "MIT" ]
18
2020-03-06T17:45:13.000Z
2020-06-09T19:18:31.000Z
from part1 import ( gamma_board, gamma_busy_fields, gamma_delete, gamma_free_fields, gamma_golden_move, gamma_golden_possible, gamma_move, gamma_new, ) """ scenario: test_random_actions uuid: 554539540 """ """ random actions, total chaos """ board = gamma_new(6, 8, 3, 17) assert board is not None assert gamma_move(board, 1, 7, 4) == 0 assert gamma_move(board, 1, 4, 3) == 1 assert gamma_busy_fields(board, 1) == 1 assert gamma_move(board, 2, 5, 1) == 1 assert gamma_move(board, 2, 1, 7) == 1 assert gamma_busy_fields(board, 2) == 2 assert gamma_golden_possible(board, 2) == 1 assert gamma_move(board, 3, 1, 0) == 1 assert gamma_golden_move(board, 3, 3, 4) == 0 assert gamma_busy_fields(board, 2) == 2 assert gamma_move(board, 3, 1, 3) == 1 assert gamma_move(board, 1, 3, 5) == 1 assert gamma_move(board, 1, 2, 3) == 1 assert gamma_golden_possible(board, 1) == 1 assert gamma_move(board, 2, 1, 0) == 0 assert gamma_move(board, 3, 2, 2) == 1 assert gamma_golden_possible(board, 3) == 1 assert gamma_move(board, 1, 0, 2) == 1 assert gamma_move(board, 1, 1, 1) == 1 assert gamma_move(board, 2, 5, 4) == 1 assert gamma_move(board, 3, 0, 4) == 1 assert gamma_golden_possible(board, 3) == 1 assert gamma_move(board, 1, 1, 2) == 1 assert gamma_move(board, 2, 1, 4) == 1 assert gamma_move(board, 2, 1, 6) == 1 assert gamma_move(board, 3, 1, 2) == 0 assert gamma_move(board, 1, 0, 3) == 1 assert gamma_move(board, 1, 4, 2) == 1 board251673140 = gamma_board(board) assert board251673140 is not None assert board251673140 == (".2....\n" ".2....\n" "...1..\n" "32...2\n" "131.1.\n" "113.1.\n" ".1...2\n" ".3....\n") del board251673140 board251673140 = None assert gamma_move(board, 2, 4, 3) == 0 assert gamma_move(board, 2, 5, 1) == 0 assert gamma_move(board, 3, 4, 5) == 1 assert gamma_move(board, 3, 3, 0) == 1 assert gamma_free_fields(board, 3) == 29 assert gamma_move(board, 2, 1, 7) == 0 assert gamma_move(board, 2, 3, 5) == 0 assert gamma_move(board, 3, 0, 5) == 1 assert gamma_move(board, 3, 0, 1) == 1 assert gamma_golden_possible(board, 3) == 1 assert gamma_move(board, 1, 3, 0) == 0 assert gamma_move(board, 1, 0, 7) == 1 board281476409 = gamma_board(board) assert board281476409 is not None assert board281476409 == ("12....\n" ".2....\n" "3..13.\n" "32...2\n" "131.1.\n" "113.1.\n" "31...2\n" ".3.3..\n") del board281476409 board281476409 = None assert gamma_move(board, 2, 5, 1) == 0 assert gamma_move(board, 2, 5, 4) == 0 assert gamma_golden_possible(board, 2) == 1 assert gamma_move(board, 3, 7, 3) == 0 assert gamma_move(board, 3, 5, 1) == 0 assert gamma_busy_fields(board, 3) == 8 assert gamma_move(board, 1, 5, 4) == 0 assert gamma_move(board, 1, 0, 0) == 1 assert gamma_move(board, 2, 6, 3) == 0 assert gamma_move(board, 2, 4, 4) == 1 assert gamma_move(board, 3, 0, 5) == 0 assert gamma_move(board, 3, 0, 1) == 0 assert gamma_free_fields(board, 3) == 24 assert gamma_move(board, 1, 1, 7) == 0 assert gamma_move(board, 1, 2, 1) == 1 board412285252 = gamma_board(board) assert board412285252 is not None assert board412285252 == ("12....\n" ".2....\n" "3..13.\n" "32..22\n" "131.1.\n" "113.1.\n" "311..2\n" "13.3..\n") del board412285252 board412285252 = None assert gamma_move(board, 2, 1, 6) == 0 assert gamma_move(board, 2, 2, 1) == 0 assert gamma_move(board, 3, 1, 2) == 0 assert gamma_free_fields(board, 3) == 23 assert gamma_golden_move(board, 3, 4, 4) == 1 assert gamma_move(board, 1, 0, 2) == 0 assert gamma_move(board, 1, 3, 6) == 1 assert gamma_golden_possible(board, 1) == 1 assert gamma_move(board, 2, 7, 4) == 0 assert gamma_free_fields(board, 2) == 22 assert gamma_move(board, 3, 5, 5) == 1 assert gamma_move(board, 3, 5, 5) == 0 assert gamma_free_fields(board, 3) == 21 assert gamma_move(board, 1, 0, 5) == 0 assert gamma_move(board, 1, 5, 7) == 1 assert gamma_move(board, 2, 0, 6) == 1 assert gamma_move(board, 2, 5, 6) == 1 assert gamma_move(board, 3, 2, 2) == 0 assert gamma_move(board, 1, 5, 2) == 1 assert gamma_move(board, 2, 7, 4) == 0 assert gamma_move(board, 3, 2, 3) == 0 assert gamma_move(board, 3, 3, 1) == 1 assert gamma_move(board, 1, 5, 1) == 0 assert gamma_free_fields(board, 1) == 16 assert gamma_move(board, 2, 4, 2) == 0 assert gamma_move(board, 3, 4, 1) == 1 assert gamma_move(board, 3, 5, 2) == 0 assert gamma_move(board, 1, 7, 4) == 0 assert gamma_move(board, 1, 4, 1) == 0 assert gamma_move(board, 2, 0, 2) == 0 assert gamma_move(board, 2, 0, 5) == 0 assert gamma_busy_fields(board, 2) == 7 assert gamma_move(board, 3, 5, 2) == 0 assert gamma_move(board, 1, 1, 5) == 1 assert gamma_move(board, 2, 3, 5) == 0 assert gamma_move(board, 2, 4, 1) == 0 assert gamma_move(board, 3, 0, 3) == 0 assert gamma_move(board, 3, 1, 5) == 0 assert gamma_move(board, 1, 2, 4) == 1 assert gamma_move(board, 1, 3, 0) == 0 assert gamma_busy_fields(board, 1) == 16 assert gamma_move(board, 2, 3, 5) == 0 assert gamma_move(board, 2, 3, 1) == 0 assert gamma_move(board, 3, 5, 2) == 0 assert gamma_move(board, 1, 0, 4) == 0 assert gamma_move(board, 1, 0, 6) == 0 assert gamma_move(board, 2, 5, 5) == 0 assert gamma_golden_move(board, 2, 2, 2) == 1 assert gamma_move(board, 1, 5, 5) == 0 assert gamma_free_fields(board, 1) == 13 assert gamma_move(board, 2, 2, 6) == 1 assert gamma_move(board, 2, 5, 6) == 0 assert gamma_move(board, 3, 4, 3) == 0 assert gamma_move(board, 1, 4, 3) == 0 assert gamma_move(board, 1, 3, 5) == 0 assert gamma_move(board, 2, 2, 0) == 1 assert gamma_move(board, 3, 0, 4) == 0 assert gamma_move(board, 1, 7, 3) == 0 assert gamma_move(board, 2, 7, 3) == 0 assert gamma_move(board, 2, 3, 1) == 0 assert gamma_move(board, 3, 7, 3) == 0 assert gamma_move(board, 3, 0, 2) == 0 assert gamma_move(board, 1, 3, 3) == 1 assert gamma_move(board, 2, 7, 2) == 0 assert gamma_move(board, 2, 2, 3) == 0 assert gamma_free_fields(board, 2) == 10 assert gamma_move(board, 3, 7, 3) == 0 assert gamma_move(board, 3, 5, 1) == 0 assert gamma_move(board, 1, 7, 2) == 0 board481507094 = gamma_board(board) assert board481507094 is not None assert board481507094 == ("12...1\n" "2221.2\n" "31.133\n" "321.32\n" "13111.\n" "112.11\n" "311332\n" "1323..\n") del board481507094 board481507094 = None assert gamma_move(board, 2, 2, 4) == 0 assert gamma_move(board, 2, 5, 4) == 0 assert gamma_busy_fields(board, 2) == 10 assert gamma_move(board, 1, 7, 2) == 0 assert gamma_move(board, 2, 7, 4) == 0 assert gamma_move(board, 3, 0, 4) == 0 assert gamma_busy_fields(board, 3) == 11 assert gamma_golden_possible(board, 3) == 0 assert gamma_move(board, 2, 7, 2) == 0 assert gamma_move(board, 2, 1, 4) == 0 assert gamma_free_fields(board, 2) == 10 assert gamma_move(board, 3, 0, 5) == 0 assert gamma_busy_fields(board, 3) == 11 assert gamma_move(board, 1, 7, 2) == 0 assert gamma_move(board, 1, 1, 6) == 0 assert gamma_move(board, 2, 2, 0) == 0 assert gamma_move(board, 2, 1, 7) == 0 assert gamma_move(board, 3, 3, 1) == 0 assert gamma_move(board, 1, 6, 4) == 0 assert gamma_move(board, 2, 0, 4) == 0 assert gamma_move(board, 2, 2, 7) == 1 board984249076 = gamma_board(board) assert board984249076 is not None assert board984249076 == ("122..1\n" "2221.2\n" "31.133\n" "321.32\n" "13111.\n" "112.11\n" "311332\n" "1323..\n") del board984249076 board984249076 = None assert gamma_move(board, 1, 4, 1) == 0 assert gamma_golden_possible(board, 1) == 1 board492321582 = gamma_board(board) assert board492321582 is not None assert board492321582 == ("122..1\n" "2221.2\n" "31.133\n" "321.32\n" "13111.\n" "112.11\n" "311332\n" "1323..\n") del board492321582 board492321582 = None assert gamma_move(board, 2, 2, 3) == 0 assert gamma_move(board, 2, 2, 4) == 0 assert gamma_golden_possible(board, 2) == 0 assert gamma_move(board, 3, 2, 3) == 0 assert gamma_move(board, 1, 7, 3) == 0 assert gamma_move(board, 1, 4, 3) == 0 assert gamma_move(board, 2, 2, 4) == 0 assert gamma_move(board, 1, 0, 4) == 0 assert gamma_move(board, 2, 0, 4) == 0 assert gamma_move(board, 2, 2, 6) == 0 assert gamma_move(board, 3, 5, 2) == 0 assert gamma_move(board, 1, 0, 5) == 0 assert gamma_move(board, 2, 3, 2) == 1 assert gamma_move(board, 3, 0, 5) == 0 assert gamma_move(board, 1, 0, 5) == 0 assert gamma_move(board, 1, 2, 3) == 0 assert gamma_golden_possible(board, 1) == 1 assert gamma_move(board, 2, 2, 0) == 0 assert gamma_move(board, 3, 5, 6) == 0 assert gamma_move(board, 3, 2, 1) == 0 gamma_delete(board)
30.722022
46
0.653114
1,575
8,510
3.388571
0.041905
0.344201
0.379427
0.505902
0.824433
0.818999
0.767285
0.634814
0.539254
0.493536
0
0.155384
0.177203
8,510
276
47
30.833333
0.606827
0
0
0.436508
0
0
0.045595
0
0
0
0
0
0.714286
1
0
false
0
0.003968
0
0.003968
0
0
0
0
null
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
7
91cb09a3e92988e65a39aed7bb0bc23d1f6a9538
20,537
py
Python
util/hierarchical_primitive/cube_inclusion.py
isunchy/cuboid_abstraction
afda6ca8516c2f5e5e7292b3b22a059a4f6c84ec
[ "MIT" ]
43
2019-09-20T07:45:08.000Z
2022-03-23T04:07:21.000Z
util/hierarchical_primitive/cube_inclusion.py
SilenKZYoung/cuboid_abstraction
afda6ca8516c2f5e5e7292b3b22a059a4f6c84ec
[ "MIT" ]
4
2019-11-25T00:57:10.000Z
2021-09-02T10:59:05.000Z
util/hierarchical_primitive/cube_inclusion.py
SilenKZYoung/cuboid_abstraction
afda6ca8516c2f5e5e7292b3b22a059a4f6c84ec
[ "MIT" ]
10
2019-09-10T02:19:47.000Z
2021-06-16T05:23:43.000Z
import numpy as np import quaternion sample_points = np.array([[-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0], [-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.6,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,-0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0], [-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0] ], dtype=np.float32) # [3, n] sample_points = np.transpose(sample_points) # [n, 3] def cube_inclusion(cube_param_1, cube_param_2): n_cube_1 = cube_param_1['z'].shape[0] # child n_cube_2 = cube_param_2['z'].shape[0] # parent assert(n_cube_1 > n_cube_2) assert(cube_param_1['q'].shape[0] == cube_param_1['t'].shape[0] == n_cube_1) assert(cube_param_2['q'].shape[0] == cube_param_2['t'].shape[0] == n_cube_2) n_point = sample_points.shape[0] cube_cube_distance = np.zeros([n_cube_1, n_cube_2]) for i in range(n_cube_1): z1, q1, t1 = [cube_param_1[v][i] for v in ['z', 'q', 't']] for j in range(n_cube_2): z2, q2, t2 = [cube_param_2[v][j] for v in ['z', 'q', 't']] points = sample_points * z1 rot1 = np.quaternion(q1[0], q1[1], q1[2], q1[3]) rot1 = quaternion.as_rotation_matrix(rot1) points = np.transpose(np.matmul(rot1, np.transpose(points))) points += t1 points -= t2 rot2 = np.quaternion(q2[0], q2[1], q2[2], q2[3]).conjugate() rot2 = quaternion.as_rotation_matrix(rot2) points = np.transpose(np.matmul(rot2, np.transpose(points))) distance = np.mean(np.sum(np.maximum(abs(points) - z2, 0)**2, axis=1)) cube_cube_distance[i, j] = distance index = np.argmin(cube_cube_distance, axis=1) return index def generate_sample_cube_points(resulution=11): sample_points = np.zeros([resulution, resulution, resulution, 3], dtype=np.float32) location_template = np.linspace(-1.0, 1.0, num=11) for i in range(resulution): for j in range(resulution): for k in range(resulution): sample_points[i, j, k, 0] = location_template[i] sample_points[i, j, k, 1] = location_template[j] sample_points[i, j, k, 2] = location_template[k] np.savetxt('sample_points.txt', np.transpose(np.reshape(sample_points, [-1, 3])), fmt='%1.1f', delimiter=',') if __name__ == '__main__': # generate_sample_cube_points() z1 = np.array([[0.1, 0.1, 0.1], [0.1, 0.1, 0.1], [0.1, 0.1, 0.1]]) q1 = np.array([[1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0]]) t1 = np.array([[0.1, 0.1, 0.1], [0.1, 0.1, 0.1], [0.4, 0.4, 0.4]]) cube_param_1 = {'z': z1, 'q': q1, 't': t1} z2 = np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]) q2 = np.array([[1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0]]) t2 = np.array([[0.2, 0.2, 0.2], [0.3, 0.3, 0.3]]) cube_param_2 = {'z': z2, 'q': q2, 't': t2} index = cube_inclusion(cube_param_1, cube_param_2) print(index) assert((index == np.array([0, 0, 1])).all())
315.953846
5,958
0.466378
8,476
20,537
1.119396
0.009202
0.187605
0.231134
0.255902
0.882694
0.866779
0.861298
0.860561
0.853605
0.852129
0
0.41108
0.029654
20,537
64
5,959
320.890625
0.065034
0.002727
0
0
0
0
0.002401
0
0
0
0
0
0.072727
1
0.036364
false
0
0.036364
0
0.090909
0.018182
0
0
1
null
0
1
1
1
1
1
1
1
1
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
13
91ce047cf63bd3235780b724cb14faa1d2a5cf51
1,732
py
Python
src/tests/testdata.py
Doometnick/MaxiMin-2048
f1d795ec07fffe1aa239c105cf522d2c3bc9b011
[ "MIT" ]
null
null
null
src/tests/testdata.py
Doometnick/MaxiMin-2048
f1d795ec07fffe1aa239c105cf522d2c3bc9b011
[ "MIT" ]
null
null
null
src/tests/testdata.py
Doometnick/MaxiMin-2048
f1d795ec07fffe1aa239c105cf522d2c3bc9b011
[ "MIT" ]
null
null
null
from board import Direction # Tuples of input, action, expected output. moving_tests = [ ( [[0,0,0,0], [4,0,0,0], [0,0,0,0], [4,0,2,0]], Direction.UP, [[8,0,2,0], [0,0,0,0], [0,0,0,0], [0,0,0,0]] ), ( [[0,0,0,0], [4,0,0,0], [0,0,0,0], [4,0,2,0]], Direction.DOWN, [[0,0,0,0], [0,0,0,0], [0,0,0,0], [8,0,2,0]] ), ( [[0,0,0,0], [4,0,0,0], [0,0,0,0], [4,0,2,0]], Direction.LEFT, [[0,0,0,0], [4,0,0,0], [0,0,0,0], [4,2,0,0]] ), ( [[0,0,0,0], [4,0,0,0], [0,0,0,0], [4,0,2,0]], Direction.RIGHT, [[0,0,0,0], [0,0,0,4], [0,0,0,0], [0,0,4,2]] ), ( [[4,4,4,4], [8,0,8,4], [32,16,0,16], [16,8,2,4]], Direction.RIGHT, [[0,0,8,8], [0,0,16,4], [0,0,32,32], [16,8,2,4]] ), ( [[4,4,4,4], [8,0,8,4], [32,16,0,16], [16,8,2,4]], Direction.LEFT, [[8,8,0,0], [16,4,0,0], [32,32,0,0], [16,8,2,4]] ), ( [[4,4,4,4], [8,0,8,4], [32,16,0,16], [16,8,2,4]], Direction.UP, [[4,4,4,8], [8,16,8,16], [32,8,2,4], [16,0,0,0]] ), ( [[4,4,4,4], [8,0,8,4], [32,16,0,16], [16,8,2,4]], Direction.DOWN, [[4,0,0,0], [8,4,4,8], [32,16,8,16], [16,8,2,4]] ) ]
18.623656
43
0.265012
284
1,732
1.612676
0.077465
0.406114
0.471616
0.497817
0.70524
0.689956
0.689956
0.689956
0.670306
0.670306
0
0.315444
0.472864
1,732
93
44
18.623656
0.186199
0.023672
0
0.659341
0
0
0
0
0
0
0
0
0
1
0
false
0
0.010989
0
0.010989
0
0
0
1
null
1
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
37cf939b241a87e359fb447071196040b0ef99e6
26,714
py
Python
openprocurement/blade/tests/auctions.py
imaginal/openprocurement.blade
4ef512e3d0c1287af1faca9caa9e5349a3c5b0fb
[ "Apache-2.0" ]
null
null
null
openprocurement/blade/tests/auctions.py
imaginal/openprocurement.blade
4ef512e3d0c1287af1faca9caa9e5349a3c5b0fb
[ "Apache-2.0" ]
null
null
null
openprocurement/blade/tests/auctions.py
imaginal/openprocurement.blade
4ef512e3d0c1287af1faca9caa9e5349a3c5b0fb
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import unittest from uuid import uuid4 from copy import deepcopy from openprocurement.api.models import get_now from openprocurement.edge.tests.base import AuctionBaseWebTest, test_award, test_auction_data, test_document, ROUTE_PREFIX try: import openprocurement.auctions.core as auctions_core except ImportError: auctions_core = None @unittest.skipUnless(auctions_core, "Auctions is not reachable") class AuctionResourceTest(AuctionBaseWebTest): def test_empty_listing(self): response = self.app.get('/auctions') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['data'], []) self.assertNotIn('{\n "', response.body) self.assertNotIn('callback({', response.body) self.assertEqual(response.json['next_page']['offset'], '') self.assertNotIn('prev_page', response.json) response = self.app.get('/auctions?opt_jsonp=callback') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertNotIn('{\n "', response.body) self.assertIn('callback({', response.body) response = self.app.get('/auctions?opt_pretty=1') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertIn('{\n "', response.body) self.assertNotIn('callback({', response.body) response = self.app.get('/auctions?opt_jsonp=callback&opt_pretty=1') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertIn('{\n "', response.body) self.assertIn('callback({', response.body) response = self.app.get('/auctions?offset=2015-01-01T00:00:00+02:00&descending=1&limit=10') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['data'], []) self.assertIn('descending=1', response.json['next_page']['uri']) self.assertIn('limit=10', response.json['next_page']['uri']) self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertIn('limit=10', response.json['prev_page']['uri']) response = self.app.get('/auctions?feed=changes') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['data'], []) self.assertEqual(response.json['next_page']['offset'], '') self.assertNotIn('prev_page', response.json) response = self.app.get('/auctions?feed=changes&offset=0', status=404) self.assertEqual(response.status, '404 Not Found') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['status'], 'error') self.assertEqual(response.json['errors'], [ {u'description': u'Offset expired/invalid', u'location': u'params', u'name': u'offset'} ]) response = self.app.get('/auctions?feed=changes&descending=1&limit=10') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['data'], []) self.assertIn('descending=1', response.json['next_page']['uri']) self.assertIn('limit=10', response.json['next_page']['uri']) self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertIn('limit=10', response.json['prev_page']['uri']) def test_listing(self): response = self.app.get('/auctions') self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 0) auctions = [] for i in range(3): offset = get_now().isoformat() auctions.append(self.create_auction()) ids = ','.join([i['id'] for i in auctions]) while True: response = self.app.get('/auctions') self.assertTrue(ids.startswith(','.join([i['id'] for i in response.json['data']]))) if len(response.json['data']) == 3: break self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified'])) self.assertEqual(set([i['id'] for i in response.json['data']]), set([i['id'] for i in auctions])) self.assertEqual(set([i['dateModified'] for i in response.json['data']]), set([i['dateModified'] for i in auctions])) self.assertEqual([i['dateModified'] for i in response.json['data']], sorted([i['dateModified'] for i in auctions])) while True: response = self.app.get('/auctions?offset={}'.format(offset)) self.assertEqual(response.status, '200 OK') if len(response.json['data']) == 1: break self.assertEqual(len(response.json['data']), 1) response = self.app.get('/auctions?limit=2') self.assertEqual(response.status, '200 OK') self.assertNotIn('prev_page', response.json) self.assertEqual(len(response.json['data']), 2) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 1) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 0) response = self.app.get('/auctions', params=[('opt_fields', 'status')]) self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified', u'status'])) self.assertIn('opt_fields=status', response.json['next_page']['uri']) response = self.app.get('/auctions', params=[('opt_fields', 'status,enquiryPeriod')]) self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified', u'status', u'enquiryPeriod'])) self.assertIn('opt_fields=status%2CenquiryPeriod', response.json['next_page']['uri']) response = self.app.get('/auctions?descending=1') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified'])) self.assertEqual(set([i['id'] for i in response.json['data']]), set([i['id'] for i in auctions])) self.assertEqual([i['dateModified'] for i in response.json['data']], sorted([i['dateModified'] for i in auctions], reverse=True)) response = self.app.get('/auctions?descending=1&limit=2') self.assertEqual(response.status, '200 OK') self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 2) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 1) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 0) test_auction_data2 = test_auction_data.copy() test_auction_data2['mode'] = 'test' self.create_auction(test_auction_data2) while True: response = self.app.get('/auctions?mode=test') self.assertEqual(response.status, '200 OK') if len(response.json['data']) == 1: break self.assertEqual(len(response.json['data']), 1) response = self.app.get('/auctions?mode=_all_') self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 4) def test_listing_changes(self): response = self.app.get('/auctions?feed=changes') self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 0) auctions = [] for i in range(3): auctions.append(self.create_auction()) ids = ','.join([i['id'] for i in auctions]) while True: response = self.app.get('/auctions?feed=changes') self.assertTrue(ids.startswith(','.join([i['id'] for i in response.json['data']]))) if len(response.json['data']) == 3: break self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified'])) self.assertEqual(set([i['id'] for i in response.json['data']]), set([i['id'] for i in auctions])) self.assertEqual(set([i['dateModified'] for i in response.json['data']]), set([i['dateModified'] for i in auctions])) self.assertEqual([i['dateModified'] for i in response.json['data']], sorted([i['dateModified'] for i in auctions])) response = self.app.get('/auctions?feed=changes&limit=2') self.assertEqual(response.status, '200 OK') self.assertNotIn('prev_page', response.json) self.assertEqual(len(response.json['data']), 2) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 1) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 0) response = self.app.get('/auctions?feed=changes', params=[('opt_fields', 'status')]) self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified', u'status'])) self.assertIn('opt_fields=status', response.json['next_page']['uri']) response = self.app.get('/auctions?feed=changes', params=[('opt_fields', 'status,enquiryPeriod')]) self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified', u'status', u'enquiryPeriod'])) self.assertIn('opt_fields=status%2CenquiryPeriod', response.json['next_page']['uri']) response = self.app.get('/auctions?feed=changes&descending=1') self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified'])) self.assertEqual(set([i['id'] for i in response.json['data']]), set([i['id'] for i in auctions])) self.assertEqual([i['dateModified'] for i in response.json['data']], sorted([i['dateModified'] for i in auctions], reverse=True)) response = self.app.get('/auctions?feed=changes&descending=1&limit=2') self.assertEqual(response.status, '200 OK') self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 2) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 1) response = self.app.get(response.json['next_page']['path'].replace(ROUTE_PREFIX, '')) self.assertEqual(response.status, '200 OK') self.assertNotIn('descending=1', response.json['prev_page']['uri']) self.assertEqual(len(response.json['data']), 0) test_auction_data2 = test_auction_data.copy() test_auction_data2['mode'] = 'test' self.create_auction(test_auction_data2) while True: response = self.app.get('/auctions?feed=changes&mode=test') self.assertEqual(response.status, '200 OK') if len(response.json['data']) == 1: break self.assertEqual(len(response.json['data']), 1) response = self.app.get('/auctions?feed=changes&mode=_all_') self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 4) def test_listing_draft(self): response = self.app.get('/auctions') self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 0) auctions = [] data = test_auction_data.copy() data.update({'status': 'draft'}) for i in range(3): auctions.append(self.create_auction(data)) ids = ','.join([i['id'] for i in auctions]) while True: response = self.app.get('/auctions') self.assertTrue(ids.startswith(','.join([i['id'] for i in response.json['data']]))) if len(response.json['data']) == 3: break self.assertEqual(len(response.json['data']), 3) self.assertEqual(set(response.json['data'][0]), set([u'id', u'dateModified'])) self.assertEqual(set([i['id'] for i in response.json['data']]), set([i['id'] for i in auctions])) self.assertEqual(set([i['dateModified'] for i in response.json['data']]), set([i['dateModified'] for i in auctions])) self.assertEqual([i['dateModified'] for i in response.json['data']], sorted([i['dateModified'] for i in auctions])) def test_get_auction(self): auction = self.create_auction() response = self.app.get('/auctions/{}'.format(auction['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertDictEqual(response.json['data'], auction) response = self.app.get('/auctions/{}?opt_jsonp=callback'.format(auction['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertIn('callback({"data": {"', response.body) response = self.app.get('/auctions/{}?opt_pretty=1'.format(auction['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertIn('{\n "data": {\n "', response.body) def test_auction_not_found(self): response = self.app.get('/auctions') self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), 0) response = self.app.get('/auctions/some_id', status=404) self.assertEqual(response.status, '404 Not Found') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['status'], 'error') self.assertEqual(response.json['errors'], [ {u'description': u'Not Found', u'location': u'url', u'name': u'auction_id'} ]) response = self.app.patch_json( '/auctions/some_id', {'data': {}}, status=404) self.assertEqual(response.status, '404 Not Found') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['status'], 'error') self.assertEqual(response.json['errors'], [ {u'description': u'Not Found', u'location': u'url', u'name': u'auction_id'} ]) # put custom document object into database to check auction construction on non-Auction data data = {'contract': 'test', '_id': uuid4().hex} self.db.save(data) response = self.app.get('/auctions/{}'.format(data['_id']), status=404) self.assertEqual(response.status, '404 Not Found') @unittest.skipUnless(auctions_core, "Auctions is not reachable") class AuctionAwardResourceTest(AuctionBaseWebTest): def test_listing(self): auction = self.create_auction() response = self.app.get('/auctions/{}/awards'.format(auction['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['data'], auction['awards']) self.assertNotIn('{\n "', response.body) self.assertNotIn('callback({', response.body) response = self.app.get('/auctions/{}/awards?opt_jsonp=callback'.format(auction['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertNotIn('{\n "', response.body) self.assertIn('callback({', response.body) response = self.app.get('/auctions/{}/awards?opt_pretty=1'.format(auction['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertIn('{\n "', response.body) self.assertNotIn('callback({', response.body) response = self.app.get('/auctions/{}/awards?opt_jsonp=callback&opt_pretty=1'.format(auction['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertIn('{\n "', response.body) self.assertIn('callback({', response.body) def test_listing_changes(self): auction = self.create_auction() data = self.db[auction['id']] awards = data['awards'] for i in range(3): award = deepcopy(test_award) award['date'] = get_now().isoformat() award['id'] = uuid4().hex awards.append(award) self.db.save(data) ids = ','.join([i['id'] for i in awards]) response = self.app.get('/auctions/{}/awards'.format(auction['id'])) self.assertTrue(ids.startswith(','.join([i['id'] for i in response.json['data']]))) self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), len(awards)) self.assertEqual(set([i['id'] for i in response.json['data']]), set([i['id'] for i in awards])) self.assertEqual(set([i['date'] for i in response.json['data']]), set([i['date'] for i in awards])) self.assertEqual([i['date'] for i in response.json['data']], sorted([i['date'] for i in awards])) def test_get_award(self): auction = self.create_auction() award = auction['awards'][0] response = self.app.get('/auctions/{}/awards/{}'.format(auction['id'], award['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertDictEqual(response.json['data'], award) response = self.app.get('/auctions/{}/awards/{}?opt_jsonp=callback'.format(auction['id'], award['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertIn('callback({"data": {"', response.body) response = self.app.get('/auctions/{}/awards/{}?opt_pretty=1'.format(auction['id'], award['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertIn('{\n "data": {\n "', response.body) def test_award_not_found(self): auction = self.create_auction() response = self.app.get('/auctions/{}/awards/some_id'.format(auction['id']), status=404) self.assertEqual(response.status, '404 Not Found') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['status'], 'error') self.assertEqual(response.json['errors'], [ {u'description': u'Not Found', u'location': u'url', u'name': u'award_id'} ]) def test_get_document_with_versions(self): auction = self.create_auction() data = self.db[auction['id']] documents = data['documents'] for i in range(3): document = deepcopy(test_document) document['id'] = data['documents'][0]['id'] document['url'] += str(i) document['dateModified'] = get_now().isoformat() documents.append(document) self.db.save(data) versions = [{'dateModified': i['dateModified'], 'url': i['url']} for i in documents[:-1]] response = self.app.get('/auctions/{}/documents/{}'.format(auction['id'], document['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(len(response.json['data']['previousVersions']), len(versions)) self.assertEqual(response.json['data']['previousVersions'], versions) @unittest.skipUnless(auctions_core, "Auctions is not reachable") class AuctionAwardDocumentResourceTest(AuctionBaseWebTest): def test_listing(self): auction = self.create_auction() award = auction['awards'][0] document = award['documents'][0] response = self.app.get('/auctions/{}/awards/{}/documents'.format(auction['id'], award['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['data'], award['documents']) self.assertNotIn('{\n "', response.body) self.assertNotIn('callback({', response.body) response = self.app.get('/auctions/{}/awards/{}/documents?opt_jsonp=callback'.format(auction['id'], award['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertNotIn('{\n "', response.body) self.assertIn('callback({', response.body) response = self.app.get('/auctions/{}/awards/{}/documents?opt_pretty=1'.format(auction['id'], award['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertIn('{\n "', response.body) self.assertNotIn('callback({', response.body) response = self.app.get('/auctions/{}/awards/{}/documents?opt_jsonp=callback&opt_pretty=1'.format(auction['id'], award['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertIn('{\n "', response.body) self.assertIn('callback({', response.body) def test_listing_changes(self): auction = self.create_auction() data = self.db[auction['id']] award = data['awards'][0] award_documents = award['documents'] for i in range(3): document = deepcopy(test_document) document['dateModified'] = get_now().isoformat() document['id'] = uuid4().hex award_documents.append(document) self.db.save(data) ids = ','.join([i['id'] for i in award_documents]) response = self.app.get('/auctions/{}/awards/{}/documents'.format(auction['id'], award['id'])) self.assertTrue(ids.startswith(','.join([i['id'] for i in response.json['data']]))) self.assertEqual(response.status, '200 OK') self.assertEqual(len(response.json['data']), len(award_documents)) self.assertEqual(set([i['id'] for i in response.json['data']]), set([i['id'] for i in award_documents])) self.assertEqual(set([i['dateModified'] for i in response.json['data']]), set([i['dateModified'] for i in award_documents])) self.assertEqual([i['dateModified'] for i in response.json['data']], sorted([i['dateModified'] for i in award_documents])) def test_get_award_document(self): auction = self.create_auction() award = auction['awards'][0] award_document = award['documents'][0] response = self.app.get('/auctions/{}/awards/{}/documents/{}'.format(auction['id'], award['id'], award_document['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertDictEqual(response.json['data'], award_document) response = self.app.get('/auctions/{}/awards/{}/documents/{}?opt_jsonp=callback'.format(auction['id'], award['id'],award_document['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/javascript') self.assertIn('callback({"data": {"', response.body) response = self.app.get('/auctions/{}/awards/{}/documents/{}?opt_pretty=1'.format(auction['id'], award['id'], award_document['id'])) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertIn('{\n "data": {\n "', response.body) def test_award_document_not_found(self): auction = self.create_auction() response = self.app.get('/auctions/{}/awards/{}/documents/some_id'.format(auction['id'], auction['awards'][0]['id']), status=404) self.assertEqual(response.status, '404 Not Found') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['status'], 'error') self.assertEqual(response.json['errors'], [ {u'description': u'Not Found', u'location': u'url', u'name': u'document_id'} ]) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(AuctionResourceTest)) suite.addTest(unittest.makeSuite(AuctionAwardResourceTest)) suite.addTest(unittest.makeSuite(AuctionAwardDocumentResourceTest)) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
47.960503
145
0.63521
3,189
26,714
5.25149
0.049859
0.154953
0.153819
0.066639
0.911984
0.90255
0.89222
0.881889
0.873828
0.847973
0
0.015606
0.189264
26,714
556
146
48.046763
0.757642
0.004193
0
0.739631
0
0.002304
0.197301
0.058536
0
0
0
0
0.546083
1
0.036866
false
0
0.016129
0
0.062212
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
8
530685b38b63bb864c23c036e780f7efc9f20c41
440,655
py
Python
tensorflow-ops-generator/resources/gen_ops/gen_math_ops.py
wumo/sim-world
2a3a5118239b27eeb268cd1e7bdbfe5f5604dab6
[ "MIT" ]
1
2019-01-12T13:17:32.000Z
2019-01-12T13:17:32.000Z
rcnn/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py
dreamingweaver/making_passportImage
68f23411780ff82abe934dfae5fc04acb80f2c49
[ "MIT" ]
null
null
null
rcnn/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py
dreamingweaver/making_passportImage
68f23411780ff82abe934dfae5fc04acb80f2c49
[ "MIT" ]
null
null
null
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: math_ops.cc """ import collections as _collections import six as _six from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import errors as _errors from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.tf_export import tf_export def _abs(x, name=None): r"""Computes the absolute value of a tensor. Given a tensor `x`, this operation returns a tensor containing the absolute value of each element in `x`. For example, if x is an input element and y is an output element, this operation computes \\(y = |x|\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Abs", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Abs", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Abs", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return _abs_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _abs_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _abs """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Abs", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Abs", _inputs_flat, _attrs, _result, name) _result, = _result return _result def accumulate_nv2(inputs, shape, name=None): r"""Returns the element-wise sum of a list of tensors. `tf.accumulate_n_v2` performs the same operation as `tf.add_n`, but does not wait for all of its inputs to be ready before beginning to sum. This can save memory if inputs are ready at different times, since minimum temporary storage is proportional to the output size rather than the inputs size. Unlike the original `accumulate_n`, `accumulate_n_v2` is differentiable. Returns a `Tensor` of same shape and type as the elements of `inputs`. Args: inputs: A list of at least 1 `Tensor` objects with the same type in: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A list of `Tensor` objects, each with same shape and type. shape: A `tf.TensorShape` or list of `ints`. Shape of elements of `inputs`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `inputs`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'accumulate_nv2' Op, not %r." % inputs) _attr_N = len(inputs) shape = _execute.make_shape(shape, "shape") _, _, _op = _op_def_lib._apply_op_helper( "AccumulateNV2", inputs=inputs, shape=shape, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("N", _op.get_attr("N"), "T", _op.get_attr("T"), "shape", _op.get_attr("shape")) _execute.record_gradient( "AccumulateNV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "AccumulateNV2", name, _ctx._post_execution_callbacks, inputs, "shape", shape) return _result except _core._FallbackException: return accumulate_nv2_eager_fallback( inputs, shape=shape, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def accumulate_nv2_eager_fallback(inputs, shape, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function accumulate_nv2 """ _ctx = ctx if ctx else _context.context() if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'accumulate_nv2' Op, not %r." % inputs) _attr_N = len(inputs) shape = _execute.make_shape(shape, "shape") _attr_T, inputs = _execute.args_to_matching_eager(list(inputs), _ctx) _inputs_flat = list(inputs) _attrs = ("N", _attr_N, "T", _attr_T, "shape", shape) _result = _execute.execute(b"AccumulateNV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "AccumulateNV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.acos', 'acos') def acos(x, name=None): r"""Computes acos of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Acos", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Acos", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Acos", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return acos_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def acos_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function acos """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Acos", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Acos", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.acosh', 'acosh') def acosh(x, name=None): r"""Computes inverse hyperbolic cosine of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Acosh", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Acosh", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Acosh", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return acosh_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def acosh_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function acosh """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Acosh", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Acosh", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.add', 'add') def add(x, y, name=None): r"""Returns x + y element-wise. *NOTE*: `math.add` supports broadcasting. `AddN` does not. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`, `string`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Add", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Add", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Add", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return add_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def add_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function add """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Add", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Add", _inputs_flat, _attrs, _result, name) _result, = _result return _result def add_n(inputs, name=None): r"""Add all input tensors element wise. Args: inputs: A list of at least 1 `Tensor` objects with the same type in: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`, `variant`. Must all be the same size and shape. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `inputs`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'add_n' Op, not %r." % inputs) _attr_N = len(inputs) _, _, _op = _op_def_lib._apply_op_helper( "AddN", inputs=inputs, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("N", _op.get_attr("N"), "T", _op.get_attr("T")) _execute.record_gradient( "AddN", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "AddN", name, _ctx._post_execution_callbacks, inputs) return _result except _core._FallbackException: return add_n_eager_fallback( inputs, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def add_n_eager_fallback(inputs, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function add_n """ _ctx = ctx if ctx else _context.context() if not isinstance(inputs, (list, tuple)): raise TypeError( "Expected list for 'inputs' argument to " "'add_n' Op, not %r." % inputs) _attr_N = len(inputs) _attr_T, inputs = _execute.args_to_matching_eager(list(inputs), _ctx) _inputs_flat = list(inputs) _attrs = ("N", _attr_N, "T", _attr_T) _result = _execute.execute(b"AddN", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "AddN", _inputs_flat, _attrs, _result, name) _result, = _result return _result def add_v2(x, y, name=None): r"""Returns x + y element-wise. *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "AddV2", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "AddV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "AddV2", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return add_v2_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def add_v2_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function add_v2 """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"AddV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "AddV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _all(input, axis, keep_dims=False, name=None): r"""Computes the "logical and" of elements across dimensions of a tensor. Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. Args: input: A `Tensor` of type `bool`. The tensor to reduce. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. Must be in the range `[-rank(input), rank(input))`. keep_dims: An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _, _, _op = _op_def_lib._apply_op_helper( "All", input=input, reduction_indices=axis, keep_dims=keep_dims, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("keep_dims", _op.get_attr("keep_dims"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "All", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "All", name, _ctx._post_execution_callbacks, input, axis, "keep_dims", keep_dims) return _result except _core._FallbackException: return _all_eager_fallback( input, axis, keep_dims=keep_dims, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _all_eager_fallback(input, axis, keep_dims=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _all """ _ctx = ctx if ctx else _context.context() if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) input = _ops.convert_to_tensor(input, _dtypes.bool) _inputs_flat = [input, axis] _attrs = ("keep_dims", keep_dims, "Tidx", _attr_Tidx) _result = _execute.execute(b"All", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "All", _inputs_flat, _attrs, _result, name) _result, = _result return _result def angle(input, Tout=_dtypes.float32, name=None): r"""Returns the argument of a complex number. Given a tensor `input` of complex numbers, this operation returns a tensor of type `float` that is the argument of each element in `input`. All elements in `input` must be complex numbers of the form \\(a + bj\\), where *a* is the real part and *b* is the imaginary part. The argument returned by this operation is of the form \\(atan2(b, a)\\). For example: ``` # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] tf.angle(input) ==> [2.0132, 1.056] ``` @compatibility(numpy) Equivalent to np.angle. @end_compatibility Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. Tout: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tout`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _, _, _op = _op_def_lib._apply_op_helper( "Angle", input=input, Tout=Tout, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tout", _op.get_attr("Tout")) _execute.record_gradient( "Angle", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Angle", name, _ctx._post_execution_callbacks, input, "Tout", Tout) return _result except _core._FallbackException: return angle_eager_fallback( input, Tout=Tout, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def angle_eager_fallback(input, Tout=_dtypes.float32, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function angle """ _ctx = ctx if ctx else _context.context() if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx, _dtypes.complex64) _inputs_flat = [input] _attrs = ("T", _attr_T, "Tout", Tout) _result = _execute.execute(b"Angle", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Angle", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _any(input, axis, keep_dims=False, name=None): r"""Computes the "logical or" of elements across dimensions of a tensor. Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. Args: input: A `Tensor` of type `bool`. The tensor to reduce. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. Must be in the range `[-rank(input), rank(input))`. keep_dims: An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _, _, _op = _op_def_lib._apply_op_helper( "Any", input=input, reduction_indices=axis, keep_dims=keep_dims, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("keep_dims", _op.get_attr("keep_dims"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Any", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Any", name, _ctx._post_execution_callbacks, input, axis, "keep_dims", keep_dims) return _result except _core._FallbackException: return _any_eager_fallback( input, axis, keep_dims=keep_dims, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _any_eager_fallback(input, axis, keep_dims=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _any """ _ctx = ctx if ctx else _context.context() if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) input = _ops.convert_to_tensor(input, _dtypes.bool) _inputs_flat = [input, axis] _attrs = ("keep_dims", keep_dims, "Tidx", _attr_Tidx) _result = _execute.execute(b"Any", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Any", _inputs_flat, _attrs, _result, name) _result, = _result return _result def approximate_equal(x, y, tolerance=1e-05, name=None): r"""Returns the truth value of abs(x-y) < tolerance element-wise. Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. y: A `Tensor`. Must have the same type as `x`. tolerance: An optional `float`. Defaults to `1e-05`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if tolerance is None: tolerance = 1e-05 tolerance = _execute.make_float(tolerance, "tolerance") _, _, _op = _op_def_lib._apply_op_helper( "ApproximateEqual", x=x, y=y, tolerance=tolerance, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "tolerance", _op.get_attr("tolerance")) _execute.record_gradient( "ApproximateEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "ApproximateEqual", name, _ctx._post_execution_callbacks, x, y, "tolerance", tolerance) return _result except _core._FallbackException: return approximate_equal_eager_fallback( x, y, tolerance=tolerance, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def approximate_equal_eager_fallback(x, y, tolerance=1e-05, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function approximate_equal """ _ctx = ctx if ctx else _context.context() if tolerance is None: tolerance = 1e-05 tolerance = _execute.make_float(tolerance, "tolerance") _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T, "tolerance", tolerance) _result = _execute.execute(b"ApproximateEqual", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "ApproximateEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result def arg_max(input, dimension, output_type=_dtypes.int64, name=None): r"""Returns the index with the largest value across dimensions of a tensor. Note that in case of ties the identity of the return value is not guaranteed. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. dimension: A `Tensor`. Must be one of the following types: `int32`, `int64`. int32 or int64, must be in the range `[-rank(input), rank(input))`. Describes which dimension of the input Tensor to reduce across. For vectors, use dimension = 0. output_type: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int64`. name: A name for the operation (optional). Returns: A `Tensor` of type `output_type`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if output_type is None: output_type = _dtypes.int64 output_type = _execute.make_type(output_type, "output_type") _, _, _op = _op_def_lib._apply_op_helper( "ArgMax", input=input, dimension=dimension, output_type=output_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx"), "output_type", _op.get_attr("output_type")) _execute.record_gradient( "ArgMax", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "ArgMax", name, _ctx._post_execution_callbacks, input, dimension, "output_type", output_type) return _result except _core._FallbackException: return arg_max_eager_fallback( input, dimension, output_type=output_type, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def arg_max_eager_fallback(input, dimension, output_type=_dtypes.int64, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function arg_max """ _ctx = ctx if ctx else _context.context() if output_type is None: output_type = _dtypes.int64 output_type = _execute.make_type(output_type, "output_type") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _attr_Tidx, (dimension,) = _execute.args_to_matching_eager([dimension], _ctx, _dtypes.int32) _inputs_flat = [input, dimension] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx, "output_type", output_type) _result = _execute.execute(b"ArgMax", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "ArgMax", _inputs_flat, _attrs, _result, name) _result, = _result return _result def arg_min(input, dimension, output_type=_dtypes.int64, name=None): r"""Returns the index with the smallest value across dimensions of a tensor. Note that in case of ties the identity of the return value is not guaranteed. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. dimension: A `Tensor`. Must be one of the following types: `int32`, `int64`. int32 or int64, must be in the range `[-rank(input), rank(input))`. Describes which dimension of the input Tensor to reduce across. For vectors, use dimension = 0. output_type: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int64`. name: A name for the operation (optional). Returns: A `Tensor` of type `output_type`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if output_type is None: output_type = _dtypes.int64 output_type = _execute.make_type(output_type, "output_type") _, _, _op = _op_def_lib._apply_op_helper( "ArgMin", input=input, dimension=dimension, output_type=output_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx"), "output_type", _op.get_attr("output_type")) _execute.record_gradient( "ArgMin", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "ArgMin", name, _ctx._post_execution_callbacks, input, dimension, "output_type", output_type) return _result except _core._FallbackException: return arg_min_eager_fallback( input, dimension, output_type=output_type, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def arg_min_eager_fallback(input, dimension, output_type=_dtypes.int64, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function arg_min """ _ctx = ctx if ctx else _context.context() if output_type is None: output_type = _dtypes.int64 output_type = _execute.make_type(output_type, "output_type") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _attr_Tidx, (dimension,) = _execute.args_to_matching_eager([dimension], _ctx, _dtypes.int32) _inputs_flat = [input, dimension] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx, "output_type", output_type) _result = _execute.execute(b"ArgMin", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "ArgMin", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.asin', 'asin') def asin(x, name=None): r"""Computes asin of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Asin", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Asin", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Asin", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return asin_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def asin_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function asin """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Asin", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Asin", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.asinh', 'asinh') def asinh(x, name=None): r"""Computes inverse hyperbolic sine of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Asinh", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Asinh", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Asinh", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return asinh_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def asinh_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function asinh """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Asinh", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Asinh", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.atan', 'atan') def atan(x, name=None): r"""Computes atan of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Atan", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Atan", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Atan", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return atan_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def atan_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function atan """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Atan", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Atan", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.atan2', 'atan2') def atan2(y, x, name=None): r"""Computes arctangent of `y/x` element-wise, respecting signs of the arguments. This is the angle \( \theta \in [-\pi, \pi] \) such that \[ x = r \cos(\theta) \] and \[ y = r \sin(\theta) \] where \(r = \sqrt(x^2 + y^2) \). Args: y: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. x: A `Tensor`. Must have the same type as `y`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `y`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Atan2", y=y, x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Atan2", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Atan2", name, _ctx._post_execution_callbacks, y, x) return _result except _core._FallbackException: return atan2_eager_fallback( y, x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def atan2_eager_fallback(y, x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function atan2 """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([y, x], _ctx) (y, x) = _inputs_T _inputs_flat = [y, x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Atan2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Atan2", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.atanh', 'atanh') def atanh(x, name=None): r"""Computes inverse hyperbolic tangent of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Atanh", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Atanh", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Atanh", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return atanh_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def atanh_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function atanh """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Atanh", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Atanh", _inputs_flat, _attrs, _result, name) _result, = _result return _result def batch_mat_mul(x, y, adj_x=False, adj_y=False, name=None): r"""Multiplies slices of two tensors in batches. Multiplies all slices of `Tensor` `x` and `y` (each slice can be viewed as an element of a batch), and arranges the individual results in a single output tensor of the same batch size. Each of the individual slices can optionally be adjointed (to adjoint a matrix means to transpose and conjugate it) before multiplication by setting the `adj_x` or `adj_y` flag to `True`, which are by default `False`. The input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` and `[..., r_y, c_y]`. The output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: r_o = c_x if adj_x else r_x c_o = r_y if adj_y else c_y It is computed as: output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `complex64`, `complex128`. 2-D or higher with shape `[..., r_x, c_x]`. y: A `Tensor`. Must have the same type as `x`. 2-D or higher with shape `[..., r_y, c_y]`. adj_x: An optional `bool`. Defaults to `False`. If `True`, adjoint the slices of `x`. Defaults to `False`. adj_y: An optional `bool`. Defaults to `False`. If `True`, adjoint the slices of `y`. Defaults to `False`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if adj_x is None: adj_x = False adj_x = _execute.make_bool(adj_x, "adj_x") if adj_y is None: adj_y = False adj_y = _execute.make_bool(adj_y, "adj_y") _, _, _op = _op_def_lib._apply_op_helper( "BatchMatMul", x=x, y=y, adj_x=adj_x, adj_y=adj_y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "adj_x", _op.get_attr("adj_x"), "adj_y", _op.get_attr("adj_y")) _execute.record_gradient( "BatchMatMul", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BatchMatMul", name, _ctx._post_execution_callbacks, x, y, "adj_x", adj_x, "adj_y", adj_y) return _result except _core._FallbackException: return batch_mat_mul_eager_fallback( x, y, adj_x=adj_x, adj_y=adj_y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def batch_mat_mul_eager_fallback(x, y, adj_x=False, adj_y=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function batch_mat_mul """ _ctx = ctx if ctx else _context.context() if adj_x is None: adj_x = False adj_x = _execute.make_bool(adj_x, "adj_x") if adj_y is None: adj_y = False adj_y = _execute.make_bool(adj_y, "adj_y") _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T, "adj_x", adj_x, "adj_y", adj_y) _result = _execute.execute(b"BatchMatMul", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BatchMatMul", _inputs_flat, _attrs, _result, name) _result, = _result return _result def bessel_i0e(x, name=None): r"""Computes the Bessel i0e function of `x` element-wise. Exponentially scaled modified Bessel function of order 0 defined as `bessel_i0e(x) = exp(-abs(x)) bessel_i0(x)`. This function is faster and numerically stabler than `bessel_i0(x)`. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "BesselI0e", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "BesselI0e", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BesselI0e", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return bessel_i0e_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def bessel_i0e_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function bessel_i0e """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"BesselI0e", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BesselI0e", _inputs_flat, _attrs, _result, name) _result, = _result return _result def bessel_i1e(x, name=None): r"""Computes the Bessel i1e function of `x` element-wise. Exponentially scaled modified Bessel function of order 0 defined as `bessel_i1e(x) = exp(-abs(x)) bessel_i1(x)`. This function is faster and numerically stabler than `bessel_i1(x)`. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "BesselI1e", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "BesselI1e", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BesselI1e", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return bessel_i1e_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def bessel_i1e_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function bessel_i1e """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"BesselI1e", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BesselI1e", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.betainc', 'betainc') def betainc(a, b, x, name=None): r"""Compute the regularized incomplete beta integral \\(I_x(a, b)\\). The regularized incomplete beta integral is defined as: \\(I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}\\) where \\(B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt\\) is the incomplete beta function and \\(B(a, b)\\) is the *complete* beta function. Args: a: A `Tensor`. Must be one of the following types: `float32`, `float64`. b: A `Tensor`. Must have the same type as `a`. x: A `Tensor`. Must have the same type as `a`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Betainc", a=a, b=b, x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Betainc", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Betainc", name, _ctx._post_execution_callbacks, a, b, x) return _result except _core._FallbackException: return betainc_eager_fallback( a, b, x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def betainc_eager_fallback(a, b, x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function betainc """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([a, b, x], _ctx) (a, b, x) = _inputs_T _inputs_flat = [a, b, x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Betainc", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Betainc", _inputs_flat, _attrs, _result, name) _result, = _result return _result def bincount(arr, size, weights, name=None): r"""Counts the number of occurrences of each value in an integer array. Outputs a vector with length `size` and the same dtype as `weights`. If `weights` are empty, then index `i` stores the number of times the value `i` is counted in `arr`. If `weights` are non-empty, then index `i` stores the sum of the value in `weights` at each index where the corresponding value in `arr` is `i`. Values in `arr` outside of the range [0, size) are ignored. Args: arr: A `Tensor` of type `int32`. int32 `Tensor`. size: A `Tensor` of type `int32`. non-negative int32 scalar `Tensor`. weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`. is an int32, int64, float32, or float64 `Tensor` with the same shape as `arr`, or a length-0 `Tensor`, in which case it acts as all weights equal to 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `weights`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Bincount", arr=arr, size=size, weights=weights, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Bincount", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Bincount", name, _ctx._post_execution_callbacks, arr, size, weights) return _result except _core._FallbackException: return bincount_eager_fallback( arr, size, weights, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def bincount_eager_fallback(arr, size, weights, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function bincount """ _ctx = ctx if ctx else _context.context() _attr_T, (weights,) = _execute.args_to_matching_eager([weights], _ctx) arr = _ops.convert_to_tensor(arr, _dtypes.int32) size = _ops.convert_to_tensor(size, _dtypes.int32) _inputs_flat = [arr, size, weights] _attrs = ("T", _attr_T) _result = _execute.execute(b"Bincount", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Bincount", _inputs_flat, _attrs, _result, name) _result, = _result return _result def bucketize(input, boundaries, name=None): r"""Bucketizes 'input' based on 'boundaries'. For example, if the inputs are boundaries = [0, 10, 100] input = [[-5, 10000] [150, 10] [5, 100]] then the output will be output = [[0, 3] [3, 2] [1, 3]] Args: input: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`. Any shape of Tensor contains with int or float type. boundaries: A list of `floats`. A sorted list of floats gives the boundary of the buckets. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(boundaries, (list, tuple)): raise TypeError( "Expected list for 'boundaries' argument to " "'bucketize' Op, not %r." % boundaries) boundaries = [_execute.make_float(_f, "boundaries") for _f in boundaries] _, _, _op = _op_def_lib._apply_op_helper( "Bucketize", input=input, boundaries=boundaries, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "boundaries", _op.get_attr("boundaries")) _execute.record_gradient( "Bucketize", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Bucketize", name, _ctx._post_execution_callbacks, input, "boundaries", boundaries) return _result except _core._FallbackException: return bucketize_eager_fallback( input, boundaries=boundaries, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def bucketize_eager_fallback(input, boundaries, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function bucketize """ _ctx = ctx if ctx else _context.context() if not isinstance(boundaries, (list, tuple)): raise TypeError( "Expected list for 'boundaries' argument to " "'bucketize' Op, not %r." % boundaries) boundaries = [_execute.make_float(_f, "boundaries") for _f in boundaries] _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ("T", _attr_T, "boundaries", boundaries) _result = _execute.execute(b"Bucketize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Bucketize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def cast(x, DstT, name=None): r"""Cast x of type SrcT to y of DstT. Args: x: A `Tensor`. DstT: A `tf.DType`. name: A name for the operation (optional). Returns: A `Tensor` of type `DstT`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: DstT = _execute.make_type(DstT, "DstT") _, _, _op = _op_def_lib._apply_op_helper( "Cast", x=x, DstT=DstT, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("SrcT", _op.get_attr("SrcT"), "DstT", _op.get_attr("DstT")) _execute.record_gradient( "Cast", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Cast", name, _ctx._post_execution_callbacks, x, "DstT", DstT) return _result except _core._FallbackException: return cast_eager_fallback( x, DstT=DstT, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def cast_eager_fallback(x, DstT, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function cast """ _ctx = ctx if ctx else _context.context() DstT = _execute.make_type(DstT, "DstT") _attr_SrcT, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("SrcT", _attr_SrcT, "DstT", DstT) _result = _execute.execute(b"Cast", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Cast", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.ceil', 'ceil') def ceil(x, name=None): r"""Returns element-wise smallest integer in not less than x. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Ceil", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Ceil", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Ceil", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return ceil_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def ceil_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ceil """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Ceil", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Ceil", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _clip_by_value(t, clip_value_min, clip_value_max, name=None): r"""Clips tensor values to a specified min and max. Given a tensor `t`, this operation returns a tensor of the same type and shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`. Any values less than `clip_value_min` are set to `clip_value_min`. Any values greater than `clip_value_max` are set to `clip_value_max`. Args: t: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A `Tensor`. clip_value_min: A `Tensor`. Must have the same type as `t`. A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape as `t`. The minimum value to clip by. clip_value_max: A `Tensor`. Must have the same type as `t`. A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape as `t`. The maximum value to clip by. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `t`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "ClipByValue", t=t, clip_value_min=clip_value_min, clip_value_max=clip_value_max, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "ClipByValue", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "ClipByValue", name, _ctx._post_execution_callbacks, t, clip_value_min, clip_value_max) return _result except _core._FallbackException: return _clip_by_value_eager_fallback( t, clip_value_min, clip_value_max, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _clip_by_value_eager_fallback(t, clip_value_min, clip_value_max, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _clip_by_value """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([t, clip_value_min, clip_value_max], _ctx) (t, clip_value_min, clip_value_max) = _inputs_T _inputs_flat = [t, clip_value_min, clip_value_max] _attrs = ("T", _attr_T) _result = _execute.execute(b"ClipByValue", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "ClipByValue", _inputs_flat, _attrs, _result, name) _result, = _result return _result def compare_and_bitpack(input, threshold, name=None): r"""Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. Each comparison returns a boolean `true` (if `input_value > threshold`) or and `false` otherwise. This operation is useful for Locality-Sensitive-Hashing (LSH) and other algorithms that use hashing approximations of cosine and `L2` distances; codes can be generated from an input via: ```python codebook_size = 50 codebook_bits = codebook_size * 32 codebook = tf.get_variable('codebook', [x.shape[-1].value, codebook_bits], dtype=x.dtype, initializer=tf.orthogonal_initializer()) codes = compare_and_threshold(tf.matmul(x, codebook), threshold=0.) codes = tf.bitcast(codes, tf.int32) # go from uint8 to int32 # now codes has shape x.shape[:-1] + [codebook_size] ``` **NOTE**: Currently, the innermost dimension of the tensor must be divisible by 8. Given an `input` shaped `[s0, s1, ..., s_n]`, the output is a `uint8` tensor shaped `[s0, s1, ..., s_n / 8]`. Args: input: A `Tensor`. Must be one of the following types: `bool`, `half`, `float32`, `float64`, `int8`, `int16`, `int32`, `int64`. Values to compare against `threshold` and bitpack. threshold: A `Tensor`. Must have the same type as `input`. Threshold to compare against. name: A name for the operation (optional). Returns: A `Tensor` of type `uint8`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "CompareAndBitpack", input=input, threshold=threshold, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "CompareAndBitpack", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "CompareAndBitpack", name, _ctx._post_execution_callbacks, input, threshold) return _result except _core._FallbackException: return compare_and_bitpack_eager_fallback( input, threshold, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def compare_and_bitpack_eager_fallback(input, threshold, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function compare_and_bitpack """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([input, threshold], _ctx) (input, threshold) = _inputs_T _inputs_flat = [input, threshold] _attrs = ("T", _attr_T) _result = _execute.execute(b"CompareAndBitpack", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "CompareAndBitpack", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _complex(real, imag, Tout=_dtypes.complex64, name=None): r"""Converts two real numbers to a complex number. Given a tensor `real` representing the real part of a complex number, and a tensor `imag` representing the imaginary part of a complex number, this operation returns complex numbers elementwise of the form \\(a + bj\\), where *a* represents the `real` part and *b* represents the `imag` part. The input tensors `real` and `imag` must have the same shape. For example: ``` # tensor 'real' is [2.25, 3.25] # tensor `imag` is [4.75, 5.75] tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]] ``` Args: real: A `Tensor`. Must be one of the following types: `float32`, `float64`. imag: A `Tensor`. Must have the same type as `real`. Tout: An optional `tf.DType` from: `tf.complex64, tf.complex128`. Defaults to `tf.complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tout`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Tout is None: Tout = _dtypes.complex64 Tout = _execute.make_type(Tout, "Tout") _, _, _op = _op_def_lib._apply_op_helper( "Complex", real=real, imag=imag, Tout=Tout, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tout", _op.get_attr("Tout")) _execute.record_gradient( "Complex", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Complex", name, _ctx._post_execution_callbacks, real, imag, "Tout", Tout) return _result except _core._FallbackException: return _complex_eager_fallback( real, imag, Tout=Tout, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _complex_eager_fallback(real, imag, Tout=_dtypes.complex64, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _complex """ _ctx = ctx if ctx else _context.context() if Tout is None: Tout = _dtypes.complex64 Tout = _execute.make_type(Tout, "Tout") _attr_T, _inputs_T = _execute.args_to_matching_eager([real, imag], _ctx, _dtypes.float32) (real, imag) = _inputs_T _inputs_flat = [real, imag] _attrs = ("T", _attr_T, "Tout", Tout) _result = _execute.execute(b"Complex", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Complex", _inputs_flat, _attrs, _result, name) _result, = _result return _result def complex_abs(x, Tout=_dtypes.float32, name=None): r"""Computes the complex absolute value of a tensor. Given a tensor `x` of complex numbers, this operation returns a tensor of type `float` or `double` that is the absolute value of each element in `x`. All elements in `x` must be complex numbers of the form \\(a + bj\\). The absolute value is computed as \\( \sqrt{a^2 + b^2}\\). Args: x: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. Tout: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tout`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _, _, _op = _op_def_lib._apply_op_helper( "ComplexAbs", x=x, Tout=Tout, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tout", _op.get_attr("Tout")) _execute.record_gradient( "ComplexAbs", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "ComplexAbs", name, _ctx._post_execution_callbacks, x, "Tout", Tout) return _result except _core._FallbackException: return complex_abs_eager_fallback( x, Tout=Tout, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def complex_abs_eager_fallback(x, Tout=_dtypes.float32, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function complex_abs """ _ctx = ctx if ctx else _context.context() if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx, _dtypes.complex64) _inputs_flat = [x] _attrs = ("T", _attr_T, "Tout", Tout) _result = _execute.execute(b"ComplexAbs", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "ComplexAbs", _inputs_flat, _attrs, _result, name) _result, = _result return _result def conj(input, name=None): r"""Returns the complex conjugate of a complex number. Given a tensor `input` of complex numbers, this operation returns a tensor of complex numbers that are the complex conjugate of each element in `input`. The complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the real part and *b* is the imaginary part. The complex conjugate returned by this operation is of the form \\(a - bj\\). For example: ``` # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j] ``` Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`, `variant`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Conj", input=input, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Conj", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Conj", name, _ctx._post_execution_callbacks, input) return _result except _core._FallbackException: return conj_eager_fallback( input, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def conj_eager_fallback(input, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function conj """ _ctx = ctx if ctx else _context.context() _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx, _dtypes.complex64) _inputs_flat = [input] _attrs = ("T", _attr_T) _result = _execute.execute(b"Conj", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Conj", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.cos', 'cos') def cos(x, name=None): r"""Computes cos of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Cos", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Cos", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Cos", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return cos_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def cos_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function cos """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Cos", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Cos", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.cosh', 'cosh') def cosh(x, name=None): r"""Computes hyperbolic cosine of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Cosh", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Cosh", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Cosh", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return cosh_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def cosh_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function cosh """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Cosh", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Cosh", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('linalg.cross', 'cross') def cross(a, b, name=None): r"""Compute the pairwise cross product. `a` and `b` must be the same shape; they can either be simple 3-element vectors, or any shape where the innermost dimension is 3. In the latter case, each pair of corresponding 3-element vectors is cross-multiplied independently. Args: a: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. A tensor containing 3-element vectors. b: A `Tensor`. Must have the same type as `a`. Another tensor, of same type and shape as `a`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Cross", a=a, b=b, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Cross", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Cross", name, _ctx._post_execution_callbacks, a, b) return _result except _core._FallbackException: return cross_eager_fallback( a, b, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def cross_eager_fallback(a, b, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function cross """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([a, b], _ctx) (a, b) = _inputs_T _inputs_flat = [a, b] _attrs = ("T", _attr_T) _result = _execute.execute(b"Cross", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Cross", _inputs_flat, _attrs, _result, name) _result, = _result return _result def cumprod(x, axis, exclusive=False, reverse=False, name=None): r"""Compute the cumulative product of the tensor `x` along `axis`. By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: ```python tf.cumprod([a, b, c]) # => [a, a * b, a * b * c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumprod is performed instead: ```python tf.cumprod([a, b, c], exclusive=True) # => [1, a, a * b] ``` By setting the `reverse` kwarg to `True`, the cumprod is performed in the opposite direction: ```python tf.cumprod([a, b, c], reverse=True) # => [a * b * c, b * c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```python tf.cumprod([a, b, c], exclusive=True, reverse=True) # => [b * c, c, 1] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. A `Tensor` of type `int32` (default: 0). Must be in the range `[-rank(x), rank(x))`. exclusive: An optional `bool`. Defaults to `False`. If `True`, perform exclusive cumprod. reverse: An optional `bool`. Defaults to `False`. A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if exclusive is None: exclusive = False exclusive = _execute.make_bool(exclusive, "exclusive") if reverse is None: reverse = False reverse = _execute.make_bool(reverse, "reverse") _, _, _op = _op_def_lib._apply_op_helper( "Cumprod", x=x, axis=axis, exclusive=exclusive, reverse=reverse, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("exclusive", _op.get_attr("exclusive"), "reverse", _op.get_attr("reverse"), "T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Cumprod", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Cumprod", name, _ctx._post_execution_callbacks, x, axis, "exclusive", exclusive, "reverse", reverse) return _result except _core._FallbackException: return cumprod_eager_fallback( x, axis, exclusive=exclusive, reverse=reverse, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def cumprod_eager_fallback(x, axis, exclusive=False, reverse=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function cumprod """ _ctx = ctx if ctx else _context.context() if exclusive is None: exclusive = False exclusive = _execute.make_bool(exclusive, "exclusive") if reverse is None: reverse = False reverse = _execute.make_bool(reverse, "reverse") _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) _inputs_flat = [x, axis] _attrs = ("exclusive", exclusive, "reverse", reverse, "T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"Cumprod", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Cumprod", _inputs_flat, _attrs, _result, name) _result, = _result return _result def cumsum(x, axis, exclusive=False, reverse=False, name=None): r"""Compute the cumulative sum of the tensor `x` along `axis`. By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output: ```python tf.cumsum([a, b, c]) # => [a, a + b, a + b + c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed instead: ```python tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b] ``` By setting the `reverse` kwarg to `True`, the cumsum is performed in the opposite direction: ```python tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```python tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. A `Tensor` of type `int32` (default: 0). Must be in the range `[-rank(x), rank(x))`. exclusive: An optional `bool`. Defaults to `False`. If `True`, perform exclusive cumsum. reverse: An optional `bool`. Defaults to `False`. A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if exclusive is None: exclusive = False exclusive = _execute.make_bool(exclusive, "exclusive") if reverse is None: reverse = False reverse = _execute.make_bool(reverse, "reverse") _, _, _op = _op_def_lib._apply_op_helper( "Cumsum", x=x, axis=axis, exclusive=exclusive, reverse=reverse, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("exclusive", _op.get_attr("exclusive"), "reverse", _op.get_attr("reverse"), "T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Cumsum", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Cumsum", name, _ctx._post_execution_callbacks, x, axis, "exclusive", exclusive, "reverse", reverse) return _result except _core._FallbackException: return cumsum_eager_fallback( x, axis, exclusive=exclusive, reverse=reverse, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def cumsum_eager_fallback(x, axis, exclusive=False, reverse=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function cumsum """ _ctx = ctx if ctx else _context.context() if exclusive is None: exclusive = False exclusive = _execute.make_bool(exclusive, "exclusive") if reverse is None: reverse = False reverse = _execute.make_bool(reverse, "reverse") _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) _inputs_flat = [x, axis] _attrs = ("exclusive", exclusive, "reverse", reverse, "T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"Cumsum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Cumsum", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.digamma', 'digamma') def digamma(x, name=None): r"""Computes Psi, the derivative of Lgamma (the log of the absolute value of `Gamma(x)`), element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Digamma", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Digamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Digamma", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return digamma_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def digamma_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function digamma """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Digamma", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Digamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result def div(x, y, name=None): r"""Returns x / y element-wise. *NOTE*: `Div` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Div", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Div", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Div", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return div_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def div_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function div """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Div", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Div", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.equal', 'equal') def equal(x, y, name=None): r"""Returns the truth value of (x == y) element-wise. *NOTE*: `math.equal` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `quint8`, `qint8`, `qint32`, `string`, `bool`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Equal", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Equal", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Equal", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return equal_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def equal_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function equal """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Equal", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Equal", _inputs_flat, _attrs, _result, name) _result, = _result return _result def erf(x, name=None): r"""Computes the Gauss error function of `x` element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Erf", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Erf", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Erf", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return erf_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def erf_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function erf """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Erf", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Erf", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.erfc', 'erfc') def erfc(x, name=None): r"""Computes the complementary error function of `x` element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Erfc", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Erfc", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Erfc", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return erfc_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def erfc_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function erfc """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Erfc", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Erfc", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.exp', 'exp') def exp(x, name=None): r"""Computes exponential of x element-wise. \\(y = e^x\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Exp", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Exp", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Exp", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return exp_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def exp_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function exp """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Exp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Exp", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.expm1', 'expm1') def expm1(x, name=None): r"""Computes exponential of x - 1 element-wise. I.e., \\(y = (\exp x) - 1\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Expm1", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Expm1", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Expm1", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return expm1_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def expm1_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function expm1 """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Expm1", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Expm1", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.floor', 'floor') def floor(x, name=None): r"""Returns element-wise largest integer not greater than x. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Floor", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Floor", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Floor", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return floor_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def floor_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function floor """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Floor", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Floor", _inputs_flat, _attrs, _result, name) _result, = _result return _result def floor_div(x, y, name=None): r"""Returns x // y element-wise. *NOTE*: `FloorDiv` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "FloorDiv", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "FloorDiv", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "FloorDiv", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return floor_div_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def floor_div_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function floor_div """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"FloorDiv", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "FloorDiv", _inputs_flat, _attrs, _result, name) _result, = _result return _result def floor_mod(x, y, name=None): r"""Returns element-wise remainder of division. When `x < 0` xor `y < 0` is true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`. *NOTE*: `FloorMod` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `int32`, `int64`, `bfloat16`, `half`, `float32`, `float64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "FloorMod", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "FloorMod", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "FloorMod", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return floor_mod_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def floor_mod_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function floor_mod """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"FloorMod", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "FloorMod", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.greater', 'greater') def greater(x, y, name=None): r"""Returns the truth value of (x > y) element-wise. *NOTE*: `math.greater` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Greater", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Greater", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Greater", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return greater_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def greater_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function greater """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Greater", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Greater", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.greater_equal', 'greater_equal') def greater_equal(x, y, name=None): r"""Returns the truth value of (x >= y) element-wise. *NOTE*: `math.greater_equal` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "GreaterEqual", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "GreaterEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "GreaterEqual", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return greater_equal_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def greater_equal_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function greater_equal """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"GreaterEqual", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "GreaterEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _histogram_fixed_width(values, value_range, nbins, dtype=_dtypes.int32, name=None): r"""Return histogram of values. Given the tensor `values`, this operation returns a rank 1 histogram counting the number of entries in `values` that fall into every bin. The bins are equal width and determined by the arguments `value_range` and `nbins`. ```python # Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) nbins = 5 value_range = [0.0, 5.0] new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15] with tf.get_default_session() as sess: hist = tf.histogram_fixed_width(new_values, value_range, nbins=5) variables.global_variables_initializer().run() sess.run(hist) => [2, 1, 1, 0, 2] ``` Args: values: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`. Numeric `Tensor`. value_range: A `Tensor`. Must have the same type as `values`. Shape [2] `Tensor` of same `dtype` as `values`. values <= value_range[0] will be mapped to hist[0], values >= value_range[1] will be mapped to hist[-1]. nbins: A `Tensor` of type `int32`. Scalar `int32 Tensor`. Number of histogram bins. dtype: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int32`. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if dtype is None: dtype = _dtypes.int32 dtype = _execute.make_type(dtype, "dtype") _, _, _op = _op_def_lib._apply_op_helper( "HistogramFixedWidth", values=values, value_range=value_range, nbins=nbins, dtype=dtype, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "dtype", _op.get_attr("dtype")) _execute.record_gradient( "HistogramFixedWidth", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "HistogramFixedWidth", name, _ctx._post_execution_callbacks, values, value_range, nbins, "dtype", dtype) return _result except _core._FallbackException: return _histogram_fixed_width_eager_fallback( values, value_range, nbins, dtype=dtype, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _histogram_fixed_width_eager_fallback(values, value_range, nbins, dtype=_dtypes.int32, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _histogram_fixed_width """ _ctx = ctx if ctx else _context.context() if dtype is None: dtype = _dtypes.int32 dtype = _execute.make_type(dtype, "dtype") _attr_T, _inputs_T = _execute.args_to_matching_eager([values, value_range], _ctx) (values, value_range) = _inputs_T nbins = _ops.convert_to_tensor(nbins, _dtypes.int32) _inputs_flat = [values, value_range, nbins] _attrs = ("T", _attr_T, "dtype", dtype) _result = _execute.execute(b"HistogramFixedWidth", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "HistogramFixedWidth", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.igamma', 'igamma') def igamma(a, x, name=None): r"""Compute the lower regularized incomplete Gamma function `Q(a, x)`. The lower regularized incomplete Gamma function is defined as: \\(P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)\\) where \\(gamma(a, x) = int_{0}^{x} t^{a-1} exp(-t) dt\\) is the lower incomplete Gamma function. Note, above `Q(a, x)` (`Igammac`) is the upper regularized complete Gamma function. Args: a: A `Tensor`. Must be one of the following types: `float32`, `float64`. x: A `Tensor`. Must have the same type as `a`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Igamma", a=a, x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Igamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Igamma", name, _ctx._post_execution_callbacks, a, x) return _result except _core._FallbackException: return igamma_eager_fallback( a, x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def igamma_eager_fallback(a, x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function igamma """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([a, x], _ctx) (a, x) = _inputs_T _inputs_flat = [a, x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Igamma", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Igamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result def igamma_grad_a(a, x, name=None): r"""Computes the gradient of `igamma(a, x)` wrt `a`. Args: a: A `Tensor`. Must be one of the following types: `float32`, `float64`. x: A `Tensor`. Must have the same type as `a`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "IgammaGradA", a=a, x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "IgammaGradA", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "IgammaGradA", name, _ctx._post_execution_callbacks, a, x) return _result except _core._FallbackException: return igamma_grad_a_eager_fallback( a, x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def igamma_grad_a_eager_fallback(a, x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function igamma_grad_a """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([a, x], _ctx) (a, x) = _inputs_T _inputs_flat = [a, x] _attrs = ("T", _attr_T) _result = _execute.execute(b"IgammaGradA", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "IgammaGradA", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.igammac', 'igammac') def igammac(a, x, name=None): r"""Compute the upper regularized incomplete Gamma function `Q(a, x)`. The upper regularized incomplete Gamma function is defined as: \\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\\) where \\(Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt\\) is the upper incomplete Gama function. Note, above `P(a, x)` (`Igamma`) is the lower regularized complete Gamma function. Args: a: A `Tensor`. Must be one of the following types: `float32`, `float64`. x: A `Tensor`. Must have the same type as `a`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Igammac", a=a, x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Igammac", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Igammac", name, _ctx._post_execution_callbacks, a, x) return _result except _core._FallbackException: return igammac_eager_fallback( a, x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def igammac_eager_fallback(a, x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function igammac """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([a, x], _ctx) (a, x) = _inputs_T _inputs_flat = [a, x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Igammac", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Igammac", _inputs_flat, _attrs, _result, name) _result, = _result return _result def imag(input, Tout=_dtypes.float32, name=None): r"""Returns the imaginary part of a complex number. Given a tensor `input` of complex numbers, this operation returns a tensor of type `float` that is the imaginary part of each element in `input`. All elements in `input` must be complex numbers of the form \\(a + bj\\), where *a* is the real part and *b* is the imaginary part returned by this operation. For example: ``` # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] tf.imag(input) ==> [4.75, 5.75] ``` Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. Tout: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tout`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _, _, _op = _op_def_lib._apply_op_helper( "Imag", input=input, Tout=Tout, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tout", _op.get_attr("Tout")) _execute.record_gradient( "Imag", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Imag", name, _ctx._post_execution_callbacks, input, "Tout", Tout) return _result except _core._FallbackException: return imag_eager_fallback( input, Tout=Tout, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def imag_eager_fallback(input, Tout=_dtypes.float32, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function imag """ _ctx = ctx if ctx else _context.context() if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx, _dtypes.complex64) _inputs_flat = [input] _attrs = ("T", _attr_T, "Tout", Tout) _result = _execute.execute(b"Imag", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Imag", _inputs_flat, _attrs, _result, name) _result, = _result return _result def inv(x, name=None): r"""Computes the reciprocal of x element-wise. I.e., \\(y = 1 / x\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Inv", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Inv", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Inv", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return inv_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def inv_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function inv """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Inv", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Inv", _inputs_flat, _attrs, _result, name) _result, = _result return _result def inv_grad(y, dy, name=None): r"""Computes the gradient for the inverse of `x` wrt its input. Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` is the corresponding input gradient. Args: y: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. dy: A `Tensor`. Must have the same type as `y`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `y`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "InvGrad", y=y, dy=dy, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "InvGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "InvGrad", name, _ctx._post_execution_callbacks, y, dy) return _result except _core._FallbackException: return inv_grad_eager_fallback( y, dy, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def inv_grad_eager_fallback(y, dy, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function inv_grad """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([y, dy], _ctx) (y, dy) = _inputs_T _inputs_flat = [y, dy] _attrs = ("T", _attr_T) _result = _execute.execute(b"InvGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "InvGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('debugging.is_finite', 'is_finite') def is_finite(x, name=None): r"""Returns which elements of x are finite. @compatibility(numpy) Equivalent to np.isfinite @end_compatibility Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "IsFinite", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "IsFinite", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "IsFinite", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return is_finite_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def is_finite_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function is_finite """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"IsFinite", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "IsFinite", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('debugging.is_inf', 'is_inf') def is_inf(x, name=None): r"""Returns which elements of x are Inf. @compatibility(numpy) Equivalent to np.isinf @end_compatibility Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "IsInf", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "IsInf", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "IsInf", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return is_inf_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def is_inf_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function is_inf """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"IsInf", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "IsInf", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('debugging.is_nan', 'is_nan') def is_nan(x, name=None): r"""Returns which elements of x are NaN. @compatibility(numpy) Equivalent to np.isnan @end_compatibility Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "IsNan", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "IsNan", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "IsNan", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return is_nan_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def is_nan_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function is_nan """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"IsNan", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "IsNan", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.less', 'less') def less(x, y, name=None): r"""Returns the truth value of (x < y) element-wise. *NOTE*: `math.less` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Less", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Less", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Less", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return less_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def less_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function less """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Less", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Less", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.less_equal', 'less_equal') def less_equal(x, y, name=None): r"""Returns the truth value of (x <= y) element-wise. *NOTE*: `math.less_equal` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "LessEqual", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "LessEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "LessEqual", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return less_equal_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def less_equal_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function less_equal """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"LessEqual", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "LessEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.lgamma', 'lgamma') def lgamma(x, name=None): r"""Computes the log of the absolute value of `Gamma(x)` element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Lgamma", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Lgamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Lgamma", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return lgamma_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def lgamma_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function lgamma """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Lgamma", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Lgamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('lin_space', 'linspace') def lin_space(start, stop, num, name=None): r"""Generates values in an interval. A sequence of `num` evenly-spaced values are generated beginning at `start`. If `num > 1`, the values in the sequence increase by `stop - start / num - 1`, so that the last one is exactly `stop`. For example: ``` tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0] ``` Args: start: A `Tensor`. Must be one of the following types: `bfloat16`, `float32`, `float64`. 0-D tensor. First entry in the range. stop: A `Tensor`. Must have the same type as `start`. 0-D tensor. Last entry in the range. num: A `Tensor`. Must be one of the following types: `int32`, `int64`. 0-D tensor. Number of values to generate. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `start`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "LinSpace", start=start, stop=stop, num=num, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "LinSpace", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "LinSpace", name, _ctx._post_execution_callbacks, start, stop, num) return _result except _core._FallbackException: return lin_space_eager_fallback( start, stop, num, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def lin_space_eager_fallback(start, stop, num, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function lin_space """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([start, stop], _ctx) (start, stop) = _inputs_T _attr_Tidx, (num,) = _execute.args_to_matching_eager([num], _ctx, _dtypes.int32) _inputs_flat = [start, stop, num] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"LinSpace", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "LinSpace", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.log', 'log') def log(x, name=None): r"""Computes natural logarithm of x element-wise. I.e., \\(y = \log_e x\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Log", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Log", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Log", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return log_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def log_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function log """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Log", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Log", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.log1p', 'log1p') def log1p(x, name=None): r"""Computes natural logarithm of (1 + x) element-wise. I.e., \\(y = \log_e (1 + x)\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Log1p", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Log1p", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Log1p", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return log1p_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def log1p_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function log1p """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Log1p", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Log1p", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.logical_and', 'logical_and') def logical_and(x, y, name=None): r"""Returns the truth value of x AND y element-wise. *NOTE*: `math.logical_and` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor` of type `bool`. y: A `Tensor` of type `bool`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "LogicalAnd", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "LogicalAnd", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "LogicalAnd", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return logical_and_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def logical_and_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function logical_and """ _ctx = ctx if ctx else _context.context() x = _ops.convert_to_tensor(x, _dtypes.bool) y = _ops.convert_to_tensor(y, _dtypes.bool) _inputs_flat = [x, y] _attrs = None _result = _execute.execute(b"LogicalAnd", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "LogicalAnd", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.logical_not', 'logical_not') def logical_not(x, name=None): r"""Returns the truth value of NOT x element-wise. Args: x: A `Tensor` of type `bool`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "LogicalNot", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "LogicalNot", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "LogicalNot", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return logical_not_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def logical_not_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function logical_not """ _ctx = ctx if ctx else _context.context() x = _ops.convert_to_tensor(x, _dtypes.bool) _inputs_flat = [x] _attrs = None _result = _execute.execute(b"LogicalNot", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "LogicalNot", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.logical_or', 'logical_or') def logical_or(x, y, name=None): r"""Returns the truth value of x OR y element-wise. *NOTE*: `math.logical_or` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor` of type `bool`. y: A `Tensor` of type `bool`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "LogicalOr", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "LogicalOr", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "LogicalOr", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return logical_or_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def logical_or_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function logical_or """ _ctx = ctx if ctx else _context.context() x = _ops.convert_to_tensor(x, _dtypes.bool) y = _ops.convert_to_tensor(y, _dtypes.bool) _inputs_flat = [x, y] _attrs = None _result = _execute.execute(b"LogicalOr", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "LogicalOr", _inputs_flat, _attrs, _result, name) _result, = _result return _result def mat_mul(a, b, transpose_a=False, transpose_b=False, name=None): r"""Multiply the matrix "a" by the matrix "b". The inputs must be two-dimensional matrices and the inner dimension of "a" (after being transposed if transpose_a is true) must match the outer dimension of "b" (after being transposed if transposed_b is true). *Note*: The default kernel implementation for MatMul on GPUs uses cublas. Args: a: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `complex64`, `complex128`. b: A `Tensor`. Must have the same type as `a`. transpose_a: An optional `bool`. Defaults to `False`. If true, "a" is transposed before multiplication. transpose_b: An optional `bool`. Defaults to `False`. If true, "b" is transposed before multiplication. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") _, _, _op = _op_def_lib._apply_op_helper( "MatMul", a=a, b=b, transpose_a=transpose_a, transpose_b=transpose_b, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("transpose_a", _op.get_attr("transpose_a"), "transpose_b", _op.get_attr("transpose_b"), "T", _op.get_attr("T")) _execute.record_gradient( "MatMul", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "MatMul", name, _ctx._post_execution_callbacks, a, b, "transpose_a", transpose_a, "transpose_b", transpose_b) return _result except _core._FallbackException: return mat_mul_eager_fallback( a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def mat_mul_eager_fallback(a, b, transpose_a=False, transpose_b=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function mat_mul """ _ctx = ctx if ctx else _context.context() if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") _attr_T, _inputs_T = _execute.args_to_matching_eager([a, b], _ctx) (a, b) = _inputs_T _inputs_flat = [a, b] _attrs = ("transpose_a", transpose_a, "transpose_b", transpose_b, "T", _attr_T) _result = _execute.execute(b"MatMul", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "MatMul", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _max(input, axis, keep_dims=False, name=None): r"""Computes the maximum of elements across dimensions of a tensor. Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. The tensor to reduce. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. Must be in the range `[-rank(input), rank(input))`. keep_dims: An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _, _, _op = _op_def_lib._apply_op_helper( "Max", input=input, reduction_indices=axis, keep_dims=keep_dims, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("keep_dims", _op.get_attr("keep_dims"), "T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Max", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Max", name, _ctx._post_execution_callbacks, input, axis, "keep_dims", keep_dims) return _result except _core._FallbackException: return _max_eager_fallback( input, axis, keep_dims=keep_dims, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _max_eager_fallback(input, axis, keep_dims=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _max """ _ctx = ctx if ctx else _context.context() if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) _inputs_flat = [input, axis] _attrs = ("keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"Max", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Max", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.maximum', 'maximum') def maximum(x, y, name=None): r"""Returns the max of x and y (i.e. x > y ? x : y) element-wise. *NOTE*: `math.maximum` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Maximum", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Maximum", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Maximum", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return maximum_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def maximum_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function maximum """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Maximum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Maximum", _inputs_flat, _attrs, _result, name) _result, = _result return _result def mean(input, axis, keep_dims=False, name=None): r"""Computes the mean of elements across dimensions of a tensor. Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. The tensor to reduce. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. Must be in the range `[-rank(input), rank(input))`. keep_dims: An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _, _, _op = _op_def_lib._apply_op_helper( "Mean", input=input, reduction_indices=axis, keep_dims=keep_dims, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("keep_dims", _op.get_attr("keep_dims"), "T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Mean", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Mean", name, _ctx._post_execution_callbacks, input, axis, "keep_dims", keep_dims) return _result except _core._FallbackException: return mean_eager_fallback( input, axis, keep_dims=keep_dims, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def mean_eager_fallback(input, axis, keep_dims=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function mean """ _ctx = ctx if ctx else _context.context() if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) _inputs_flat = [input, axis] _attrs = ("keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"Mean", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Mean", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _min(input, axis, keep_dims=False, name=None): r"""Computes the minimum of elements across dimensions of a tensor. Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. The tensor to reduce. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. Must be in the range `[-rank(input), rank(input))`. keep_dims: An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _, _, _op = _op_def_lib._apply_op_helper( "Min", input=input, reduction_indices=axis, keep_dims=keep_dims, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("keep_dims", _op.get_attr("keep_dims"), "T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Min", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Min", name, _ctx._post_execution_callbacks, input, axis, "keep_dims", keep_dims) return _result except _core._FallbackException: return _min_eager_fallback( input, axis, keep_dims=keep_dims, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _min_eager_fallback(input, axis, keep_dims=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _min """ _ctx = ctx if ctx else _context.context() if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) _inputs_flat = [input, axis] _attrs = ("keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"Min", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Min", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.minimum', 'minimum') def minimum(x, y, name=None): r"""Returns the min of x and y (i.e. x < y ? x : y) element-wise. *NOTE*: `math.minimum` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Minimum", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Minimum", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Minimum", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return minimum_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def minimum_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function minimum """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Minimum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Minimum", _inputs_flat, _attrs, _result, name) _result, = _result return _result def mod(x, y, name=None): r"""Returns element-wise remainder of division. This emulates C semantics in that the result here is consistent with a truncating divide. E.g. `tf.truncatediv(x, y) * y + truncate_mod(x, y) = x`. *NOTE*: `Mod` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `int32`, `int64`, `half`, `half`, `bfloat16`, `float32`, `float64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Mod", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Mod", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Mod", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return mod_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def mod_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function mod """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Mod", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Mod", _inputs_flat, _attrs, _result, name) _result, = _result return _result def mul(x, y, name=None): r"""Returns x * y element-wise. *NOTE*: `Multiply` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Mul", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Mul", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Mul", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return mul_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def mul_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function mul """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Mul", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Mul", _inputs_flat, _attrs, _result, name) _result, = _result return _result def neg(x, name=None): r"""Computes numerical negative value element-wise. I.e., \\(y = -x\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Neg", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Neg", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Neg", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return neg_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def neg_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function neg """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Neg", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Neg", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.not_equal', 'not_equal') def not_equal(x, y, name=None): r"""Returns the truth value of (x != y) element-wise. *NOTE*: `math.not_equal` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `quint8`, `qint8`, `qint32`, `string`, `bool`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "NotEqual", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "NotEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "NotEqual", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return not_equal_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def not_equal_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function not_equal """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"NotEqual", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "NotEqual", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.polygamma', 'polygamma') def polygamma(a, x, name=None): r"""Compute the polygamma function \\(\psi^{(n)}(x)\\). The polygamma function is defined as: \\(\psi^{(n)}(x) = \frac{d^n}{dx^n} \psi(x)\\) where \\(\psi(x)\\) is the digamma function. Args: a: A `Tensor`. Must be one of the following types: `float32`, `float64`. x: A `Tensor`. Must have the same type as `a`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `a`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Polygamma", a=a, x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Polygamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Polygamma", name, _ctx._post_execution_callbacks, a, x) return _result except _core._FallbackException: return polygamma_eager_fallback( a, x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def polygamma_eager_fallback(a, x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function polygamma """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([a, x], _ctx) (a, x) = _inputs_T _inputs_flat = [a, x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Polygamma", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Polygamma", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _pow(x, y, name=None): r"""Computes the power of one value to another. Given a tensor `x` and a tensor `y`, this operation computes \\(x^y\\) for corresponding elements in `x` and `y`. For example: ``` # tensor 'x' is [[2, 2]], [3, 3]] # tensor 'y' is [[8, 16], [2, 3]] tf.pow(x, y) ==> [[256, 65536], [9, 27]] ``` Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `float32`, `half`, `float64`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Pow", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Pow", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Pow", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return _pow_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _pow_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _pow """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Pow", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Pow", _inputs_flat, _attrs, _result, name) _result, = _result return _result def prod(input, axis, keep_dims=False, name=None): r"""Computes the product of elements across dimensions of a tensor. Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. The tensor to reduce. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. Must be in the range `[-rank(input), rank(input))`. keep_dims: An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _, _, _op = _op_def_lib._apply_op_helper( "Prod", input=input, reduction_indices=axis, keep_dims=keep_dims, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("keep_dims", _op.get_attr("keep_dims"), "T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Prod", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Prod", name, _ctx._post_execution_callbacks, input, axis, "keep_dims", keep_dims) return _result except _core._FallbackException: return prod_eager_fallback( input, axis, keep_dims=keep_dims, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def prod_eager_fallback(input, axis, keep_dims=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function prod """ _ctx = ctx if ctx else _context.context() if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) _inputs_flat = [input, axis] _attrs = ("keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"Prod", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Prod", _inputs_flat, _attrs, _result, name) _result, = _result return _result _quantize_down_and_shrink_range_outputs = ["output", "output_min", "output_max"] _QuantizeDownAndShrinkRangeOutput = _collections.namedtuple( "QuantizeDownAndShrinkRange", _quantize_down_and_shrink_range_outputs) def quantize_down_and_shrink_range(input, input_min, input_max, out_type, name=None): r"""Convert the quantized 'input' tensor into a lower-precision 'output', using the actual distribution of the values to maximize the usage of the lower bit depth and adjusting the output min and max ranges accordingly. [input_min, input_max] are scalar floats that specify the range for the float interpretation of the 'input' data. For example, if input_min is -1.0f and input_max is 1.0f, and we are dealing with quint16 quantized data, then a 0 value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. This operator tries to squeeze as much precision as possible into an output with a lower bit depth by calculating the actual min and max values found in the data. For example, maybe that quint16 input has no values lower than 16,384 and none higher than 49,152. That means only half the range is actually needed, all the float interpretations are between -0.5f and 0.5f, so if we want to compress the data into a quint8 output, we can use that range rather than the theoretical -1.0f to 1.0f that is suggested by the input min and max. In practice, this is most useful for taking output from operations like QuantizedMatMul that can produce higher bit-depth outputs than their inputs and may have large potential output ranges, but in practice have a distribution of input values that only uses a small fraction of the possible range. By feeding that output into this operator, we can reduce it from 32 bits down to 8 with minimal loss of accuracy. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. input_min: A `Tensor` of type `float32`. The float value that the minimum quantized input value represents. input_max: A `Tensor` of type `float32`. The float value that the maximum quantized input value represents. out_type: A `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. The type of the output. Should be a lower bit depth than Tinput. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, output_min, output_max). output: A `Tensor` of type `out_type`. output_min: A `Tensor` of type `float32`. output_max: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: out_type = _execute.make_type(out_type, "out_type") _, _, _op = _op_def_lib._apply_op_helper( "QuantizeDownAndShrinkRange", input=input, input_min=input_min, input_max=input_max, out_type=out_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("Tinput", _op.get_attr("Tinput"), "out_type", _op.get_attr("out_type")) _execute.record_gradient( "QuantizeDownAndShrinkRange", _inputs_flat, _attrs, _result, name) _result = _QuantizeDownAndShrinkRangeOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "QuantizeDownAndShrinkRange", name, _ctx._post_execution_callbacks, input, input_min, input_max, "out_type", out_type) _result = _QuantizeDownAndShrinkRangeOutput._make(_result) return _result except _core._FallbackException: return quantize_down_and_shrink_range_eager_fallback( input, input_min, input_max, out_type=out_type, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def quantize_down_and_shrink_range_eager_fallback(input, input_min, input_max, out_type, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function quantize_down_and_shrink_range """ _ctx = ctx if ctx else _context.context() out_type = _execute.make_type(out_type, "out_type") _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], _ctx) input_min = _ops.convert_to_tensor(input_min, _dtypes.float32) input_max = _ops.convert_to_tensor(input_max, _dtypes.float32) _inputs_flat = [input, input_min, input_max] _attrs = ("Tinput", _attr_Tinput, "out_type", out_type) _result = _execute.execute(b"QuantizeDownAndShrinkRange", 3, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QuantizeDownAndShrinkRange", _inputs_flat, _attrs, _result, name) _result = _QuantizeDownAndShrinkRangeOutput._make(_result) return _result _quantized_add_outputs = ["z", "min_z", "max_z"] _QuantizedAddOutput = _collections.namedtuple( "QuantizedAdd", _quantized_add_outputs) def quantized_add(x, y, min_x, max_x, min_y, max_y, Toutput=_dtypes.qint32, name=None): r"""Returns x + y element-wise, working on quantized buffers. Args: x: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. y: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_x: A `Tensor` of type `float32`. The float value that the lowest quantized `x` value represents. max_x: A `Tensor` of type `float32`. The float value that the highest quantized `x` value represents. min_y: A `Tensor` of type `float32`. The float value that the lowest quantized `y` value represents. max_y: A `Tensor` of type `float32`. The float value that the highest quantized `y` value represents. Toutput: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (z, min_z, max_z). z: A `Tensor` of type `Toutput`. min_z: A `Tensor` of type `float32`. max_z: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") _, _, _op = _op_def_lib._apply_op_helper( "QuantizedAdd", x=x, y=y, min_x=min_x, max_x=max_x, min_y=min_y, max_y=max_y, Toutput=Toutput, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T1", _op.get_attr("T1"), "T2", _op.get_attr("T2"), "Toutput", _op.get_attr("Toutput")) _execute.record_gradient( "QuantizedAdd", _inputs_flat, _attrs, _result, name) _result = _QuantizedAddOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "QuantizedAdd", name, _ctx._post_execution_callbacks, x, y, min_x, max_x, min_y, max_y, "Toutput", Toutput) _result = _QuantizedAddOutput._make(_result) return _result except _core._FallbackException: return quantized_add_eager_fallback( x, y, min_x, max_x, min_y, max_y, Toutput=Toutput, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def quantized_add_eager_fallback(x, y, min_x, max_x, min_y, max_y, Toutput=_dtypes.qint32, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function quantized_add """ _ctx = ctx if ctx else _context.context() if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") _attr_T1, (x,) = _execute.args_to_matching_eager([x], _ctx) _attr_T2, (y,) = _execute.args_to_matching_eager([y], _ctx) min_x = _ops.convert_to_tensor(min_x, _dtypes.float32) max_x = _ops.convert_to_tensor(max_x, _dtypes.float32) min_y = _ops.convert_to_tensor(min_y, _dtypes.float32) max_y = _ops.convert_to_tensor(max_y, _dtypes.float32) _inputs_flat = [x, y, min_x, max_x, min_y, max_y] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Toutput", Toutput) _result = _execute.execute(b"QuantizedAdd", 3, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QuantizedAdd", _inputs_flat, _attrs, _result, name) _result = _QuantizedAddOutput._make(_result) return _result _quantized_mat_mul_outputs = ["out", "min_out", "max_out"] _QuantizedMatMulOutput = _collections.namedtuple( "QuantizedMatMul", _quantized_mat_mul_outputs) def quantized_mat_mul(a, b, min_a, max_a, min_b, max_b, Toutput=_dtypes.qint32, transpose_a=False, transpose_b=False, Tactivation=_dtypes.quint8, name=None): r"""Perform a quantized matrix multiplication of `a` by the matrix `b`. The inputs must be two-dimensional matrices and the inner dimension of `a` (after being transposed if `transpose_a` is non-zero) must match the outer dimension of `b` (after being transposed if `transposed_b` is non-zero). Args: a: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. Must be a two-dimensional tensor. b: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. Must be a two-dimensional tensor. min_a: A `Tensor` of type `float32`. The float value that the lowest quantized `a` value represents. max_a: A `Tensor` of type `float32`. The float value that the highest quantized `a` value represents. min_b: A `Tensor` of type `float32`. The float value that the lowest quantized `b` value represents. max_b: A `Tensor` of type `float32`. The float value that the highest quantized `b` value represents. Toutput: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. transpose_a: An optional `bool`. Defaults to `False`. If true, `a` is transposed before multiplication. transpose_b: An optional `bool`. Defaults to `False`. If true, `b` is transposed before multiplication. Tactivation: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.quint8`. The type of output produced by activation function following this operation. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (out, min_out, max_out). out: A `Tensor` of type `Toutput`. min_out: A `Tensor` of type `float32`. max_out: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if Tactivation is None: Tactivation = _dtypes.quint8 Tactivation = _execute.make_type(Tactivation, "Tactivation") _, _, _op = _op_def_lib._apply_op_helper( "QuantizedMatMul", a=a, b=b, min_a=min_a, max_a=max_a, min_b=min_b, max_b=max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, Tactivation=Tactivation, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T1", _op.get_attr("T1"), "T2", _op.get_attr("T2"), "Toutput", _op.get_attr("Toutput"), "transpose_a", _op.get_attr("transpose_a"), "transpose_b", _op.get_attr("transpose_b"), "Tactivation", _op.get_attr("Tactivation")) _execute.record_gradient( "QuantizedMatMul", _inputs_flat, _attrs, _result, name) _result = _QuantizedMatMulOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "QuantizedMatMul", name, _ctx._post_execution_callbacks, a, b, min_a, max_a, min_b, max_b, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "Tactivation", Tactivation) _result = _QuantizedMatMulOutput._make(_result) return _result except _core._FallbackException: return quantized_mat_mul_eager_fallback( a, b, min_a, max_a, min_b, max_b, Toutput=Toutput, transpose_a=transpose_a, transpose_b=transpose_b, Tactivation=Tactivation, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def quantized_mat_mul_eager_fallback(a, b, min_a, max_a, min_b, max_b, Toutput=_dtypes.qint32, transpose_a=False, transpose_b=False, Tactivation=_dtypes.quint8, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function quantized_mat_mul """ _ctx = ctx if ctx else _context.context() if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if Tactivation is None: Tactivation = _dtypes.quint8 Tactivation = _execute.make_type(Tactivation, "Tactivation") _attr_T1, (a,) = _execute.args_to_matching_eager([a], _ctx) _attr_T2, (b,) = _execute.args_to_matching_eager([b], _ctx) min_a = _ops.convert_to_tensor(min_a, _dtypes.float32) max_a = _ops.convert_to_tensor(max_a, _dtypes.float32) min_b = _ops.convert_to_tensor(min_b, _dtypes.float32) max_b = _ops.convert_to_tensor(max_b, _dtypes.float32) _inputs_flat = [a, b, min_a, max_a, min_b, max_b] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "Tactivation", Tactivation) _result = _execute.execute(b"QuantizedMatMul", 3, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QuantizedMatMul", _inputs_flat, _attrs, _result, name) _result = _QuantizedMatMulOutput._make(_result) return _result _quantized_mul_outputs = ["z", "min_z", "max_z"] _QuantizedMulOutput = _collections.namedtuple( "QuantizedMul", _quantized_mul_outputs) def quantized_mul(x, y, min_x, max_x, min_y, max_y, Toutput=_dtypes.qint32, name=None): r"""Returns x * y element-wise, working on quantized buffers. Args: x: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. y: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. min_x: A `Tensor` of type `float32`. The float value that the lowest quantized `x` value represents. max_x: A `Tensor` of type `float32`. The float value that the highest quantized `x` value represents. min_y: A `Tensor` of type `float32`. The float value that the lowest quantized `y` value represents. max_y: A `Tensor` of type `float32`. The float value that the highest quantized `y` value represents. Toutput: An optional `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to `tf.qint32`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (z, min_z, max_z). z: A `Tensor` of type `Toutput`. min_z: A `Tensor` of type `float32`. max_z: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") _, _, _op = _op_def_lib._apply_op_helper( "QuantizedMul", x=x, y=y, min_x=min_x, max_x=max_x, min_y=min_y, max_y=max_y, Toutput=Toutput, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T1", _op.get_attr("T1"), "T2", _op.get_attr("T2"), "Toutput", _op.get_attr("Toutput")) _execute.record_gradient( "QuantizedMul", _inputs_flat, _attrs, _result, name) _result = _QuantizedMulOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "QuantizedMul", name, _ctx._post_execution_callbacks, x, y, min_x, max_x, min_y, max_y, "Toutput", Toutput) _result = _QuantizedMulOutput._make(_result) return _result except _core._FallbackException: return quantized_mul_eager_fallback( x, y, min_x, max_x, min_y, max_y, Toutput=Toutput, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def quantized_mul_eager_fallback(x, y, min_x, max_x, min_y, max_y, Toutput=_dtypes.qint32, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function quantized_mul """ _ctx = ctx if ctx else _context.context() if Toutput is None: Toutput = _dtypes.qint32 Toutput = _execute.make_type(Toutput, "Toutput") _attr_T1, (x,) = _execute.args_to_matching_eager([x], _ctx) _attr_T2, (y,) = _execute.args_to_matching_eager([y], _ctx) min_x = _ops.convert_to_tensor(min_x, _dtypes.float32) max_x = _ops.convert_to_tensor(max_x, _dtypes.float32) min_y = _ops.convert_to_tensor(min_y, _dtypes.float32) max_y = _ops.convert_to_tensor(max_y, _dtypes.float32) _inputs_flat = [x, y, min_x, max_x, min_y, max_y] _attrs = ("T1", _attr_T1, "T2", _attr_T2, "Toutput", Toutput) _result = _execute.execute(b"QuantizedMul", 3, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QuantizedMul", _inputs_flat, _attrs, _result, name) _result = _QuantizedMulOutput._make(_result) return _result def _range(start, limit, delta, name=None): r"""Creates a sequence of numbers. This operation creates a sequence of numbers that begins at `start` and extends by increments of `delta` up to but not including `limit`. For example: ``` # 'start' is 3 # 'limit' is 18 # 'delta' is 3 tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15] ``` Args: start: A `Tensor`. Must be one of the following types: `bfloat16`, `float32`, `float64`, `int32`, `int64`. 0-D (scalar). First entry in the sequence. limit: A `Tensor`. Must have the same type as `start`. 0-D (scalar). Upper limit of sequence, exclusive. delta: A `Tensor`. Must have the same type as `start`. 0-D (scalar). Optional. Default is 1. Number that increments `start`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `start`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Range", start=start, limit=limit, delta=delta, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Range", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Range", name, _ctx._post_execution_callbacks, start, limit, delta) return _result except _core._FallbackException: return _range_eager_fallback( start, limit, delta, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _range_eager_fallback(start, limit, delta, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _range """ _ctx = ctx if ctx else _context.context() _attr_Tidx, _inputs_Tidx = _execute.args_to_matching_eager([start, limit, delta], _ctx, _dtypes.int32) (start, limit, delta) = _inputs_Tidx _inputs_flat = [start, limit, delta] _attrs = ("Tidx", _attr_Tidx) _result = _execute.execute(b"Range", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Range", _inputs_flat, _attrs, _result, name) _result, = _result return _result def real(input, Tout=_dtypes.float32, name=None): r"""Returns the real part of a complex number. Given a tensor `input` of complex numbers, this operation returns a tensor of type `float` that is the real part of each element in `input`. All elements in `input` must be complex numbers of the form \\(a + bj\\), where *a* is the real part returned by this operation and *b* is the imaginary part. For example: ``` # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] tf.real(input) ==> [-2.25, 3.25] ``` Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. Tout: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tout`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _, _, _op = _op_def_lib._apply_op_helper( "Real", input=input, Tout=Tout, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tout", _op.get_attr("Tout")) _execute.record_gradient( "Real", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Real", name, _ctx._post_execution_callbacks, input, "Tout", Tout) return _result except _core._FallbackException: return real_eager_fallback( input, Tout=Tout, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def real_eager_fallback(input, Tout=_dtypes.float32, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function real """ _ctx = ctx if ctx else _context.context() if Tout is None: Tout = _dtypes.float32 Tout = _execute.make_type(Tout, "Tout") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx, _dtypes.complex64) _inputs_flat = [input] _attrs = ("T", _attr_T, "Tout", Tout) _result = _execute.execute(b"Real", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Real", _inputs_flat, _attrs, _result, name) _result, = _result return _result def real_div(x, y, name=None): r"""Returns x / y element-wise for real types. If `x` and `y` are reals, this will return the floating-point division. *NOTE*: `Div` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "RealDiv", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "RealDiv", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "RealDiv", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return real_div_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def real_div_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function real_div """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"RealDiv", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "RealDiv", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.reciprocal', 'reciprocal') def reciprocal(x, name=None): r"""Computes the reciprocal of x element-wise. I.e., \\(y = 1 / x\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Reciprocal", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Reciprocal", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Reciprocal", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return reciprocal_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def reciprocal_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function reciprocal """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Reciprocal", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Reciprocal", _inputs_flat, _attrs, _result, name) _result, = _result return _result def reciprocal_grad(y, dy, name=None): r"""Computes the gradient for the inverse of `x` wrt its input. Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` is the corresponding input gradient. Args: y: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. dy: A `Tensor`. Must have the same type as `y`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `y`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "ReciprocalGrad", y=y, dy=dy, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "ReciprocalGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "ReciprocalGrad", name, _ctx._post_execution_callbacks, y, dy) return _result except _core._FallbackException: return reciprocal_grad_eager_fallback( y, dy, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def reciprocal_grad_eager_fallback(y, dy, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function reciprocal_grad """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([y, dy], _ctx) (y, dy) = _inputs_T _inputs_flat = [y, dy] _attrs = ("T", _attr_T) _result = _execute.execute(b"ReciprocalGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "ReciprocalGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result _requantization_range_outputs = ["output_min", "output_max"] _RequantizationRangeOutput = _collections.namedtuple( "RequantizationRange", _requantization_range_outputs) def requantization_range(input, input_min, input_max, name=None): r"""Given a quantized tensor described by (input, input_min, input_max), outputs a range that covers the actual values present in that tensor. This op is typically used to produce the requested_output_min and requested_output_max for Requantize. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. input_min: A `Tensor` of type `float32`. The float value that the minimum quantized input value represents. input_max: A `Tensor` of type `float32`. The float value that the maximum quantized input value represents. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output_min, output_max). output_min: A `Tensor` of type `float32`. output_max: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "RequantizationRange", input=input, input_min=input_min, input_max=input_max, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("Tinput", _op.get_attr("Tinput")) _execute.record_gradient( "RequantizationRange", _inputs_flat, _attrs, _result, name) _result = _RequantizationRangeOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "RequantizationRange", name, _ctx._post_execution_callbacks, input, input_min, input_max) _result = _RequantizationRangeOutput._make(_result) return _result except _core._FallbackException: return requantization_range_eager_fallback( input, input_min, input_max, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def requantization_range_eager_fallback(input, input_min, input_max, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function requantization_range """ _ctx = ctx if ctx else _context.context() _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], _ctx) input_min = _ops.convert_to_tensor(input_min, _dtypes.float32) input_max = _ops.convert_to_tensor(input_max, _dtypes.float32) _inputs_flat = [input, input_min, input_max] _attrs = ("Tinput", _attr_Tinput) _result = _execute.execute(b"RequantizationRange", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "RequantizationRange", _inputs_flat, _attrs, _result, name) _result = _RequantizationRangeOutput._make(_result) return _result _requantize_outputs = ["output", "output_min", "output_max"] _RequantizeOutput = _collections.namedtuple( "Requantize", _requantize_outputs) def requantize(input, input_min, input_max, requested_output_min, requested_output_max, out_type, name=None): r"""Convert the quantized 'input' tensor into a lower-precision 'output', using the output range specified with 'requested_output_min' and 'requested_output_max'. [input_min, input_max] are scalar floats that specify the range for the float interpretation of the 'input' data. For example, if input_min is -1.0f and input_max is 1.0f, and we are dealing with quint16 quantized data, then a 0 value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. Args: input: A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. input_min: A `Tensor` of type `float32`. The float value that the minimum quantized input value represents. input_max: A `Tensor` of type `float32`. The float value that the maximum quantized input value represents. requested_output_min: A `Tensor` of type `float32`. The float value that the minimum quantized output value represents. requested_output_max: A `Tensor` of type `float32`. The float value that the maximum quantized output value represents. out_type: A `tf.DType` from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. The type of the output. Should be a lower bit depth than Tinput. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output, output_min, output_max). output: A `Tensor` of type `out_type`. output_min: A `Tensor` of type `float32`. output_max: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: out_type = _execute.make_type(out_type, "out_type") _, _, _op = _op_def_lib._apply_op_helper( "Requantize", input=input, input_min=input_min, input_max=input_max, requested_output_min=requested_output_min, requested_output_max=requested_output_max, out_type=out_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("Tinput", _op.get_attr("Tinput"), "out_type", _op.get_attr("out_type")) _execute.record_gradient( "Requantize", _inputs_flat, _attrs, _result, name) _result = _RequantizeOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Requantize", name, _ctx._post_execution_callbacks, input, input_min, input_max, requested_output_min, requested_output_max, "out_type", out_type) _result = _RequantizeOutput._make(_result) return _result except _core._FallbackException: return requantize_eager_fallback( input, input_min, input_max, requested_output_min, requested_output_max, out_type=out_type, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def requantize_eager_fallback(input, input_min, input_max, requested_output_min, requested_output_max, out_type, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function requantize """ _ctx = ctx if ctx else _context.context() out_type = _execute.make_type(out_type, "out_type") _attr_Tinput, (input,) = _execute.args_to_matching_eager([input], _ctx) input_min = _ops.convert_to_tensor(input_min, _dtypes.float32) input_max = _ops.convert_to_tensor(input_max, _dtypes.float32) requested_output_min = _ops.convert_to_tensor(requested_output_min, _dtypes.float32) requested_output_max = _ops.convert_to_tensor(requested_output_max, _dtypes.float32) _inputs_flat = [input, input_min, input_max, requested_output_min, requested_output_max] _attrs = ("Tinput", _attr_Tinput, "out_type", out_type) _result = _execute.execute(b"Requantize", 3, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Requantize", _inputs_flat, _attrs, _result, name) _result = _RequantizeOutput._make(_result) return _result @tf_export('math.rint', 'rint') def rint(x, name=None): r"""Returns element-wise integer closest to x. If the result is midway between two representable values, the even representable is chosen. For example: ``` rint(-1.5) ==> -2.0 rint(0.5000001) ==> 1.0 rint([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) ==> [-2., -2., -0., 0., 2., 2., 2.] ``` Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Rint", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Rint", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Rint", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return rint_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def rint_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function rint """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Rint", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Rint", _inputs_flat, _attrs, _result, name) _result, = _result return _result def round(x, name=None): r"""Rounds the values of a tensor to the nearest integer, element-wise. Rounds half to even. Also known as bankers rounding. If you want to round according to the current system rounding mode use std::cint. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Round", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Round", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Round", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return round_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def round_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function round """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Round", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Round", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.rsqrt', 'rsqrt') def rsqrt(x, name=None): r"""Computes reciprocal of square root of x element-wise. I.e., \\(y = 1 / \sqrt{x}\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Rsqrt", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Rsqrt", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Rsqrt", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return rsqrt_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def rsqrt_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function rsqrt """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Rsqrt", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Rsqrt", _inputs_flat, _attrs, _result, name) _result, = _result return _result def rsqrt_grad(y, dy, name=None): r"""Computes the gradient for the rsqrt of `x` wrt its input. Specifically, `grad = dy * -0.5 * y^3`, where `y = rsqrt(x)`, and `dy` is the corresponding input gradient. Args: y: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. dy: A `Tensor`. Must have the same type as `y`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `y`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "RsqrtGrad", y=y, dy=dy, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "RsqrtGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "RsqrtGrad", name, _ctx._post_execution_callbacks, y, dy) return _result except _core._FallbackException: return rsqrt_grad_eager_fallback( y, dy, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def rsqrt_grad_eager_fallback(y, dy, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function rsqrt_grad """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([y, dy], _ctx) (y, dy) = _inputs_T _inputs_flat = [y, dy] _attrs = ("T", _attr_T) _result = _execute.execute(b"RsqrtGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "RsqrtGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.segment_max', 'segment_max') def segment_max(data, segment_ids, name=None): r"""Computes the maximum along segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Computes a tensor such that \\(output_i = \max_j(data_j)\\) where `max` is over `j` such that `segment_ids[j] == i`. If the max is empty for a given segment ID `i`, `output[i] = 0`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/SegmentMax.png" alt> </div> Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SegmentMax", data=data, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices")) _execute.record_gradient( "SegmentMax", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SegmentMax", name, _ctx._post_execution_callbacks, data, segment_ids) return _result except _core._FallbackException: return segment_max_eager_fallback( data, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def segment_max_eager_fallback(data, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function segment_max """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _inputs_flat = [data, segment_ids] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices) _result = _execute.execute(b"SegmentMax", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SegmentMax", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.segment_mean', 'segment_mean') def segment_mean(data, segment_ids, name=None): r"""Computes the mean along segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Computes a tensor such that \\(output_i = \frac{\sum_j data_j}{N}\\) where `mean` is over `j` such that `segment_ids[j] == i` and `N` is the total number of values summed. If the mean is empty for a given segment ID `i`, `output[i] = 0`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/SegmentMean.png" alt> </div> Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SegmentMean", data=data, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices")) _execute.record_gradient( "SegmentMean", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SegmentMean", name, _ctx._post_execution_callbacks, data, segment_ids) return _result except _core._FallbackException: return segment_mean_eager_fallback( data, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def segment_mean_eager_fallback(data, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function segment_mean """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _inputs_flat = [data, segment_ids] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices) _result = _execute.execute(b"SegmentMean", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SegmentMean", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.segment_min', 'segment_min') def segment_min(data, segment_ids, name=None): r"""Computes the minimum along segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Computes a tensor such that \\(output_i = \min_j(data_j)\\) where `min` is over `j` such that `segment_ids[j] == i`. If the min is empty for a given segment ID `i`, `output[i] = 0`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/SegmentMin.png" alt> </div> Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SegmentMin", data=data, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices")) _execute.record_gradient( "SegmentMin", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SegmentMin", name, _ctx._post_execution_callbacks, data, segment_ids) return _result except _core._FallbackException: return segment_min_eager_fallback( data, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def segment_min_eager_fallback(data, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function segment_min """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _inputs_flat = [data, segment_ids] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices) _result = _execute.execute(b"SegmentMin", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SegmentMin", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.segment_prod', 'segment_prod') def segment_prod(data, segment_ids, name=None): r"""Computes the product along segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Computes a tensor such that \\(output_i = \prod_j data_j\\) where the product is over `j` such that `segment_ids[j] == i`. If the product is empty for a given segment ID `i`, `output[i] = 1`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/SegmentProd.png" alt> </div> Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SegmentProd", data=data, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices")) _execute.record_gradient( "SegmentProd", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SegmentProd", name, _ctx._post_execution_callbacks, data, segment_ids) return _result except _core._FallbackException: return segment_prod_eager_fallback( data, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def segment_prod_eager_fallback(data, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function segment_prod """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _inputs_flat = [data, segment_ids] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices) _result = _execute.execute(b"SegmentProd", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SegmentProd", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.segment_sum', 'segment_sum') def segment_sum(data, segment_ids, name=None): r"""Computes the sum along segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Computes a tensor such that \\(output_i = \sum_j data_j\\) where sum is over `j` such that `segment_ids[j] == i`. If the sum is empty for a given segment ID `i`, `output[i] = 0`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/SegmentSum.png" alt> </div> Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SegmentSum", data=data, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices")) _execute.record_gradient( "SegmentSum", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SegmentSum", name, _ctx._post_execution_callbacks, data, segment_ids) return _result except _core._FallbackException: return segment_sum_eager_fallback( data, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def segment_sum_eager_fallback(data, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function segment_sum """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _inputs_flat = [data, segment_ids] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices) _result = _execute.execute(b"SegmentSum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SegmentSum", _inputs_flat, _attrs, _result, name) _result, = _result return _result def select(condition, x, y, name=None): r"""Selects elements from `x` or `y`, depending on `condition`. The `x`, and `y` tensors must all have the same shape, and the output will also have that shape. The `condition` tensor must be a scalar if `x` and `y` are scalars. If `x` and `y` are vectors or higher rank, then `condition` must be either a scalar, a vector with size matching the first dimension of `x`, or must have the same shape as `x`. The `condition` tensor acts as a mask that chooses, based on the value at each element, whether the corresponding element / row in the output should be taken from `x` (if true) or `y` (if false). If `condition` is a vector and `x` and `y` are higher rank matrices, then it chooses which row (outer dimension) to copy from `x` and `y`. If `condition` has the same shape as `x` and `y`, then it chooses which element to copy from `x` and `y`. For example: ```python # 'condition' tensor is [[True, False] # [False, True]] # 't' is [[1, 2], # [3, 4]] # 'e' is [[5, 6], # [7, 8]] select(condition, t, e) # => [[1, 6], [7, 4]] # 'condition' tensor is [True, False] # 't' is [[1, 2], # [3, 4]] # 'e' is [[5, 6], # [7, 8]] select(condition, t, e) ==> [[1, 2], [7, 8]] ``` Args: condition: A `Tensor` of type `bool`. x: A `Tensor` which may have the same shape as `condition`. If `condition` is rank 1, `x` may have higher rank, but its first dimension must match the size of `condition`. y: A `Tensor` with the same type and shape as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `t`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Select", condition=condition, t=x, e=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Select", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Select", name, _ctx._post_execution_callbacks, condition, x, y) return _result except _core._FallbackException: return select_eager_fallback( condition, x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def select_eager_fallback(condition, x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function select """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T condition = _ops.convert_to_tensor(condition, _dtypes.bool) _inputs_flat = [condition, x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Select", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Select", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sigmoid(x, name=None): r"""Computes sigmoid of `x` element-wise. Specifically, `y = 1 / (1 + exp(-x))`. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Sigmoid", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Sigmoid", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Sigmoid", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return sigmoid_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sigmoid_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sigmoid """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Sigmoid", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Sigmoid", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sigmoid_grad(y, dy, name=None): r"""Computes the gradient of the sigmoid of `x` wrt its input. Specifically, `grad = dy * y * (1 - y)`, where `y = sigmoid(x)`, and `dy` is the corresponding input gradient. Args: y: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. dy: A `Tensor`. Must have the same type as `y`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `y`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SigmoidGrad", y=y, dy=dy, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "SigmoidGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SigmoidGrad", name, _ctx._post_execution_callbacks, y, dy) return _result except _core._FallbackException: return sigmoid_grad_eager_fallback( y, dy, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sigmoid_grad_eager_fallback(y, dy, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sigmoid_grad """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([y, dy], _ctx) (y, dy) = _inputs_T _inputs_flat = [y, dy] _attrs = ("T", _attr_T) _result = _execute.execute(b"SigmoidGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SigmoidGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sign(x, name=None): r"""Returns an element-wise indication of the sign of a number. `y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`. For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Sign", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Sign", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Sign", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return sign_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sign_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sign """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Sign", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Sign", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.sin', 'sin') def sin(x, name=None): r"""Computes sin of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Sin", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Sin", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Sin", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return sin_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sin_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sin """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Sin", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Sin", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.sinh', 'sinh') def sinh(x, name=None): r"""Computes hyperbolic sine of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Sinh", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Sinh", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Sinh", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return sinh_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sinh_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sinh """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Sinh", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Sinh", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_mat_mul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None): r"""Multiply matrix "a" by matrix "b". The inputs must be two-dimensional matrices and the inner dimension of "a" must match the outer dimension of "b". Both "a" and "b" must be `Tensor`s not `SparseTensor`s. This op is optimized for the case where at least one of "a" or "b" is sparse, in the sense that they have a large proportion of zero values. The breakeven for using this versus a dense matrix multiply on one platform was 30% zero values in the sparse matrix. The gradient computation of this operation will only take advantage of sparsity in the input gradient when that gradient comes from a Relu. Args: a: A `Tensor`. Must be one of the following types: `float32`, `bfloat16`. b: A `Tensor`. Must be one of the following types: `float32`, `bfloat16`. transpose_a: An optional `bool`. Defaults to `False`. transpose_b: An optional `bool`. Defaults to `False`. a_is_sparse: An optional `bool`. Defaults to `False`. b_is_sparse: An optional `bool`. Defaults to `False`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if a_is_sparse is None: a_is_sparse = False a_is_sparse = _execute.make_bool(a_is_sparse, "a_is_sparse") if b_is_sparse is None: b_is_sparse = False b_is_sparse = _execute.make_bool(b_is_sparse, "b_is_sparse") _, _, _op = _op_def_lib._apply_op_helper( "SparseMatMul", a=a, b=b, transpose_a=transpose_a, transpose_b=transpose_b, a_is_sparse=a_is_sparse, b_is_sparse=b_is_sparse, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("transpose_a", _op.get_attr("transpose_a"), "transpose_b", _op.get_attr("transpose_b"), "a_is_sparse", _op.get_attr("a_is_sparse"), "b_is_sparse", _op.get_attr("b_is_sparse"), "Ta", _op.get_attr("Ta"), "Tb", _op.get_attr("Tb")) _execute.record_gradient( "SparseMatMul", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseMatMul", name, _ctx._post_execution_callbacks, a, b, "transpose_a", transpose_a, "transpose_b", transpose_b, "a_is_sparse", a_is_sparse, "b_is_sparse", b_is_sparse) return _result except _core._FallbackException: return sparse_mat_mul_eager_fallback( a, b, transpose_a=transpose_a, transpose_b=transpose_b, a_is_sparse=a_is_sparse, b_is_sparse=b_is_sparse, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_mat_mul_eager_fallback(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_mat_mul """ _ctx = ctx if ctx else _context.context() if transpose_a is None: transpose_a = False transpose_a = _execute.make_bool(transpose_a, "transpose_a") if transpose_b is None: transpose_b = False transpose_b = _execute.make_bool(transpose_b, "transpose_b") if a_is_sparse is None: a_is_sparse = False a_is_sparse = _execute.make_bool(a_is_sparse, "a_is_sparse") if b_is_sparse is None: b_is_sparse = False b_is_sparse = _execute.make_bool(b_is_sparse, "b_is_sparse") _attr_Ta, (a,) = _execute.args_to_matching_eager([a], _ctx, _dtypes.float32) _attr_Tb, (b,) = _execute.args_to_matching_eager([b], _ctx, _dtypes.float32) _inputs_flat = [a, b] _attrs = ("transpose_a", transpose_a, "transpose_b", transpose_b, "a_is_sparse", a_is_sparse, "b_is_sparse", b_is_sparse, "Ta", _attr_Ta, "Tb", _attr_Tb) _result = _execute.execute(b"SparseMatMul", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseMatMul", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_mean(data, indices, segment_ids, name=None): r"""Computes the mean along sparse segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Like `SegmentMean`, but `segment_ids` can have rank less than `data`'s first dimension, selecting a subset of dimension 0, specified by `indices`. Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor. Has same rank as `segment_ids`. segment_ids: A `Tensor` of type `int32`. A 1-D tensor. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentMean", data=data, indices=indices, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "SparseSegmentMean", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentMean", name, _ctx._post_execution_callbacks, data, indices, segment_ids) return _result except _core._FallbackException: return sparse_segment_mean_eager_fallback( data, indices, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_mean_eager_fallback(data, indices, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_mean """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) _inputs_flat = [data, indices, segment_ids] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"SparseSegmentMean", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentMean", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_mean_grad(grad, indices, segment_ids, output_dim0, name=None): r"""Computes gradients for SparseSegmentMean. Returns tensor "output" with same shape as grad, except for dimension 0 whose value is output_dim0. Args: grad: A `Tensor`. Must be one of the following types: `float32`, `float64`. gradient propagated to the SparseSegmentMean op. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. indices passed to the corresponding SparseSegmentMean op. segment_ids: A `Tensor` of type `int32`. segment_ids passed to the corresponding SparseSegmentMean op. output_dim0: A `Tensor` of type `int32`. dimension 0 of "data" passed to SparseSegmentMean op. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `grad`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentMeanGrad", grad=grad, indices=indices, segment_ids=segment_ids, output_dim0=output_dim0, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "SparseSegmentMeanGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentMeanGrad", name, _ctx._post_execution_callbacks, grad, indices, segment_ids, output_dim0) return _result except _core._FallbackException: return sparse_segment_mean_grad_eager_fallback( grad, indices, segment_ids, output_dim0, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_mean_grad_eager_fallback(grad, indices, segment_ids, output_dim0, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_mean_grad """ _ctx = ctx if ctx else _context.context() _attr_T, (grad,) = _execute.args_to_matching_eager([grad], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) output_dim0 = _ops.convert_to_tensor(output_dim0, _dtypes.int32) _inputs_flat = [grad, indices, segment_ids, output_dim0] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"SparseSegmentMeanGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentMeanGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_mean_with_num_segments(data, indices, segment_ids, num_segments, name=None): r"""Computes the mean along sparse segments of a tensor. Like `SparseSegmentMean`, but allows missing ids in `segment_ids`. If an id is misisng, the `output` tensor at that position will be zeroed. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor. Has same rank as `segment_ids`. segment_ids: A `Tensor` of type `int32`. A 1-D tensor. Values should be sorted and can be repeated. num_segments: A `Tensor`. Must be one of the following types: `int32`, `int64`. Should equal the number of distinct segment IDs. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentMeanWithNumSegments", data=data, indices=indices, segment_ids=segment_ids, num_segments=num_segments, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx"), "Tnumsegments", _op.get_attr("Tnumsegments")) _execute.record_gradient( "SparseSegmentMeanWithNumSegments", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentMeanWithNumSegments", name, _ctx._post_execution_callbacks, data, indices, segment_ids, num_segments) return _result except _core._FallbackException: return sparse_segment_mean_with_num_segments_eager_fallback( data, indices, segment_ids, num_segments, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_mean_with_num_segments_eager_fallback(data, indices, segment_ids, num_segments, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_mean_with_num_segments """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) _attr_Tnumsegments, (num_segments,) = _execute.args_to_matching_eager([num_segments], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) _inputs_flat = [data, indices, segment_ids, num_segments] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx, "Tnumsegments", _attr_Tnumsegments) _result = _execute.execute(b"SparseSegmentMeanWithNumSegments", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentMeanWithNumSegments", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_sqrt_n(data, indices, segment_ids, name=None): r"""Computes the sum along sparse segments of a tensor divided by the sqrt of N. N is the size of the segment being reduced. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor. Has same rank as `segment_ids`. segment_ids: A `Tensor` of type `int32`. A 1-D tensor. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentSqrtN", data=data, indices=indices, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "SparseSegmentSqrtN", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentSqrtN", name, _ctx._post_execution_callbacks, data, indices, segment_ids) return _result except _core._FallbackException: return sparse_segment_sqrt_n_eager_fallback( data, indices, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_sqrt_n_eager_fallback(data, indices, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_sqrt_n """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) _inputs_flat = [data, indices, segment_ids] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"SparseSegmentSqrtN", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentSqrtN", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_sqrt_n_grad(grad, indices, segment_ids, output_dim0, name=None): r"""Computes gradients for SparseSegmentSqrtN. Returns tensor "output" with same shape as grad, except for dimension 0 whose value is output_dim0. Args: grad: A `Tensor`. Must be one of the following types: `float32`, `float64`. gradient propagated to the SparseSegmentSqrtN op. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. indices passed to the corresponding SparseSegmentSqrtN op. segment_ids: A `Tensor` of type `int32`. segment_ids passed to the corresponding SparseSegmentSqrtN op. output_dim0: A `Tensor` of type `int32`. dimension 0 of "data" passed to SparseSegmentSqrtN op. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `grad`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentSqrtNGrad", grad=grad, indices=indices, segment_ids=segment_ids, output_dim0=output_dim0, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "SparseSegmentSqrtNGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentSqrtNGrad", name, _ctx._post_execution_callbacks, grad, indices, segment_ids, output_dim0) return _result except _core._FallbackException: return sparse_segment_sqrt_n_grad_eager_fallback( grad, indices, segment_ids, output_dim0, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_sqrt_n_grad_eager_fallback(grad, indices, segment_ids, output_dim0, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_sqrt_n_grad """ _ctx = ctx if ctx else _context.context() _attr_T, (grad,) = _execute.args_to_matching_eager([grad], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) output_dim0 = _ops.convert_to_tensor(output_dim0, _dtypes.int32) _inputs_flat = [grad, indices, segment_ids, output_dim0] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"SparseSegmentSqrtNGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentSqrtNGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_sqrt_n_with_num_segments(data, indices, segment_ids, num_segments, name=None): r"""Computes the sum along sparse segments of a tensor divided by the sqrt of N. N is the size of the segment being reduced. Like `SparseSegmentSqrtN`, but allows missing ids in `segment_ids`. If an id is misisng, the `output` tensor at that position will be zeroed. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor. Has same rank as `segment_ids`. segment_ids: A `Tensor` of type `int32`. A 1-D tensor. Values should be sorted and can be repeated. num_segments: A `Tensor`. Must be one of the following types: `int32`, `int64`. Should equal the number of distinct segment IDs. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentSqrtNWithNumSegments", data=data, indices=indices, segment_ids=segment_ids, num_segments=num_segments, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx"), "Tnumsegments", _op.get_attr("Tnumsegments")) _execute.record_gradient( "SparseSegmentSqrtNWithNumSegments", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentSqrtNWithNumSegments", name, _ctx._post_execution_callbacks, data, indices, segment_ids, num_segments) return _result except _core._FallbackException: return sparse_segment_sqrt_n_with_num_segments_eager_fallback( data, indices, segment_ids, num_segments, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_sqrt_n_with_num_segments_eager_fallback(data, indices, segment_ids, num_segments, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_sqrt_n_with_num_segments """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) _attr_Tnumsegments, (num_segments,) = _execute.args_to_matching_eager([num_segments], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) _inputs_flat = [data, indices, segment_ids, num_segments] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx, "Tnumsegments", _attr_Tnumsegments) _result = _execute.execute(b"SparseSegmentSqrtNWithNumSegments", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentSqrtNWithNumSegments", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_sum(data, indices, segment_ids, name=None): r"""Computes the sum along sparse segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Like `SegmentSum`, but `segment_ids` can have rank less than `data`'s first dimension, selecting a subset of dimension 0, specified by `indices`. For example: ```python c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) # Select two rows, one segment. tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0])) # => [[0 0 0 0]] # Select two rows, two segment. tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1])) # => [[ 1 2 3 4] # [-1 -2 -3 -4]] # Select all rows, two segments. tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1])) # => [[0 0 0 0] # [5 6 7 8]] # Which is equivalent to: tf.segment_sum(c, tf.constant([0, 0, 1])) ``` Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor. Has same rank as `segment_ids`. segment_ids: A `Tensor` of type `int32`. A 1-D tensor. Values should be sorted and can be repeated. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentSum", data=data, indices=indices, segment_ids=segment_ids, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "SparseSegmentSum", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentSum", name, _ctx._post_execution_callbacks, data, indices, segment_ids) return _result except _core._FallbackException: return sparse_segment_sum_eager_fallback( data, indices, segment_ids, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_sum_eager_fallback(data, indices, segment_ids, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_sum """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) _inputs_flat = [data, indices, segment_ids] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"SparseSegmentSum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentSum", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_segment_sum_with_num_segments(data, indices, segment_ids, num_segments, name=None): r"""Computes the sum along sparse segments of a tensor. Like `SparseSegmentSum`, but allows missing ids in `segment_ids`. If an id is misisng, the `output` tensor at that position will be zeroed. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. For example: ```python c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) tf.sparse_segment_sum_with_num_segments( c, tf.constant([0, 1]), tf.constant([0, 0]), num_segments=3) # => [[0 0 0 0] # [0 0 0 0] # [0 0 0 0]] tf.sparse_segment_sum_with_num_segments(c, tf.constant([0, 1]), tf.constant([0, 2], num_segments=4)) # => [[ 1 2 3 4] # [ 0 0 0 0] # [-1 -2 -3 -4] # [ 0 0 0 0]] ``` Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor. Has same rank as `segment_ids`. segment_ids: A `Tensor` of type `int32`. A 1-D tensor. Values should be sorted and can be repeated. num_segments: A `Tensor`. Must be one of the following types: `int32`, `int64`. Should equal the number of distinct segment IDs. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SparseSegmentSumWithNumSegments", data=data, indices=indices, segment_ids=segment_ids, num_segments=num_segments, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx"), "Tnumsegments", _op.get_attr("Tnumsegments")) _execute.record_gradient( "SparseSegmentSumWithNumSegments", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SparseSegmentSumWithNumSegments", name, _ctx._post_execution_callbacks, data, indices, segment_ids, num_segments) return _result except _core._FallbackException: return sparse_segment_sum_with_num_segments_eager_fallback( data, indices, segment_ids, num_segments, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sparse_segment_sum_with_num_segments_eager_fallback(data, indices, segment_ids, num_segments, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sparse_segment_sum_with_num_segments """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tidx, (indices,) = _execute.args_to_matching_eager([indices], _ctx, _dtypes.int32) _attr_Tnumsegments, (num_segments,) = _execute.args_to_matching_eager([num_segments], _ctx, _dtypes.int32) segment_ids = _ops.convert_to_tensor(segment_ids, _dtypes.int32) _inputs_flat = [data, indices, segment_ids, num_segments] _attrs = ("T", _attr_T, "Tidx", _attr_Tidx, "Tnumsegments", _attr_Tnumsegments) _result = _execute.execute(b"SparseSegmentSumWithNumSegments", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SparseSegmentSumWithNumSegments", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sqrt(x, name=None): r"""Computes square root of x element-wise. I.e., \\(y = \sqrt{x} = x^{1/2}\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Sqrt", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Sqrt", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Sqrt", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return sqrt_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sqrt_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sqrt """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Sqrt", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Sqrt", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sqrt_grad(y, dy, name=None): r"""Computes the gradient for the sqrt of `x` wrt its input. Specifically, `grad = dy * 0.5 / y`, where `y = sqrt(x)`, and `dy` is the corresponding input gradient. Args: y: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. dy: A `Tensor`. Must have the same type as `y`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `y`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SqrtGrad", y=y, dy=dy, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "SqrtGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SqrtGrad", name, _ctx._post_execution_callbacks, y, dy) return _result except _core._FallbackException: return sqrt_grad_eager_fallback( y, dy, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sqrt_grad_eager_fallback(y, dy, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sqrt_grad """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([y, dy], _ctx) (y, dy) = _inputs_T _inputs_flat = [y, dy] _attrs = ("T", _attr_T) _result = _execute.execute(b"SqrtGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SqrtGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result def square(x, name=None): r"""Computes square of x element-wise. I.e., \\(y = x * x = x^2\\). Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Square", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Square", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Square", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return square_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def square_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function square """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Square", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Square", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.squared_difference', 'squared_difference') def squared_difference(x, y, name=None): r"""Returns (x - y)(x - y) element-wise. *NOTE*: `math.squared_difference` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "SquaredDifference", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "SquaredDifference", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "SquaredDifference", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return squared_difference_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def squared_difference_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function squared_difference """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"SquaredDifference", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "SquaredDifference", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sub(x, y, name=None): r"""Returns x - y element-wise. *NOTE*: `Subtract` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Sub", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Sub", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Sub", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return sub_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def sub_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function sub """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"Sub", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Sub", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _sum(input, axis, keep_dims=False, name=None): r"""Computes the sum of elements across dimensions of a tensor. Reduces `input` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. The tensor to reduce. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. Must be in the range `[-rank(input), rank(input))`. keep_dims: An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _, _, _op = _op_def_lib._apply_op_helper( "Sum", input=input, reduction_indices=axis, keep_dims=keep_dims, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("keep_dims", _op.get_attr("keep_dims"), "T", _op.get_attr("T"), "Tidx", _op.get_attr("Tidx")) _execute.record_gradient( "Sum", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Sum", name, _ctx._post_execution_callbacks, input, axis, "keep_dims", keep_dims) return _result except _core._FallbackException: return _sum_eager_fallback( input, axis, keep_dims=keep_dims, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def _sum_eager_fallback(input, axis, keep_dims=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function _sum """ _ctx = ctx if ctx else _context.context() if keep_dims is None: keep_dims = False keep_dims = _execute.make_bool(keep_dims, "keep_dims") _attr_T, (input,) = _execute.args_to_matching_eager([input], _ctx) _attr_Tidx, (axis,) = _execute.args_to_matching_eager([axis], _ctx, _dtypes.int32) _inputs_flat = [input, axis] _attrs = ("keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx) _result = _execute.execute(b"Sum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Sum", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.tan', 'tan') def tan(x, name=None): r"""Computes tan of x element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Tan", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Tan", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Tan", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return tan_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def tan_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tan """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Tan", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Tan", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tanh(x, name=None): r"""Computes hyperbolic tangent of `x` element-wise. Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Tanh", x=x, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Tanh", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Tanh", name, _ctx._post_execution_callbacks, x) return _result except _core._FallbackException: return tanh_eager_fallback( x, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def tanh_eager_fallback(x, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tanh """ _ctx = ctx if ctx else _context.context() _attr_T, (x,) = _execute.args_to_matching_eager([x], _ctx) _inputs_flat = [x] _attrs = ("T", _attr_T) _result = _execute.execute(b"Tanh", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Tanh", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tanh_grad(y, dy, name=None): r"""Computes the gradient for the tanh of `x` wrt its input. Specifically, `grad = dy * (1 - y*y)`, where `y = tanh(x)`, and `dy` is the corresponding input gradient. Args: y: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. dy: A `Tensor`. Must have the same type as `y`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `y`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "TanhGrad", y=y, dy=dy, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TanhGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "TanhGrad", name, _ctx._post_execution_callbacks, y, dy) return _result except _core._FallbackException: return tanh_grad_eager_fallback( y, dy, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def tanh_grad_eager_fallback(y, dy, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tanh_grad """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([y, dy], _ctx) (y, dy) = _inputs_T _inputs_flat = [y, dy] _attrs = ("T", _attr_T) _result = _execute.execute(b"TanhGrad", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TanhGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result def truncate_div(x, y, name=None): r"""Returns x / y element-wise for integer types. Truncation designates that negative numbers will round fractional quantities toward zero. I.e. -7 / 5 = -1. This matches C semantics but it is different than Python semantics. See `FloorDiv` for a division function that matches Python Semantics. *NOTE*: `TruncateDiv` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "TruncateDiv", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TruncateDiv", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "TruncateDiv", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return truncate_div_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def truncate_div_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function truncate_div """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"TruncateDiv", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TruncateDiv", _inputs_flat, _attrs, _result, name) _result, = _result return _result def truncate_mod(x, y, name=None): r"""Returns element-wise remainder of division. This emulates C semantics in that the result here is consistent with a truncating divide. E.g. `truncate(x / y) * y + truncate_mod(x, y) = x`. *NOTE*: `TruncateMod` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Args: x: A `Tensor`. Must be one of the following types: `int32`, `int64`, `bfloat16`, `half`, `float32`, `float64`. y: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "TruncateMod", x=x, y=y, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TruncateMod", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "TruncateMod", name, _ctx._post_execution_callbacks, x, y) return _result except _core._FallbackException: return truncate_mod_eager_fallback( x, y, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def truncate_mod_eager_fallback(x, y, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function truncate_mod """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, y], _ctx) (x, y) = _inputs_T _inputs_flat = [x, y] _attrs = ("T", _attr_T) _result = _execute.execute(b"TruncateMod", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TruncateMod", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.unsorted_segment_max', 'unsorted_segment_max') def unsorted_segment_max(data, segment_ids, num_segments, name=None): r"""Computes the maximum along segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. This operator is similar to the unsorted segment sum operator found [(here)](../../../api_docs/python/math_ops.md#UnsortedSegmentSum). Instead of computing the sum over segments, it computes the maximum such that: \\(output_i = \max_j data_j\\) where max is over `j` such that `segment_ids[j] == i`. If the maximum is empty for a given segment ID `i`, it outputs the smallest possible value for the specific numeric type, `output[i] = numeric_limits<T>::lowest()`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/UnsortedSegmentMax.png" alt> </div> Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. num_segments: A `Tensor`. Must be one of the following types: `int32`, `int64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "UnsortedSegmentMax", data=data, segment_ids=segment_ids, num_segments=num_segments, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices"), "Tnumsegments", _op.get_attr("Tnumsegments")) _execute.record_gradient( "UnsortedSegmentMax", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "UnsortedSegmentMax", name, _ctx._post_execution_callbacks, data, segment_ids, num_segments) return _result except _core._FallbackException: return unsorted_segment_max_eager_fallback( data, segment_ids, num_segments, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def unsorted_segment_max_eager_fallback(data, segment_ids, num_segments, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function unsorted_segment_max """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _attr_Tnumsegments, (num_segments,) = _execute.args_to_matching_eager([num_segments], _ctx, _dtypes.int32) _inputs_flat = [data, segment_ids, num_segments] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "Tnumsegments", _attr_Tnumsegments) _result = _execute.execute(b"UnsortedSegmentMax", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "UnsortedSegmentMax", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.unsorted_segment_min', 'unsorted_segment_min') def unsorted_segment_min(data, segment_ids, num_segments, name=None): r"""Computes the minimum along segments of a tensor. Read @{$math_ops#segmentation$the section on segmentation} for an explanation of segments. This operator is similar to the unsorted segment sum operator found [(here)](../../../api_docs/python/math_ops.md#UnsortedSegmentSum). Instead of computing the sum over segments, it computes the minimum such that: \\(output_i = \min_j data_j\\) where min is over `j` such that `segment_ids[j] == i`. If the minimum is empty for a given segment ID `i`, it outputs the largest possible value for the specific numeric type, `output[i] = numeric_limits<T>::max()`. Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. num_segments: A `Tensor`. Must be one of the following types: `int32`, `int64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "UnsortedSegmentMin", data=data, segment_ids=segment_ids, num_segments=num_segments, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices"), "Tnumsegments", _op.get_attr("Tnumsegments")) _execute.record_gradient( "UnsortedSegmentMin", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "UnsortedSegmentMin", name, _ctx._post_execution_callbacks, data, segment_ids, num_segments) return _result except _core._FallbackException: return unsorted_segment_min_eager_fallback( data, segment_ids, num_segments, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def unsorted_segment_min_eager_fallback(data, segment_ids, num_segments, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function unsorted_segment_min """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _attr_Tnumsegments, (num_segments,) = _execute.args_to_matching_eager([num_segments], _ctx, _dtypes.int32) _inputs_flat = [data, segment_ids, num_segments] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "Tnumsegments", _attr_Tnumsegments) _result = _execute.execute(b"UnsortedSegmentMin", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "UnsortedSegmentMin", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.unsorted_segment_prod', 'unsorted_segment_prod') def unsorted_segment_prod(data, segment_ids, num_segments, name=None): r"""Computes the product along segments of a tensor. Read @{$math_ops#segmentation$the section on segmentation} for an explanation of segments. This operator is similar to the unsorted segment sum operator found [(here)](../../../api_docs/python/math_ops.md#UnsortedSegmentSum). Instead of computing the sum over segments, it computes the product of all entries belonging to a segment such that: \\(output_i = \prod_j data_j\\) where the product is over `j` such that `segment_ids[j] == i`. If there is no entry for a given segment ID `i`, it outputs 1. Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose rank is equal to the rank of `data`'s first dimension. num_segments: A `Tensor`. Must be one of the following types: `int32`, `int64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "UnsortedSegmentProd", data=data, segment_ids=segment_ids, num_segments=num_segments, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices"), "Tnumsegments", _op.get_attr("Tnumsegments")) _execute.record_gradient( "UnsortedSegmentProd", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "UnsortedSegmentProd", name, _ctx._post_execution_callbacks, data, segment_ids, num_segments) return _result except _core._FallbackException: return unsorted_segment_prod_eager_fallback( data, segment_ids, num_segments, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def unsorted_segment_prod_eager_fallback(data, segment_ids, num_segments, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function unsorted_segment_prod """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _attr_Tnumsegments, (num_segments,) = _execute.args_to_matching_eager([num_segments], _ctx, _dtypes.int32) _inputs_flat = [data, segment_ids, num_segments] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "Tnumsegments", _attr_Tnumsegments) _result = _execute.execute(b"UnsortedSegmentProd", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "UnsortedSegmentProd", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.unsorted_segment_sum', 'unsorted_segment_sum') def unsorted_segment_sum(data, segment_ids, num_segments, name=None): r"""Computes the sum along segments of a tensor. Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of segments. Computes a tensor such that \\(output[i] = sum_{j...} data[j...]\\) where the sum is over tuples `j...` such that `segment_ids[j...] == i`. Unlike `SegmentSum`, `segment_ids` need not be sorted and need not cover all values in the full range of valid values. If the sum is empty for a given segment ID `i`, `output[i] = 0`. If the given segment ID `i` is negative, the value is dropped and will not be added to the sum of the segment. `num_segments` should equal the number of distinct segment IDs. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/UnsortedSegmentSum.png" alt> </div> Args: data: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. segment_ids: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor whose shape is a prefix of `data.shape`. num_segments: A `Tensor`. Must be one of the following types: `int32`, `int64`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "UnsortedSegmentSum", data=data, segment_ids=segment_ids, num_segments=num_segments, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "Tindices", _op.get_attr("Tindices"), "Tnumsegments", _op.get_attr("Tnumsegments")) _execute.record_gradient( "UnsortedSegmentSum", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "UnsortedSegmentSum", name, _ctx._post_execution_callbacks, data, segment_ids, num_segments) return _result except _core._FallbackException: return unsorted_segment_sum_eager_fallback( data, segment_ids, num_segments, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def unsorted_segment_sum_eager_fallback(data, segment_ids, num_segments, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function unsorted_segment_sum """ _ctx = ctx if ctx else _context.context() _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) _attr_Tindices, (segment_ids,) = _execute.args_to_matching_eager([segment_ids], _ctx) _attr_Tnumsegments, (num_segments,) = _execute.args_to_matching_eager([num_segments], _ctx, _dtypes.int32) _inputs_flat = [data, segment_ids, num_segments] _attrs = ("T", _attr_T, "Tindices", _attr_Tindices, "Tnumsegments", _attr_Tnumsegments) _result = _execute.execute(b"UnsortedSegmentSum", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "UnsortedSegmentSum", _inputs_flat, _attrs, _result, name) _result, = _result return _result @tf_export('math.zeta', 'zeta') def zeta(x, q, name=None): r"""Compute the Hurwitz zeta function \\(\zeta(x, q)\\). The Hurwitz zeta function is defined as: \\(\zeta(x, q) = \sum_{n=0}^{\infty} (q + n)^{-x}\\) Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`. q: A `Tensor`. Must have the same type as `x`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Zeta", x=x, q=q, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "Zeta", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Zeta", name, _ctx._post_execution_callbacks, x, q) return _result except _core._FallbackException: return zeta_eager_fallback( x, q, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def zeta_eager_fallback(x, q, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function zeta """ _ctx = ctx if ctx else _context.context() _attr_T, _inputs_T = _execute.args_to_matching_eager([x, q], _ctx) (x, q) = _inputs_T _inputs_flat = [x, q] _attrs = ("T", _attr_T) _result = _execute.execute(b"Zeta", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Zeta", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "Abs" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "AccumulateNV2" # input_arg { # name: "inputs" # type_attr: "T" # number_attr: "N" # } # output_arg { # name: "sum" # type_attr: "T" # } # attr { # name: "N" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "shape" # type: "shape" # } # is_aggregate: true # is_commutative: true # } # op { # name: "Acos" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Acosh" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Add" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # type: DT_STRING # } # } # } # } # op { # name: "AddN" # input_arg { # name: "inputs" # type_attr: "T" # number_attr: "N" # } # output_arg { # name: "sum" # type_attr: "T" # } # attr { # name: "N" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # type: DT_VARIANT # } # } # } # is_aggregate: true # is_commutative: true # } # op { # name: "AddV2" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # is_aggregate: true # is_commutative: true # } # op { # name: "All" # input_arg { # name: "input" # type: DT_BOOL # } # input_arg { # name: "reduction_indices" # type_attr: "Tidx" # } # output_arg { # name: "output" # type: DT_BOOL # } # attr { # name: "keep_dims" # type: "bool" # default_value { # b: false # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Angle" # input_arg { # name: "input" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "Tout" # } # attr { # name: "T" # type: "type" # default_value { # type: DT_COMPLEX64 # } # allowed_values { # list { # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # attr { # name: "Tout" # type: "type" # default_value { # type: DT_FLOAT # } # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Any" # input_arg { # name: "input" # type: DT_BOOL # } # input_arg { # name: "reduction_indices" # type_attr: "Tidx" # } # output_arg { # name: "output" # type: DT_BOOL # } # attr { # name: "keep_dims" # type: "bool" # default_value { # b: false # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "ApproximateEqual" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "tolerance" # type: "float" # default_value { # f: 1e-05 # } # } # is_commutative: true # } # op { # name: "ArgMax" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "dimension" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "output_type" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "output_type" # type: "type" # default_value { # type: DT_INT64 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "ArgMin" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "dimension" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "output_type" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "output_type" # type: "type" # default_value { # type: DT_INT64 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Asin" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Asinh" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Atan" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Atan2" # input_arg { # name: "y" # type_attr: "T" # } # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Atanh" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "BatchMatMul" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # attr { # name: "adj_x" # type: "bool" # default_value { # b: false # } # } # attr { # name: "adj_y" # type: "bool" # default_value { # b: false # } # } # } # op { # name: "BesselI0e" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "BesselI1e" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Betainc" # input_arg { # name: "a" # type_attr: "T" # } # input_arg { # name: "b" # type_attr: "T" # } # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Bincount" # input_arg { # name: "arr" # type: DT_INT32 # } # input_arg { # name: "size" # type: DT_INT32 # } # input_arg { # name: "weights" # type_attr: "T" # } # output_arg { # name: "bins" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Bucketize" # input_arg { # name: "input" # type_attr: "T" # } # output_arg { # name: "output" # type: DT_INT32 # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "boundaries" # type: "list(float)" # } # } # op { # name: "Cast" # input_arg { # name: "x" # type_attr: "SrcT" # } # output_arg { # name: "y" # type_attr: "DstT" # } # attr { # name: "SrcT" # type: "type" # } # attr { # name: "DstT" # type: "type" # } # } # op { # name: "Ceil" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "ClipByValue" # input_arg { # name: "t" # type_attr: "T" # } # input_arg { # name: "clip_value_min" # type_attr: "T" # } # input_arg { # name: "clip_value_max" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "CompareAndBitpack" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "threshold" # type_attr: "T" # } # output_arg { # name: "output" # type: DT_UINT8 # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BOOL # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT8 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Complex" # input_arg { # name: "real" # type_attr: "T" # } # input_arg { # name: "imag" # type_attr: "T" # } # output_arg { # name: "out" # type_attr: "Tout" # } # attr { # name: "T" # type: "type" # default_value { # type: DT_FLOAT # } # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tout" # type: "type" # default_value { # type: DT_COMPLEX64 # } # allowed_values { # list { # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "ComplexAbs" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "Tout" # } # attr { # name: "T" # type: "type" # default_value { # type: DT_COMPLEX64 # } # allowed_values { # list { # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # attr { # name: "Tout" # type: "type" # default_value { # type: DT_FLOAT # } # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Conj" # input_arg { # name: "input" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # default_value { # type: DT_COMPLEX64 # } # allowed_values { # list { # type: DT_COMPLEX64 # type: DT_COMPLEX128 # type: DT_VARIANT # } # } # } # } # op { # name: "Cos" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Cosh" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Cross" # input_arg { # name: "a" # type_attr: "T" # } # input_arg { # name: "b" # type_attr: "T" # } # output_arg { # name: "product" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "Cumprod" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "axis" # type_attr: "Tidx" # } # output_arg { # name: "out" # type_attr: "T" # } # attr { # name: "exclusive" # type: "bool" # default_value { # b: false # } # } # attr { # name: "reverse" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Cumsum" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "axis" # type_attr: "Tidx" # } # output_arg { # name: "out" # type_attr: "T" # } # attr { # name: "exclusive" # type: "bool" # default_value { # b: false # } # } # attr { # name: "reverse" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Digamma" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Div" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_UINT16 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Equal" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_QUINT8 # type: DT_QINT8 # type: DT_QINT32 # type: DT_STRING # type: DT_BOOL # type: DT_COMPLEX128 # } # } # } # is_commutative: true # } # op { # name: "Erf" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Erfc" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Exp" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Expm1" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Floor" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "FloorDiv" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_UINT16 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "FloorMod" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Greater" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "GreaterEqual" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "HistogramFixedWidth" # input_arg { # name: "values" # type_attr: "T" # } # input_arg { # name: "value_range" # type_attr: "T" # } # input_arg { # name: "nbins" # type: DT_INT32 # } # output_arg { # name: "out" # type_attr: "dtype" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "dtype" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Igamma" # input_arg { # name: "a" # type_attr: "T" # } # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "IgammaGradA" # input_arg { # name: "a" # type_attr: "T" # } # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Igammac" # input_arg { # name: "a" # type_attr: "T" # } # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Imag" # input_arg { # name: "input" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "Tout" # } # attr { # name: "T" # type: "type" # default_value { # type: DT_COMPLEX64 # } # allowed_values { # list { # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # attr { # name: "Tout" # type: "type" # default_value { # type: DT_FLOAT # } # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Inv" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "InvGrad" # input_arg { # name: "y" # type_attr: "T" # } # input_arg { # name: "dy" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "IsFinite" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "IsInf" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "IsNan" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Less" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "LessEqual" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "Lgamma" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "LinSpace" # input_arg { # name: "start" # type_attr: "T" # } # input_arg { # name: "stop" # type_attr: "T" # } # input_arg { # name: "num" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Log" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Log1p" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "LogicalAnd" # input_arg { # name: "x" # type: DT_BOOL # } # input_arg { # name: "y" # type: DT_BOOL # } # output_arg { # name: "z" # type: DT_BOOL # } # is_commutative: true # } # op { # name: "LogicalNot" # input_arg { # name: "x" # type: DT_BOOL # } # output_arg { # name: "y" # type: DT_BOOL # } # } # op { # name: "LogicalOr" # input_arg { # name: "x" # type: DT_BOOL # } # input_arg { # name: "y" # type: DT_BOOL # } # output_arg { # name: "z" # type: DT_BOOL # } # is_commutative: true # } # op { # name: "MatMul" # input_arg { # name: "a" # type_attr: "T" # } # input_arg { # name: "b" # type_attr: "T" # } # output_arg { # name: "product" # type_attr: "T" # } # attr { # name: "transpose_a" # type: "bool" # default_value { # b: false # } # } # attr { # name: "transpose_b" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Max" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "reduction_indices" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "keep_dims" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Maximum" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # } # } # } # is_commutative: true # } # op { # name: "Mean" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "reduction_indices" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "keep_dims" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Min" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "reduction_indices" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "keep_dims" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Minimum" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # } # } # } # is_commutative: true # } # op { # name: "Mod" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # type: DT_HALF # type: DT_HALF # type: DT_BFLOAT16 # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Mul" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_UINT16 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # is_commutative: true # } # op { # name: "Neg" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "NotEqual" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type: DT_BOOL # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_QUINT8 # type: DT_QINT8 # type: DT_QINT32 # type: DT_STRING # type: DT_BOOL # type: DT_COMPLEX128 # } # } # } # is_commutative: true # } # op { # name: "Polygamma" # input_arg { # name: "a" # type_attr: "T" # } # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Pow" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_FLOAT # type: DT_HALF # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Prod" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "reduction_indices" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "keep_dims" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "QuantizeDownAndShrinkRange" # input_arg { # name: "input" # type_attr: "Tinput" # } # input_arg { # name: "input_min" # type: DT_FLOAT # } # input_arg { # name: "input_max" # type: DT_FLOAT # } # output_arg { # name: "output" # type_attr: "out_type" # } # output_arg { # name: "output_min" # type: DT_FLOAT # } # output_arg { # name: "output_max" # type: DT_FLOAT # } # attr { # name: "Tinput" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "out_type" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # } # op { # name: "QuantizedAdd" # input_arg { # name: "x" # type_attr: "T1" # } # input_arg { # name: "y" # type_attr: "T2" # } # input_arg { # name: "min_x" # type: DT_FLOAT # } # input_arg { # name: "max_x" # type: DT_FLOAT # } # input_arg { # name: "min_y" # type: DT_FLOAT # } # input_arg { # name: "max_y" # type: DT_FLOAT # } # output_arg { # name: "z" # type_attr: "Toutput" # } # output_arg { # name: "min_z" # type: DT_FLOAT # } # output_arg { # name: "max_z" # type: DT_FLOAT # } # attr { # name: "T1" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "T2" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "Toutput" # type: "type" # default_value { # type: DT_QINT32 # } # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # is_commutative: true # } # op { # name: "QuantizedMatMul" # input_arg { # name: "a" # type_attr: "T1" # } # input_arg { # name: "b" # type_attr: "T2" # } # input_arg { # name: "min_a" # type: DT_FLOAT # } # input_arg { # name: "max_a" # type: DT_FLOAT # } # input_arg { # name: "min_b" # type: DT_FLOAT # } # input_arg { # name: "max_b" # type: DT_FLOAT # } # output_arg { # name: "out" # type_attr: "Toutput" # } # output_arg { # name: "min_out" # type: DT_FLOAT # } # output_arg { # name: "max_out" # type: DT_FLOAT # } # attr { # name: "T1" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "T2" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "Toutput" # type: "type" # default_value { # type: DT_QINT32 # } # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "transpose_a" # type: "bool" # default_value { # b: false # } # } # attr { # name: "transpose_b" # type: "bool" # default_value { # b: false # } # } # attr { # name: "Tactivation" # type: "type" # default_value { # type: DT_QUINT8 # } # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # } # op { # name: "QuantizedMul" # input_arg { # name: "x" # type_attr: "T1" # } # input_arg { # name: "y" # type_attr: "T2" # } # input_arg { # name: "min_x" # type: DT_FLOAT # } # input_arg { # name: "max_x" # type: DT_FLOAT # } # input_arg { # name: "min_y" # type: DT_FLOAT # } # input_arg { # name: "max_y" # type: DT_FLOAT # } # output_arg { # name: "z" # type_attr: "Toutput" # } # output_arg { # name: "min_z" # type: DT_FLOAT # } # output_arg { # name: "max_z" # type: DT_FLOAT # } # attr { # name: "T1" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "T2" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "Toutput" # type: "type" # default_value { # type: DT_QINT32 # } # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # is_commutative: true # } # op { # name: "Range" # input_arg { # name: "start" # type_attr: "Tidx" # } # input_arg { # name: "limit" # type_attr: "Tidx" # } # input_arg { # name: "delta" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "Tidx" # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Real" # input_arg { # name: "input" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "Tout" # } # attr { # name: "T" # type: "type" # default_value { # type: DT_COMPLEX64 # } # allowed_values { # list { # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # attr { # name: "Tout" # type: "type" # default_value { # type: DT_FLOAT # } # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "RealDiv" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_UINT16 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Reciprocal" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "ReciprocalGrad" # input_arg { # name: "y" # type_attr: "T" # } # input_arg { # name: "dy" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "RequantizationRange" # input_arg { # name: "input" # type_attr: "Tinput" # } # input_arg { # name: "input_min" # type: DT_FLOAT # } # input_arg { # name: "input_max" # type: DT_FLOAT # } # output_arg { # name: "output_min" # type: DT_FLOAT # } # output_arg { # name: "output_max" # type: DT_FLOAT # } # attr { # name: "Tinput" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # } # op { # name: "Requantize" # input_arg { # name: "input" # type_attr: "Tinput" # } # input_arg { # name: "input_min" # type: DT_FLOAT # } # input_arg { # name: "input_max" # type: DT_FLOAT # } # input_arg { # name: "requested_output_min" # type: DT_FLOAT # } # input_arg { # name: "requested_output_max" # type: DT_FLOAT # } # output_arg { # name: "output" # type_attr: "out_type" # } # output_arg { # name: "output_min" # type: DT_FLOAT # } # output_arg { # name: "output_max" # type: DT_FLOAT # } # attr { # name: "Tinput" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # attr { # name: "out_type" # type: "type" # allowed_values { # list { # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_QINT16 # type: DT_QUINT16 # } # } # } # } # op { # name: "Rint" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "Round" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Rsqrt" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "RsqrtGrad" # input_arg { # name: "y" # type_attr: "T" # } # input_arg { # name: "dy" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "SegmentMax" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SegmentMean" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SegmentMin" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SegmentProd" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SegmentSum" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Select" # input_arg { # name: "condition" # type: DT_BOOL # } # input_arg { # name: "t" # type_attr: "T" # } # input_arg { # name: "e" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # } # } # op { # name: "Sigmoid" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "SigmoidGrad" # input_arg { # name: "y" # type_attr: "T" # } # input_arg { # name: "dy" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Sign" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Sin" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Sinh" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "SparseMatMul" # input_arg { # name: "a" # type_attr: "Ta" # } # input_arg { # name: "b" # type_attr: "Tb" # } # output_arg { # name: "product" # type: DT_FLOAT # } # attr { # name: "transpose_a" # type: "bool" # default_value { # b: false # } # } # attr { # name: "transpose_b" # type: "bool" # default_value { # b: false # } # } # attr { # name: "a_is_sparse" # type: "bool" # default_value { # b: false # } # } # attr { # name: "b_is_sparse" # type: "bool" # default_value { # b: false # } # } # attr { # name: "Ta" # type: "type" # default_value { # type: DT_FLOAT # } # allowed_values { # list { # type: DT_FLOAT # type: DT_BFLOAT16 # } # } # } # attr { # name: "Tb" # type: "type" # default_value { # type: DT_FLOAT # } # allowed_values { # list { # type: DT_FLOAT # type: DT_BFLOAT16 # } # } # } # } # op { # name: "SparseSegmentMean" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SparseSegmentMeanGrad" # input_arg { # name: "grad" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # input_arg { # name: "output_dim0" # type: DT_INT32 # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SparseSegmentMeanWithNumSegments" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # input_arg { # name: "num_segments" # type_attr: "Tnumsegments" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "Tnumsegments" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SparseSegmentSqrtN" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SparseSegmentSqrtNGrad" # input_arg { # name: "grad" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # input_arg { # name: "output_dim0" # type: DT_INT32 # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SparseSegmentSqrtNWithNumSegments" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # input_arg { # name: "num_segments" # type_attr: "Tnumsegments" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "Tnumsegments" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SparseSegmentSum" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "SparseSegmentSumWithNumSegments" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "indices" # type_attr: "Tidx" # } # input_arg { # name: "segment_ids" # type: DT_INT32 # } # input_arg { # name: "num_segments" # type_attr: "Tnumsegments" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "Tnumsegments" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Sqrt" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "SqrtGrad" # input_arg { # name: "y" # type_attr: "T" # } # input_arg { # name: "dy" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Square" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "SquaredDifference" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # is_commutative: true # } # op { # name: "Sub" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_UINT16 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Sum" # input_arg { # name: "input" # type_attr: "T" # } # input_arg { # name: "reduction_indices" # type_attr: "Tidx" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "keep_dims" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tidx" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Tan" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "Tanh" # input_arg { # name: "x" # type_attr: "T" # } # output_arg { # name: "y" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "TanhGrad" # input_arg { # name: "y" # type_attr: "T" # } # input_arg { # name: "dy" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "TruncateDiv" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # type: DT_UINT8 # type: DT_INT8 # type: DT_UINT16 # type: DT_INT16 # type: DT_INT32 # type: DT_INT64 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # } # } # } # } # op { # name: "TruncateMod" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "y" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_HALF # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } # op { # name: "UnsortedSegmentMax" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # input_arg { # name: "num_segments" # type_attr: "Tnumsegments" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "Tnumsegments" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "UnsortedSegmentMin" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # input_arg { # name: "num_segments" # type_attr: "Tnumsegments" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_INT64 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "Tnumsegments" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "UnsortedSegmentProd" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # input_arg { # name: "num_segments" # type_attr: "Tnumsegments" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "Tnumsegments" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "UnsortedSegmentSum" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "segment_ids" # type_attr: "Tindices" # } # input_arg { # name: "num_segments" # type_attr: "Tnumsegments" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "Tindices" # type: "type" # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # attr { # name: "Tnumsegments" # type: "type" # default_value { # type: DT_INT32 # } # allowed_values { # list { # type: DT_INT32 # type: DT_INT64 # } # } # } # } # op { # name: "Zeta" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "q" # type_attr: "T" # } # output_arg { # name: "z" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # } # } # } # } _op_def_lib = _InitOpDefLibrary(b"\n,\n\003Abs\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\003\t\no\n\rAccumulateNV2\022\016\n\006inputs\"\001T*\001N\032\010\n\003sum\"\001T\"\014\n\001N\022\003int(\0010\001\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\016\n\005shape\022\005shape\200\001\001\220\001\001\n/\n\004Acos\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n.\n\005Acosh\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n:\n\003Add\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\016\023\001\002\004\006\005\003\t\010\022\007\nW\n\004AddN\022\016\n\006inputs\"\001T*\001N\032\010\n\003sum\"\001T\"\014\n\001N\022\003int(\0010\001\"!\n\001T\022\004type:\026\n\0242\022\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\025\200\001\001\220\001\001\nA\n\005AddV2\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\032\n\001T\022\004type:\017\n\r2\013\016\023\001\002\004\006\005\003\t\010\022\200\001\001\220\001\001\nh\n\003All\022\t\n\005input\030\n\022\031\n\021reduction_indices\"\004Tidx\032\n\n\006output\030\n\"\025\n\tkeep_dims\022\004bool\032\002(\000\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\nT\n\005Angle\022\n\n\005input\"\001T\032\016\n\006output\"\004Tout\"\025\n\001T\022\004type\032\0020\010:\006\n\0042\002\010\022\"\030\n\004Tout\022\004type\032\0020\001:\006\n\0042\002\001\002\nh\n\003Any\022\t\n\005input\030\n\022\031\n\021reduction_indices\"\004Tidx\032\n\n\006output\030\n\"\025\n\tkeep_dims\022\004bool\032\002(\000\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\ni\n\020ApproximateEqual\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\005\n\001z\030\n\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\031\n\ttolerance\022\005float\032\005%\254\305\'7\220\001\001\n\233\001\n\006ArgMax\022\n\n\005input\"\001T\022\021\n\tdimension\"\004Tidx\032\025\n\006output\"\013output_type\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\"\037\n\013output_type\022\004type\032\0020\t:\006\n\0042\002\003\t\n\233\001\n\006ArgMin\022\n\n\005input\"\001T\022\021\n\tdimension\"\004Tidx\032\025\n\006output\"\013output_type\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\"\037\n\013output_type\022\004type\032\0020\t:\006\n\0042\002\003\t\n/\n\004Asin\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n.\n\005Asinh\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n/\n\004Atan\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n4\n\005Atan2\022\006\n\001y\"\001T\022\006\n\001x\"\001T\032\006\n\001z\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n.\n\005Atanh\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\nh\n\013BatchMatMul\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\013\n\006output\"\001T\"\026\n\001T\022\004type:\013\n\t2\007\016\023\001\002\003\010\022\"\021\n\005adj_x\022\004bool\032\002(\000\"\021\n\005adj_y\022\004bool\032\002(\000\n0\n\tBesselI0e\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n0\n\tBesselI1e\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n<\n\007Betainc\022\006\n\001a\"\001T\022\006\n\001b\"\001T\022\006\n\001x\"\001T\032\006\n\001z\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\nK\n\010Bincount\022\007\n\003arr\030\003\022\010\n\004size\030\003\022\014\n\007weights\"\001T\032\t\n\004bins\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\003\t\001\002\nS\n\tBucketize\022\n\n\005input\"\001T\032\n\n\006output\030\003\"\023\n\001T\022\004type:\010\n\0062\004\003\t\001\002\"\031\n\nboundaries\022\013list(float)\n8\n\004Cast\022\t\n\001x\"\004SrcT\032\t\n\001y\"\004DstT\"\014\n\004SrcT\022\004type\"\014\n\004DstT\022\004type\n+\n\004Ceil\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\nn\n\013ClipByValue\022\006\n\001t\"\001T\022\023\n\016clip_value_min\"\001T\022\023\n\016clip_value_max\"\001T\032\013\n\006output\"\001T\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\nT\n\021CompareAndBitpack\022\n\n\005input\"\001T\022\016\n\tthreshold\"\001T\032\n\n\006output\030\004\"\027\n\001T\022\004type:\014\n\n2\010\n\023\001\002\006\005\003\t\n]\n\007Complex\022\t\n\004real\"\001T\022\t\n\004imag\"\001T\032\013\n\003out\"\004Tout\"\025\n\001T\022\004type\032\0020\001:\006\n\0042\002\001\002\"\030\n\004Tout\022\004type\032\0020\010:\006\n\0042\002\010\022\nP\n\nComplexAbs\022\006\n\001x\"\001T\032\t\n\001y\"\004Tout\"\025\n\001T\022\004type\032\0020\010:\006\n\0042\002\010\022\"\030\n\004Tout\022\004type\032\0020\001:\006\n\0042\002\001\002\n7\n\004Conj\022\n\n\005input\"\001T\032\013\n\006output\"\001T\"\026\n\001T\022\004type\032\0020\010:\007\n\0052\003\010\022\025\n,\n\003Cos\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n-\n\004Cosh\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\nB\n\005Cross\022\006\n\001a\"\001T\022\006\n\001b\"\001T\032\014\n\007product\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\n\221\001\n\007Cumprod\022\006\n\001x\"\001T\022\014\n\004axis\"\004Tidx\032\010\n\003out\"\001T\"\025\n\texclusive\022\004bool\032\002(\000\"\023\n\007reverse\022\004bool\032\002(\000\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\220\001\n\006Cumsum\022\006\n\001x\"\001T\022\014\n\004axis\"\004Tidx\032\010\n\003out\"\001T\"\025\n\texclusive\022\004bool\032\002(\000\"\023\n\007reverse\022\004bool\032\002(\000\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n.\n\007Digamma\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n:\n\003Div\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\016\023\001\002\004\006\021\005\003\t\010\022\nB\n\005Equal\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\005\n\001z\030\n\"\037\n\001T\022\004type:\024\n\0222\020\016\023\001\002\004\006\005\003\t\010\014\013\r\007\n\022\220\001\001\n*\n\003Erf\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n+\n\004Erfc\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n,\n\003Exp\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n.\n\005Expm1\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n,\n\005Floor\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n?\n\010FloorDiv\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\016\023\001\002\004\006\021\005\003\t\010\022\n9\n\010FloorMod\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\003\t\016\023\001\002\n=\n\007Greater\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\005\n\001z\030\n\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\nB\n\014GreaterEqual\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\005\n\001z\030\n\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\n}\n\023HistogramFixedWidth\022\013\n\006values\"\001T\022\020\n\013value_range\"\001T\022\t\n\005nbins\030\003\032\014\n\003out\"\005dtype\"\023\n\001T\022\004type:\010\n\0062\004\003\t\001\002\"\031\n\005dtype\022\004type\032\0020\003:\006\n\0042\002\003\t\n3\n\006Igamma\022\006\n\001a\"\001T\022\006\n\001x\"\001T\032\006\n\001z\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\n8\n\013IgammaGradA\022\006\n\001a\"\001T\022\006\n\001x\"\001T\032\006\n\001z\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\n4\n\007Igammac\022\006\n\001a\"\001T\022\006\n\001x\"\001T\032\006\n\001z\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\nS\n\004Imag\022\n\n\005input\"\001T\032\016\n\006output\"\004Tout\"\025\n\001T\022\004type\032\0020\010:\006\n\0042\002\010\022\"\030\n\004Tout\022\004type\032\0020\001:\006\n\0042\002\001\002\n.\n\003Inv\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n9\n\007InvGrad\022\006\n\001y\"\001T\022\007\n\002dy\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n.\n\010IsFinite\022\006\n\001x\"\001T\032\005\n\001y\030\n\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n+\n\005IsInf\022\006\n\001x\"\001T\032\005\n\001y\030\n\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n+\n\005IsNan\022\006\n\001x\"\001T\032\005\n\001y\030\n\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n:\n\004Less\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\005\n\001z\030\n\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\n?\n\tLessEqual\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\005\n\001z\030\n\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\n-\n\006Lgamma\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\ni\n\010LinSpace\022\n\n\005start\"\001T\022\t\n\004stop\"\001T\022\013\n\003num\"\004Tidx\032\013\n\006output\"\001T\"\022\n\001T\022\004type:\007\n\0052\003\016\001\002\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n,\n\003Log\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n.\n\005Log1p\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n$\n\nLogicalAnd\022\005\n\001x\030\n\022\005\n\001y\030\n\032\005\n\001z\030\n\220\001\001\n\032\n\nLogicalNot\022\005\n\001x\030\n\032\005\n\001y\030\n\n#\n\tLogicalOr\022\005\n\001x\030\n\022\005\n\001y\030\n\032\005\n\001z\030\n\220\001\001\np\n\006MatMul\022\006\n\001a\"\001T\022\006\n\001b\"\001T\032\014\n\007product\"\001T\"\027\n\013transpose_a\022\004bool\032\002(\000\"\027\n\013transpose_b\022\004bool\032\002(\000\"\026\n\001T\022\004type:\013\n\t2\007\016\023\001\002\003\010\022\n\214\001\n\003Max\022\n\n\005input\"\001T\022\031\n\021reduction_indices\"\004Tidx\032\013\n\006output\"\001T\"\025\n\tkeep_dims\022\004bool\032\002(\000\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n;\n\007Maximum\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\003\t\220\001\001\n\215\001\n\004Mean\022\n\n\005input\"\001T\022\031\n\021reduction_indices\"\004Tidx\032\013\n\006output\"\001T\"\025\n\tkeep_dims\022\004bool\032\002(\000\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\214\001\n\003Min\022\n\n\005input\"\001T\022\031\n\021reduction_indices\"\004Tidx\032\013\n\006output\"\001T\"\025\n\tkeep_dims\022\004bool\032\002(\000\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n;\n\007Minimum\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\003\t\220\001\001\n5\n\003Mod\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\026\n\001T\022\004type:\013\n\t2\007\003\t\023\023\016\001\002\n=\n\003Mul\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\016\023\001\002\004\006\021\005\003\t\010\022\220\001\001\n.\n\003Neg\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\nE\n\010NotEqual\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\005\n\001z\030\n\"\037\n\001T\022\004type:\024\n\0222\020\016\023\001\002\004\006\005\003\t\010\014\013\r\007\n\022\220\001\001\n6\n\tPolygamma\022\006\n\001a\"\001T\022\006\n\001x\"\001T\032\006\n\001z\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\n6\n\003Pow\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\001\023\002\003\t\010\022\n\215\001\n\004Prod\022\n\n\005input\"\001T\022\031\n\021reduction_indices\"\004Tidx\032\013\n\006output\"\001T\"\025\n\tkeep_dims\022\004bool\032\002(\000\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\267\001\n\032QuantizeDownAndShrinkRange\022\017\n\005input\"\006Tinput\022\r\n\tinput_min\030\001\022\r\n\tinput_max\030\001\032\022\n\006output\"\010out_type\032\016\n\noutput_min\030\001\032\016\n\noutput_max\030\001\"\031\n\006Tinput\022\004type:\t\n\0072\005\013\014\r\017\020\"\033\n\010out_type\022\004type:\t\n\0072\005\013\014\r\017\020\n\301\001\n\014QuantizedAdd\022\007\n\001x\"\002T1\022\007\n\001y\"\002T2\022\t\n\005min_x\030\001\022\t\n\005max_x\030\001\022\t\n\005min_y\030\001\022\t\n\005max_y\030\001\032\014\n\001z\"\007Toutput\032\t\n\005min_z\030\001\032\t\n\005max_z\030\001\"\025\n\002T1\022\004type:\t\n\0072\005\013\014\r\017\020\"\025\n\002T2\022\004type:\t\n\0072\005\013\014\r\017\020\"\036\n\007Toutput\022\004type\032\0020\r:\t\n\0072\005\013\014\r\017\020\220\001\001\n\235\002\n\017QuantizedMatMul\022\007\n\001a\"\002T1\022\007\n\001b\"\002T2\022\t\n\005min_a\030\001\022\t\n\005max_a\030\001\022\t\n\005min_b\030\001\022\t\n\005max_b\030\001\032\016\n\003out\"\007Toutput\032\013\n\007min_out\030\001\032\013\n\007max_out\030\001\"\025\n\002T1\022\004type:\t\n\0072\005\013\014\r\017\020\"\025\n\002T2\022\004type:\t\n\0072\005\013\014\r\017\020\"\036\n\007Toutput\022\004type\032\0020\r:\t\n\0072\005\013\014\r\017\020\"\027\n\013transpose_a\022\004bool\032\002(\000\"\027\n\013transpose_b\022\004bool\032\002(\000\"\"\n\013Tactivation\022\004type\032\0020\014:\t\n\0072\005\013\014\r\017\020\n\301\001\n\014QuantizedMul\022\007\n\001x\"\002T1\022\007\n\001y\"\002T2\022\t\n\005min_x\030\001\022\t\n\005max_x\030\001\022\t\n\005min_y\030\001\022\t\n\005max_y\030\001\032\014\n\001z\"\007Toutput\032\t\n\005min_z\030\001\032\t\n\005max_z\030\001\"\025\n\002T1\022\004type:\t\n\0072\005\013\014\r\017\020\"\025\n\002T2\022\004type:\t\n\0072\005\013\014\r\017\020\"\036\n\007Toutput\022\004type\032\0020\r:\t\n\0072\005\013\014\r\017\020\220\001\001\na\n\005Range\022\r\n\005start\"\004Tidx\022\r\n\005limit\"\004Tidx\022\r\n\005delta\"\004Tidx\032\016\n\006output\"\004Tidx\"\033\n\004Tidx\022\004type\032\0020\003:\t\n\0072\005\016\001\002\003\t\nS\n\004Real\022\n\n\005input\"\001T\032\016\n\006output\"\004Tout\"\025\n\001T\022\004type\032\0020\010:\006\n\0042\002\010\022\"\030\n\004Tout\022\004type\032\0020\001:\006\n\0042\002\001\002\n>\n\007RealDiv\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\016\023\001\002\004\006\021\005\003\t\010\022\n5\n\nReciprocal\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n@\n\016ReciprocalGrad\022\006\n\001y\"\001T\022\007\n\002dy\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n\177\n\023RequantizationRange\022\017\n\005input\"\006Tinput\022\r\n\tinput_min\030\001\022\r\n\tinput_max\030\001\032\016\n\noutput_min\030\001\032\016\n\noutput_max\030\001\"\031\n\006Tinput\022\004type:\t\n\0072\005\013\014\r\017\020\n\333\001\n\nRequantize\022\017\n\005input\"\006Tinput\022\r\n\tinput_min\030\001\022\r\n\tinput_max\030\001\022\030\n\024requested_output_min\030\001\022\030\n\024requested_output_max\030\001\032\022\n\006output\"\010out_type\032\016\n\noutput_min\030\001\032\016\n\noutput_max\030\001\"\031\n\006Tinput\022\004type:\t\n\0072\005\013\014\r\017\020\"\033\n\010out_type\022\004type:\t\n\0072\005\013\014\r\017\020\n+\n\004Rint\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\023\n\001T\022\004type:\010\n\0062\004\016\023\001\002\n0\n\005Round\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n.\n\005Rsqrt\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n;\n\tRsqrtGrad\022\006\n\001y\"\001T\022\007\n\002dy\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\nt\n\nSegmentMax\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\032\013\n\006output\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\nz\n\013SegmentMean\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\032\013\n\006output\"\001T\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\nt\n\nSegmentMin\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\032\013\n\006output\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\nz\n\013SegmentProd\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\032\013\n\006output\"\001T\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\ny\n\nSegmentSum\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\032\013\n\006output\"\001T\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\n?\n\006Select\022\r\n\tcondition\030\n\022\006\n\001t\"\001T\022\006\n\001e\"\001T\032\013\n\006output\"\001T\"\t\n\001T\022\004type\n0\n\007Sigmoid\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n=\n\013SigmoidGrad\022\006\n\001y\"\001T\022\007\n\002dy\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n/\n\004Sign\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n,\n\003Sin\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n-\n\004Sinh\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n\301\001\n\014SparseMatMul\022\007\n\001a\"\002Ta\022\007\n\001b\"\002Tb\032\013\n\007product\030\001\"\027\n\013transpose_a\022\004bool\032\002(\000\"\027\n\013transpose_b\022\004bool\032\002(\000\"\027\n\013a_is_sparse\022\004bool\032\002(\000\"\027\n\013b_is_sparse\022\004bool\032\002(\000\"\026\n\002Ta\022\004type\032\0020\001:\006\n\0042\002\001\016\"\026\n\002Tb\022\004type\032\0020\001:\006\n\0042\002\001\016\nz\n\021SparseSegmentMean\022\t\n\004data\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\032\013\n\006output\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\217\001\n\025SparseSegmentMeanGrad\022\t\n\004grad\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\022\017\n\013output_dim0\030\003\032\013\n\006output\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\311\001\n SparseSegmentMeanWithNumSegments\022\t\n\004data\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\022\034\n\014num_segments\"\014Tnumsegments\032\013\n\006output\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\" \n\014Tnumsegments\022\004type\032\0020\003:\006\n\0042\002\003\t\n{\n\022SparseSegmentSqrtN\022\t\n\004data\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\032\013\n\006output\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\220\001\n\026SparseSegmentSqrtNGrad\022\t\n\004grad\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\022\017\n\013output_dim0\030\003\032\013\n\006output\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\312\001\n!SparseSegmentSqrtNWithNumSegments\022\t\n\004data\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\022\034\n\014num_segments\"\014Tnumsegments\032\013\n\006output\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\" \n\014Tnumsegments\022\004type\032\0020\003:\006\n\0042\002\003\t\n\203\001\n\020SparseSegmentSum\022\t\n\004data\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\032\013\n\006output\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n\322\001\n\037SparseSegmentSumWithNumSegments\022\t\n\004data\"\001T\022\017\n\007indices\"\004Tidx\022\017\n\013segment_ids\030\003\022\034\n\014num_segments\"\014Tnumsegments\032\013\n\006output\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\" \n\014Tnumsegments\022\004type\032\0020\003:\006\n\0042\002\003\t\n-\n\004Sqrt\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n:\n\010SqrtGrad\022\006\n\001y\"\001T\022\007\n\002dy\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n1\n\006Square\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\nG\n\021SquaredDifference\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\220\001\001\n:\n\003Sub\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\016\023\001\002\004\006\021\005\003\t\010\022\n\214\001\n\003Sum\022\n\n\005input\"\001T\022\031\n\021reduction_indices\"\004Tidx\032\013\n\006output\"\001T\"\025\n\tkeep_dims\022\004bool\032\002(\000\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\004Tidx\022\004type\032\0020\003:\006\n\0042\002\003\t\n.\n\003Tan\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\027\n\001T\022\004type:\014\n\n2\010\016\023\001\002\003\t\010\022\n-\n\004Tanh\022\006\n\001x\"\001T\032\006\n\001y\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\n:\n\010TanhGrad\022\006\n\001y\"\001T\022\007\n\002dy\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\016\023\001\002\010\022\nB\n\013TruncateDiv\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\016\023\001\002\004\006\021\005\003\t\010\022\n<\n\013TruncateMod\022\006\n\001x\"\001T\022\006\n\001y\"\001T\032\006\n\001z\"\001T\"\025\n\001T\022\004type:\n\n\0102\006\003\t\016\023\001\002\n\274\001\n\022UnsortedSegmentMax\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\022\034\n\014num_segments\"\014Tnumsegments\032\013\n\006output\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\" \n\014Tnumsegments\022\004type\032\0020\003:\006\n\0042\002\003\t\n\274\001\n\022UnsortedSegmentMin\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\022\034\n\014num_segments\"\014Tnumsegments\032\013\n\006output\"\001T\"\033\n\001T\022\004type:\020\n\0162\014\001\002\003\004\005\006\t\016\021\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\" \n\014Tnumsegments\022\004type\032\0020\003:\006\n\0042\002\003\t\n\302\001\n\023UnsortedSegmentProd\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\022\034\n\014num_segments\"\014Tnumsegments\032\013\n\006output\"\001T\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\" \n\014Tnumsegments\022\004type\032\0020\003:\006\n\0042\002\003\t\n\301\001\n\022UnsortedSegmentSum\022\t\n\004data\"\001T\022\027\n\013segment_ids\"\010Tindices\022\034\n\014num_segments\"\014Tnumsegments\032\013\n\006output\"\001T\" \n\001T\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\030\n\010Tindices\022\004type:\006\n\0042\002\003\t\" \n\014Tnumsegments\022\004type\032\0020\003:\006\n\0042\002\003\t\n1\n\004Zeta\022\006\n\001x\"\001T\022\006\n\001q\"\001T\032\006\n\001z\"\001T\"\021\n\001T\022\004type:\006\n\0042\002\001\002")
31.749766
26,169
0.632458
60,078
440,655
4.339775
0.020074
0.028582
0.02261
0.021103
0.914316
0.903285
0.888799
0.877802
0.868954
0.863216
0
0.053219
0.236975
440,655
13,878
26,170
31.752054
0.722215
0.385267
0
0.776066
1
0.018832
0.096812
0.05617
0
0
0
0
0
1
0.045027
false
0
0.002568
0
0.137476
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
9
5311bdf4dfe6e2813dcf2c28b40dad10195c1693
66,098
py
Python
research/object_detection/data_decoders/tf_example_decoder_test.py
akshit-protonn/models
38c8c6fe4144c93d6aadd19981c2b90570c29eba
[ "Apache-2.0" ]
18
2022-01-14T09:58:27.000Z
2022-01-14T09:58:37.000Z
research/object_detection/data_decoders/tf_example_decoder_test.py
akshit-protonn/models
38c8c6fe4144c93d6aadd19981c2b90570c29eba
[ "Apache-2.0" ]
62
2021-06-09T00:47:27.000Z
2021-09-24T09:06:58.000Z
research/object_detection/data_decoders/tf_example_decoder_test.py
akshit-protonn/models
38c8c6fe4144c93d6aadd19981c2b90570c29eba
[ "Apache-2.0" ]
2
2021-02-17T06:59:57.000Z
2021-03-18T10:12:30.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.data_decoders.tf_example_decoder.""" import os import numpy as np import six import tensorflow.compat.v1 as tf from object_detection.core import standard_fields as fields from object_detection.data_decoders import tf_example_decoder from object_detection.protos import input_reader_pb2 from object_detection.utils import dataset_util from object_detection.utils import test_case class TfExampleDecoderTest(test_case.TestCase): def _create_encoded_and_decoded_data(self, data, encoding_type): if encoding_type == 'jpeg': encode_fn = tf.image.encode_jpeg decode_fn = tf.image.decode_jpeg elif encoding_type == 'png': encode_fn = tf.image.encode_png decode_fn = tf.image.decode_png else: raise ValueError('Invalid encoding type.') def prepare_data_fn(): encoded_data = encode_fn(data) decoded_data = decode_fn(encoded_data) return encoded_data, decoded_data return self.execute_cpu(prepare_data_fn, []) def testDecodeAdditionalChannels(self): image = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data(image, 'jpeg') additional_channel = np.random.randint(256, size=(4, 5, 1)).astype(np.uint8) (encoded_additional_channel, decoded_additional_channel) = self._create_encoded_and_decoded_data( additional_channel, 'jpeg') def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/additional_channels/encoded': dataset_util.bytes_list_feature( [encoded_additional_channel] * 2), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/source_id': dataset_util.bytes_feature(six.b('image_id')), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( num_additional_channels=2) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( np.concatenate([decoded_additional_channel] * 2, axis=2), tensor_dict[fields.InputDataFields.image_additional_channels]) def testDecodeJpegImage(self): image = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, decoded_jpeg = self._create_encoded_and_decoded_data( image, 'jpeg') def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/source_id': dataset_util.bytes_feature(six.b('image_id')), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual( (output[fields.InputDataFields.image].get_shape().as_list()), [None, None, 3]) self.assertAllEqual( (output[fields.InputDataFields.original_image_spatial_shape] .get_shape().as_list()), [2]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(decoded_jpeg, tensor_dict[fields.InputDataFields.image]) self.assertAllEqual([4, 5], tensor_dict[fields.InputDataFields. original_image_spatial_shape]) self.assertEqual( six.b('image_id'), tensor_dict[fields.InputDataFields.source_id]) def testDecodeImageKeyAndFilename(self): image = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data(image, 'jpeg') def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/key/sha256': dataset_util.bytes_feature(six.b('abc')), 'image/filename': dataset_util.bytes_feature(six.b('filename')) })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertEqual(six.b('abc'), tensor_dict[fields.InputDataFields.key]) self.assertEqual( six.b('filename'), tensor_dict[fields.InputDataFields.filename]) def testDecodePngImage(self): image = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_png, decoded_png = self._create_encoded_and_decoded_data( image, 'png') def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_png), 'image/format': dataset_util.bytes_feature(six.b('png')), 'image/source_id': dataset_util.bytes_feature(six.b('image_id')) })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual( (output[fields.InputDataFields.image].get_shape().as_list()), [None, None, 3]) self.assertAllEqual( (output[fields.InputDataFields.original_image_spatial_shape] .get_shape().as_list()), [2]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(decoded_png, tensor_dict[fields.InputDataFields.image]) self.assertAllEqual([4, 5], tensor_dict[fields.InputDataFields. original_image_spatial_shape]) self.assertEqual( six.b('image_id'), tensor_dict[fields.InputDataFields.source_id]) def testDecodePngInstanceMasks(self): image = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_png, _ = self._create_encoded_and_decoded_data(image, 'png') mask_1 = np.random.randint(0, 2, size=(10, 10, 1)).astype(np.uint8) mask_2 = np.random.randint(0, 2, size=(10, 10, 1)).astype(np.uint8) encoded_png_1, _ = self._create_encoded_and_decoded_data(mask_1, 'png') decoded_png_1 = np.squeeze(mask_1.astype(np.float32)) encoded_png_2, _ = self._create_encoded_and_decoded_data(mask_2, 'png') decoded_png_2 = np.squeeze(mask_2.astype(np.float32)) encoded_masks = [encoded_png_1, encoded_png_2] decoded_masks = np.stack([decoded_png_1, decoded_png_2]) def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_png), 'image/format': dataset_util.bytes_feature(six.b('png')), 'image/object/mask': dataset_util.bytes_list_feature(encoded_masks) })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=True, instance_mask_type=input_reader_pb2.PNG_MASKS) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( decoded_masks, tensor_dict[fields.InputDataFields.groundtruth_instance_masks]) def testDecodeEmptyPngInstanceMasks(self): image_tensor = np.random.randint(256, size=(10, 10, 3)).astype(np.uint8) encoded_png, _ = self._create_encoded_and_decoded_data(image_tensor, 'png') encoded_masks = [] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_png), 'image/format': dataset_util.bytes_feature(six.b('png')), 'image/object/mask': dataset_util.bytes_list_feature(encoded_masks), 'image/height': dataset_util.int64_feature(10), 'image/width': dataset_util.int64_feature(10), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=True, instance_mask_type=input_reader_pb2.PNG_MASKS) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( tensor_dict[fields.InputDataFields.groundtruth_instance_masks].shape, [0, 10, 10]) def testDecodeBoundingBox(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_boxes].get_shape().as_list()), [None, 4]) return output tensor_dict = self.execute_cpu(graph_fn, []) expected_boxes = np.vstack([bbox_ymins, bbox_xmins, bbox_ymaxs, bbox_xmaxs]).transpose() self.assertAllEqual(expected_boxes, tensor_dict[fields.InputDataFields.groundtruth_boxes]) def testDecodeKeypointDepth(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] keypoint_ys = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] keypoint_xs = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] keypoint_visibility = [1, 2, 0, 1, 0, 2] keypoint_depths = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] keypoint_depth_weights = [1.0, 0.9, 0.8, 0.7, 0.6, 0.5] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), 'image/object/keypoint/y': dataset_util.float_list_feature(keypoint_ys), 'image/object/keypoint/x': dataset_util.float_list_feature(keypoint_xs), 'image/object/keypoint/z': dataset_util.float_list_feature(keypoint_depths), 'image/object/keypoint/z/weights': dataset_util.float_list_feature(keypoint_depth_weights), 'image/object/keypoint/visibility': dataset_util.int64_list_feature(keypoint_visibility), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( num_keypoints=3, load_keypoint_depth_features=True) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual( (output[fields.InputDataFields.groundtruth_keypoint_depths].get_shape( ).as_list()), [2, 3]) self.assertAllEqual( (output[fields.InputDataFields.groundtruth_keypoint_depth_weights] .get_shape().as_list()), [2, 3]) return output tensor_dict = self.execute_cpu(graph_fn, []) expected_keypoint_depths = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]] self.assertAllClose( expected_keypoint_depths, tensor_dict[fields.InputDataFields.groundtruth_keypoint_depths]) expected_keypoint_depth_weights = [[1.0, 0.9, 0.8], [0.7, 0.6, 0.5]] self.assertAllClose( expected_keypoint_depth_weights, tensor_dict[fields.InputDataFields.groundtruth_keypoint_depth_weights]) def testDecodeKeypointDepthNoDepth(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] keypoint_ys = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] keypoint_xs = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] keypoint_visibility = [1, 2, 0, 1, 0, 2] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), 'image/object/keypoint/y': dataset_util.float_list_feature(keypoint_ys), 'image/object/keypoint/x': dataset_util.float_list_feature(keypoint_xs), 'image/object/keypoint/visibility': dataset_util.int64_list_feature(keypoint_visibility), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( num_keypoints=3, load_keypoint_depth_features=True) output = example_decoder.decode(tf.convert_to_tensor(example)) return output tensor_dict = self.execute_cpu(graph_fn, []) expected_keypoints_depth_default = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] self.assertAllClose( expected_keypoints_depth_default, tensor_dict[fields.InputDataFields.groundtruth_keypoint_depths]) self.assertAllClose( expected_keypoints_depth_default, tensor_dict[fields.InputDataFields.groundtruth_keypoint_depth_weights]) def testDecodeKeypoint(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] keypoint_ys = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] keypoint_xs = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] keypoint_visibility = [1, 2, 0, 1, 0, 2] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), 'image/object/keypoint/y': dataset_util.float_list_feature(keypoint_ys), 'image/object/keypoint/x': dataset_util.float_list_feature(keypoint_xs), 'image/object/keypoint/visibility': dataset_util.int64_list_feature(keypoint_visibility), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder(num_keypoints=3) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_boxes].get_shape().as_list()), [None, 4]) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_keypoints].get_shape().as_list()), [2, 3, 2]) return output tensor_dict = self.execute_cpu(graph_fn, []) expected_boxes = np.vstack([bbox_ymins, bbox_xmins, bbox_ymaxs, bbox_xmaxs]).transpose() self.assertAllEqual(expected_boxes, tensor_dict[fields.InputDataFields.groundtruth_boxes]) expected_keypoints = [ [[0.0, 1.0], [1.0, 2.0], [np.nan, np.nan]], [[3.0, 4.0], [np.nan, np.nan], [5.0, 6.0]]] self.assertAllClose( expected_keypoints, tensor_dict[fields.InputDataFields.groundtruth_keypoints]) expected_visibility = ( (np.array(keypoint_visibility) > 0).reshape((2, 3))) self.assertAllEqual( expected_visibility, tensor_dict[fields.InputDataFields.groundtruth_keypoint_visibilities]) def testDecodeKeypointNoVisibilities(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] keypoint_ys = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] keypoint_xs = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), 'image/object/keypoint/y': dataset_util.float_list_feature(keypoint_ys), 'image/object/keypoint/x': dataset_util.float_list_feature(keypoint_xs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder(num_keypoints=3) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_boxes].get_shape().as_list()), [None, 4]) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_keypoints].get_shape().as_list()), [2, 3, 2]) return output tensor_dict = self.execute_cpu(graph_fn, []) expected_boxes = np.vstack([bbox_ymins, bbox_xmins, bbox_ymaxs, bbox_xmaxs]).transpose() self.assertAllEqual(expected_boxes, tensor_dict[fields.InputDataFields.groundtruth_boxes]) expected_keypoints = ( np.vstack([keypoint_ys, keypoint_xs]).transpose().reshape((2, 3, 2))) self.assertAllEqual( expected_keypoints, tensor_dict[fields.InputDataFields.groundtruth_keypoints]) expected_visibility = np.ones((2, 3)) self.assertAllEqual( expected_visibility, tensor_dict[fields.InputDataFields.groundtruth_keypoint_visibilities]) def testDecodeDefaultGroundtruthWeights(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_boxes].get_shape().as_list()), [None, 4]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllClose(tensor_dict[fields.InputDataFields.groundtruth_weights], np.ones(2, dtype=np.float32)) def testDecodeObjectLabel(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_classes = [0, 1] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/label': dataset_util.int64_list_feature(bbox_classes), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_classes].get_shape().as_list()), [2]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(bbox_classes, tensor_dict[fields.InputDataFields.groundtruth_classes]) def testDecodeMultiClassScores(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] flattened_multiclass_scores = [100., 50.] + [20., 30.] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/multiclass_scores': dataset_util.float_list_feature( flattened_multiclass_scores), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_multiclass_scores=True) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(flattened_multiclass_scores, tensor_dict[fields.InputDataFields.multiclass_scores]) def testDecodeEmptyMultiClassScores(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_multiclass_scores=True) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertEqual( (0,), tensor_dict[fields.InputDataFields.multiclass_scores].shape) def testDecodeObjectLabelNoText(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_classes = [1, 2] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/label': dataset_util.int64_list_feature(bbox_classes), })).SerializeToString() label_map_string = """ item { id:1 name:'cat' } item { id:2 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_classes].get_shape().as_list()), [None]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(bbox_classes, tensor_dict[fields.InputDataFields.groundtruth_classes]) def testDecodeObjectLabelWithText(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_classes_text = [six.b('cat'), six.b('dog')] # Annotation label gets overridden by labelmap id. annotated_bbox_classes = [3, 4] expected_bbox_classes = [1, 2] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/text': dataset_util.bytes_list_feature(bbox_classes_text), 'image/object/class/label': dataset_util.int64_list_feature(annotated_bbox_classes), })).SerializeToString() label_map_string = """ item { id:1 name:'cat' } item { id:2 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(expected_bbox_classes, tensor_dict[fields.InputDataFields.groundtruth_classes]) def testDecodeObjectLabelUnrecognizedName(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_classes_text = [six.b('cat'), six.b('cheetah')] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/text': dataset_util.bytes_list_feature(bbox_classes_text), })).SerializeToString() label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_classes].get_shape().as_list()), [None]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual([2, -1], tensor_dict[fields.InputDataFields.groundtruth_classes]) def testDecodeObjectLabelWithMappingWithDisplayName(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_classes_text = [six.b('cat'), six.b('dog')] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/text': dataset_util.bytes_list_feature(bbox_classes_text), })).SerializeToString() label_map_string = """ item { id:3 display_name:'cat' } item { id:1 display_name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_classes].get_shape().as_list()), [None]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual([3, 1], tensor_dict[fields.InputDataFields.groundtruth_classes]) def testDecodeObjectLabelUnrecognizedNameWithMappingWithDisplayName(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_classes_text = [six.b('cat'), six.b('cheetah')] bbox_classes_id = [5, 6] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/text': dataset_util.bytes_list_feature(bbox_classes_text), 'image/object/class/label': dataset_util.int64_list_feature(bbox_classes_id), })).SerializeToString() label_map_string = """ item { name:'/m/cat' id:3 display_name:'cat' } item { name:'/m/dog' id:1 display_name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual([3, -1], tensor_dict[fields.InputDataFields.groundtruth_classes]) def testDecodeObjectLabelWithMappingWithName(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_classes_text = [six.b('cat'), six.b('dog')] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/class/text': dataset_util.bytes_list_feature(bbox_classes_text), })).SerializeToString() label_map_string = """ item { id:3 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_classes].get_shape().as_list()), [None]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual([3, 1], tensor_dict[fields.InputDataFields.groundtruth_classes]) def testDecodeObjectArea(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') object_area = [100., 174.] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/area': dataset_util.float_list_feature(object_area), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_area].get_shape().as_list()), [2]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(object_area, tensor_dict[fields.InputDataFields.groundtruth_area]) def testDecodeVerifiedNegClasses(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') neg_category_ids = [0, 5, 8] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/neg_category_ids': dataset_util.int64_list_feature(neg_category_ids), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( neg_category_ids, tensor_dict[fields.InputDataFields.groundtruth_verified_neg_classes]) def testDecodeNotExhaustiveClasses(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') not_exhaustive_category_ids = [0, 5, 8] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/not_exhaustive_category_ids': dataset_util.int64_list_feature( not_exhaustive_category_ids), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( not_exhaustive_category_ids, tensor_dict[fields.InputDataFields.groundtruth_not_exhaustive_classes]) def testDecodeObjectIsCrowd(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') object_is_crowd = [0, 1] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/is_crowd': dataset_util.int64_list_feature(object_is_crowd), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()), [2]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( [bool(item) for item in object_is_crowd], tensor_dict[fields.InputDataFields.groundtruth_is_crowd]) def testDecodeObjectDifficult(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') object_difficult = [0, 1] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/difficult': dataset_util.int64_list_feature(object_difficult), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_difficult].get_shape().as_list()), [2]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( [bool(item) for item in object_difficult], tensor_dict[fields.InputDataFields.groundtruth_difficult]) def testDecodeObjectGroupOf(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') object_group_of = [0, 1] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/group_of': dataset_util.int64_list_feature(object_group_of), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_group_of].get_shape().as_list()), [2]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( [bool(item) for item in object_group_of], tensor_dict[fields.InputDataFields.groundtruth_group_of]) def testDecodeObjectWeight(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') object_weights = [0.75, 1.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/weight': dataset_util.float_list_feature(object_weights), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_weights].get_shape().as_list()), [None]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual(object_weights, tensor_dict[fields.InputDataFields.groundtruth_weights]) def testDecodeClassConfidence(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') class_confidence = [0.0, 1.0, 0.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/class/confidence': dataset_util.float_list_feature(class_confidence), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual( (output[fields.InputDataFields.groundtruth_image_confidences] .get_shape().as_list()), [3]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( class_confidence, tensor_dict[fields.InputDataFields.groundtruth_image_confidences]) def testDecodeInstanceSegmentation(self): num_instances = 4 image_height = 5 image_width = 3 # Randomly generate image. image_tensor = np.random.randint( 256, size=(image_height, image_width, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') # Randomly generate instance segmentation masks. instance_masks = ( np.random.randint(2, size=(num_instances, image_height, image_width)).astype(np.float32)) instance_masks_flattened = np.reshape(instance_masks, [-1]) # Randomly generate class labels for each instance. object_classes = np.random.randint( 100, size=(num_instances)).astype(np.int64) def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/height': dataset_util.int64_feature(image_height), 'image/width': dataset_util.int64_feature(image_width), 'image/object/mask': dataset_util.float_list_feature(instance_masks_flattened), 'image/object/class/label': dataset_util.int64_list_feature(object_classes) })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=True) output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual( (output[fields.InputDataFields.groundtruth_instance_masks].get_shape( ).as_list()), [4, 5, 3]) self.assertAllEqual((output[ fields.InputDataFields.groundtruth_classes].get_shape().as_list()), [4]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( instance_masks.astype(np.float32), tensor_dict[fields.InputDataFields.groundtruth_instance_masks]) self.assertAllEqual(object_classes, tensor_dict[fields.InputDataFields.groundtruth_classes]) def testInstancesNotAvailableByDefault(self): num_instances = 4 image_height = 5 image_width = 3 # Randomly generate image. image_tensor = np.random.randint( 256, size=(image_height, image_width, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') # Randomly generate instance segmentation masks. instance_masks = ( np.random.randint(2, size=(num_instances, image_height, image_width)).astype(np.float32)) instance_masks_flattened = np.reshape(instance_masks, [-1]) # Randomly generate class labels for each instance. object_classes = np.random.randint( 100, size=(num_instances)).astype(np.int64) def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/height': dataset_util.int64_feature(image_height), 'image/width': dataset_util.int64_feature(image_width), 'image/object/mask': dataset_util.float_list_feature(instance_masks_flattened), 'image/object/class/label': dataset_util.int64_list_feature(object_classes) })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertNotIn(fields.InputDataFields.groundtruth_instance_masks, tensor_dict) def testDecodeImageLabels(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') def graph_fn_1(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/class/label': dataset_util.int64_list_feature([1, 2]), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn_1, []) self.assertIn(fields.InputDataFields.groundtruth_image_classes, tensor_dict) self.assertAllEqual( tensor_dict[fields.InputDataFields.groundtruth_image_classes], np.array([1, 2])) def graph_fn_2(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/class/text': dataset_util.bytes_list_feature( [six.b('dog'), six.b('cat')]), })).SerializeToString() label_map_string = """ item { id:3 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn_2, []) self.assertIn(fields.InputDataFields.groundtruth_image_classes, tensor_dict) self.assertAllEqual( tensor_dict[fields.InputDataFields.groundtruth_image_classes], np.array([1, 3])) def testDecodeContextFeatures(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] num_features = 8 context_feature_length = 10 context_features = np.random.random(num_features*context_feature_length) def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/context_features': dataset_util.float_list_feature(context_features), 'image/context_feature_length': dataset_util.int64_feature(context_feature_length), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_context_features=True) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllClose( context_features.reshape(num_features, context_feature_length), tensor_dict[fields.InputDataFields.context_features]) self.assertAllEqual( context_feature_length, tensor_dict[fields.InputDataFields.context_feature_length]) def testContextFeaturesNotAvailableByDefault(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] num_features = 10 context_feature_length = 10 context_features = np.random.random(num_features*context_feature_length) def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/context_features': dataset_util.float_list_feature(context_features), 'image/context_feature_length': dataset_util.int64_feature(context_feature_length), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) self.assertNotIn(fields.InputDataFields.context_features, tensor_dict) def testExpandLabels(self): label_map_string = """ item { id:1 name:'cat' ancestor_ids: 2 } item { id:2 name:'animal' descendant_ids: 1 } item { id:3 name:'man' ancestor_ids: 5 } item { id:4 name:'woman' display_name:'woman' ancestor_ids: 5 } item { id:5 name:'person' descendant_ids: 3 descendant_ids: 4 } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] bbox_classes_text = [six.b('cat'), six.b('cat')] bbox_group_of = [0, 1] image_class_text = [six.b('cat'), six.b('person')] image_confidence = [1.0, 0.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), 'image/object/class/text': dataset_util.bytes_list_feature(bbox_classes_text), 'image/object/group_of': dataset_util.int64_list_feature(bbox_group_of), 'image/class/text': dataset_util.bytes_list_feature(image_class_text), 'image/class/confidence': dataset_util.float_list_feature(image_confidence), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( label_map_proto_file=label_map_path, expand_hierarchy_labels=True) return example_decoder.decode(tf.convert_to_tensor(example)) tensor_dict = self.execute_cpu(graph_fn, []) boxes = np.vstack([bbox_ymins, bbox_xmins, bbox_ymaxs, bbox_xmaxs]).transpose() expected_boxes = np.stack( [boxes[0, :], boxes[0, :], boxes[1, :], boxes[1, :]], axis=0) expected_boxes_class = np.array([1, 2, 1, 2]) expected_boxes_group_of = np.array([0, 0, 1, 1]) expected_image_class = np.array([1, 2, 3, 4, 5]) expected_image_confidence = np.array([1.0, 1.0, 0.0, 0.0, 0.0]) self.assertAllEqual(expected_boxes, tensor_dict[fields.InputDataFields.groundtruth_boxes]) self.assertAllEqual(expected_boxes_class, tensor_dict[fields.InputDataFields.groundtruth_classes]) self.assertAllEqual( expected_boxes_group_of, tensor_dict[fields.InputDataFields.groundtruth_group_of]) self.assertAllEqual( expected_image_class, tensor_dict[fields.InputDataFields.groundtruth_image_classes]) self.assertAllEqual( expected_image_confidence, tensor_dict[fields.InputDataFields.groundtruth_image_confidences]) def testDecodeDensePose(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0, 2.0] bbox_xmins = [1.0, 5.0, 8.0] bbox_ymaxs = [2.0, 6.0, 1.0] bbox_xmaxs = [3.0, 7.0, 3.3] densepose_num = [0, 4, 2] densepose_part_index = [2, 2, 3, 4, 2, 9] densepose_x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] densepose_y = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4] densepose_u = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06] densepose_v = [0.99, 0.98, 0.97, 0.96, 0.95, 0.94] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), 'image/object/densepose/num': dataset_util.int64_list_feature(densepose_num), 'image/object/densepose/part_index': dataset_util.int64_list_feature(densepose_part_index), 'image/object/densepose/x': dataset_util.float_list_feature(densepose_x), 'image/object/densepose/y': dataset_util.float_list_feature(densepose_y), 'image/object/densepose/u': dataset_util.float_list_feature(densepose_u), 'image/object/densepose/v': dataset_util.float_list_feature(densepose_v), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_dense_pose=True) output = example_decoder.decode(tf.convert_to_tensor(example)) dp_num_points = output[fields.InputDataFields.groundtruth_dp_num_points] dp_part_ids = output[fields.InputDataFields.groundtruth_dp_part_ids] dp_surface_coords = output[ fields.InputDataFields.groundtruth_dp_surface_coords] return dp_num_points, dp_part_ids, dp_surface_coords dp_num_points, dp_part_ids, dp_surface_coords = self.execute_cpu( graph_fn, []) expected_dp_num_points = [0, 4, 2] expected_dp_part_ids = [ [0, 0, 0, 0], [2, 2, 3, 4], [2, 9, 0, 0] ] expected_dp_surface_coords = np.array( [ # Instance 0 (no points). [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]], # Instance 1 (4 points). [[0.9, 0.1, 0.99, 0.01], [0.8, 0.2, 0.98, 0.02], [0.7, 0.3, 0.97, 0.03], [0.6, 0.4, 0.96, 0.04]], # Instance 2 (2 points). [[0.5, 0.5, 0.95, 0.05], [0.4, 0.6, 0.94, 0.06], [0., 0., 0., 0.], [0., 0., 0., 0.]], ], dtype=np.float32) self.assertAllEqual(dp_num_points, expected_dp_num_points) self.assertAllEqual(dp_part_ids, expected_dp_part_ids) self.assertAllClose(dp_surface_coords, expected_dp_surface_coords) def testDecodeTrack(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') bbox_ymins = [0.0, 4.0, 2.0] bbox_xmins = [1.0, 5.0, 8.0] bbox_ymaxs = [2.0, 6.0, 1.0] bbox_xmaxs = [3.0, 7.0, 3.3] track_labels = [0, 1, 2] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), 'image/object/track/label': dataset_util.int64_list_feature(track_labels), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder( load_track_id=True) output = example_decoder.decode(tf.convert_to_tensor(example)) track_ids = output[fields.InputDataFields.groundtruth_track_ids] return track_ids track_ids = self.execute_cpu(graph_fn, []) expected_track_labels = [0, 1, 2] self.assertAllEqual(track_ids, expected_track_labels) if __name__ == '__main__': tf.test.main()
40.03513
80
0.603089
7,438
66,098
5.061576
0.046383
0.056683
0.038674
0.048874
0.868944
0.846393
0.816564
0.798953
0.781157
0.765007
0
0.02502
0.285863
66,098
1,650
81
40.059394
0.772557
0.016415
0
0.776297
0
0
0.085575
0.03527
0
0
0
0
0.058906
1
0.053997
false
0
0.006311
0
0.08906
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
531e55e6be488ba1586f078680847b9d77b065ff
4,416
py
Python
tests/test_base_protocol.py
Qix-/aiohttp
aee067dccad3dc0e79778a1b213105f20bf39baf
[ "Apache-2.0" ]
3
2019-01-15T04:17:33.000Z
2019-03-13T13:12:15.000Z
tests/test_base_protocol.py
Qix-/aiohttp
aee067dccad3dc0e79778a1b213105f20bf39baf
[ "Apache-2.0" ]
309
2019-08-20T21:49:50.000Z
2021-07-31T13:27:18.000Z
tests/test_base_protocol.py
amenezes/aiohttp
e8049814a2161278bae178cb96334ce0c98e66f3
[ "Apache-2.0" ]
1
2020-12-02T16:06:16.000Z
2020-12-02T16:06:16.000Z
import asyncio from contextlib import suppress from unittest import mock import pytest from aiohttp.base_protocol import BaseProtocol async def test_loop() -> None: loop = asyncio.get_event_loop() asyncio.set_event_loop(None) pr = BaseProtocol(loop) assert pr._loop is loop async def test_pause_writing() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop) assert not pr._paused pr.pause_writing() assert pr._paused async def test_resume_writing_no_waiters() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) pr.pause_writing() assert pr._paused pr.resume_writing() assert not pr._paused async def test_connection_made() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() assert pr.transport is None pr.connection_made(tr) assert pr.transport is not None async def test_connection_lost_not_paused() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) assert not pr._connection_lost pr.connection_lost(None) assert pr.transport is None assert pr._connection_lost async def test_connection_lost_paused_without_waiter() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) assert not pr._connection_lost pr.pause_writing() pr.connection_lost(None) assert pr.transport is None assert pr._connection_lost async def test_drain_lost() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.connection_lost(None) with pytest.raises(ConnectionResetError): await pr._drain_helper() async def test_drain_not_paused() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) assert pr._drain_waiter is None await pr._drain_helper() assert pr._drain_waiter is None async def test_resume_drain_waited() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() t = loop.create_task(pr._drain_helper()) await asyncio.sleep(0) assert pr._drain_waiter is not None pr.resume_writing() assert (await t) is None assert pr._drain_waiter is None async def test_lost_drain_waited_ok() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() t = loop.create_task(pr._drain_helper()) await asyncio.sleep(0) assert pr._drain_waiter is not None pr.connection_lost(None) assert (await t) is None assert pr._drain_waiter is None async def test_lost_drain_waited_exception() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() t = loop.create_task(pr._drain_helper()) await asyncio.sleep(0) assert pr._drain_waiter is not None exc = RuntimeError() pr.connection_lost(exc) with pytest.raises(RuntimeError) as cm: await t assert cm.value is exc assert pr._drain_waiter is None async def test_lost_drain_cancelled() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() fut = loop.create_future() async def wait(): fut.set_result(None) await pr._drain_helper() t = loop.create_task(wait()) await fut t.cancel() assert pr._drain_waiter is not None pr.connection_lost(None) with suppress(asyncio.CancelledError): await t assert pr._drain_waiter is None async def test_resume_drain_cancelled() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() fut = loop.create_future() async def wait(): fut.set_result(None) await pr._drain_helper() t = loop.create_task(wait()) await fut t.cancel() assert pr._drain_waiter is not None pr.resume_writing() with suppress(asyncio.CancelledError): await t assert pr._drain_waiter is None
24.131148
63
0.688406
622
4,416
4.636656
0.101286
0.058252
0.054092
0.081137
0.818308
0.771498
0.727115
0.727115
0.727115
0.711512
0
0.000867
0.216259
4,416
182
64
24.263736
0.832418
0
0
0.814286
0
0
0
0
0
0
0
0
0.2
1
0
false
0
0.035714
0
0.035714
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
5324fa73c034a05cd172d09f6d03e2153b7f495e
35
py
Python
nptweak/__init__.py
kmedian/nptweak
222f46b8abb9b00f1ae8065d38d0514193aa8a4b
[ "MIT" ]
null
null
null
nptweak/__init__.py
kmedian/nptweak
222f46b8abb9b00f1ae8065d38d0514193aa8a4b
[ "MIT" ]
2
2019-12-03T12:37:17.000Z
2019-12-03T12:37:45.000Z
nptweak/__init__.py
kmedian/nptweak
222f46b8abb9b00f1ae8065d38d0514193aa8a4b
[ "MIT" ]
null
null
null
from .to_2darray import to_2darray
17.5
34
0.857143
6
35
4.666667
0.666667
0.642857
0
0
0
0
0
0
0
0
0
0.064516
0.114286
35
1
35
35
0.83871
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
53683ad065e876599c6cda203cf6ca253e4f6885
7,499
py
Python
traffic_predict/model.py
Wangjw6/project
daae9de42fe7bf7ff29c20246e1164b62b7cef4a
[ "MIT" ]
null
null
null
traffic_predict/model.py
Wangjw6/project
daae9de42fe7bf7ff29c20246e1164b62b7cef4a
[ "MIT" ]
null
null
null
traffic_predict/model.py
Wangjw6/project
daae9de42fe7bf7ff29c20246e1164b62b7cef4a
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- import tensorflow as tf class CNN: def __init__(self, save_or_load_path=None, trainable=True, learning_rate = 0.00002,timestep=9,road=189,predstep=1): self.trainable = trainable self.learning_rate = learning_rate self.road = road self.input_size = timestep * road self.output_size = predstep * road self.bottom = tf.placeholder(tf.float32, shape=[None, self.input_size], name='input') # 25*2*6 self.target = tf.placeholder(tf.float32, shape=[None, self.output_size], name='target') self.timestep = timestep def weight_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return initial def conv2d(self,x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def conv1d(self,x, W): return tf.nn.conv1d(x, W, stride=2, padding='SAME') def max_pool_2x2(self,x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def build_CNN(self, ): # conv first bottom = tf.reshape(self.bottom, [-1, self.road, self.timestep, 1]) W_conv1 = self.weight_variable([3, 3, 1, 64]) b_conv1 = self.bias_variable([64]) h_conv1 = tf.nn.elu(self.conv2d(bottom, W_conv1) + b_conv1) h_pool1 = self.max_pool_2x2(h_conv1) h_flat3 = tf.reshape(h_pool1, [-1, 95 * 5 * 64]) W_fc2 = self.weight_variable([95 * 5 * 64, 1200]) b_fc2 = self.bias_variable([1200]) h = tf.nn.elu(tf.matmul(h_flat3, W_fc2) + b_fc2) # h_flat3 = tf.reshape(h_pool3, [-1, 400]) W_fc2 = self.weight_variable([1200, self.output_size]) b_fc2 = self.bias_variable([self.output_size]) self.predict = tf.nn.elu(tf.matmul(h, W_fc2) + b_fc2) global_step = tf.Variable(0, trainable=False) self.learning_rate = 0.0002 #tf.train.exponential_decay(0.001, global_step, 500, 0.9,staircase=True) self.loss = tf.reduce_mean(tf.squared_difference(self.target, self.predict)) self.accuracy = 1. - tf.reduce_mean(abs(self.target-self.predict)/self.target) self.trainop = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss, global_step=global_step) # self.trainop = tf.train.RMSPropOptimizer(self.learning_rate, 0.99, 0.0, 1e-6).minimize(self.loss) return self.predict class CNN15: def __init__(self, save_or_load_path=None, trainable=True, learning_rate = 0.00002,timestep=9,road=189,predstep=3): self.trainable = trainable self.learning_rate = learning_rate self.road = road self.input_size = timestep * road self.output_size = predstep * road self.bottom = tf.placeholder(tf.float32, shape=[None, self.input_size], name='input') # 25*2*6 self.target = tf.placeholder(tf.float32, shape=[None, self.output_size], name='target') self.timestep = timestep def weight_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return initial def conv2d(self,x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def conv1d(self,x, W): return tf.nn.conv1d(x, W, stride=2, padding='SAME') def max_pool_2x2(self,x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def build_CNN(self, ): # conv first bottom = tf.reshape(self.bottom, [-1, self.road, self.timestep, 1]) W_conv1 = self.weight_variable([3, 3, 1, 64]) b_conv1 = self.bias_variable([64]) h_conv1 = tf.nn.elu(self.conv2d(bottom, W_conv1) + b_conv1) h_pool1 = self.max_pool_2x2(h_conv1) h_flat3 = tf.reshape(h_pool1, [-1, 95 * 5 * 64]) W_fc2 = self.weight_variable([95 * 5 * 64, 1200]) b_fc2 = self.bias_variable([1200]) h = tf.nn.elu(tf.matmul(h_flat3, W_fc2) + b_fc2) # h_flat3 = tf.reshape(h_pool3, [-1, 400]) W_fc2 = self.weight_variable([1200, self.output_size]) b_fc2 = self.bias_variable([self.output_size]) self.predict = tf.nn.elu(tf.matmul(h, W_fc2) + b_fc2) global_step = tf.Variable(0, trainable=False) self.learning_rate = 0.0002 #tf.train.exponential_decay(0.001, global_step, 500, 0.9,staircase=True) self.loss = tf.reduce_mean(tf.squared_difference(self.target, self.predict)) self.accuracy = 1. - tf.reduce_mean(abs(self.target-self.predict)/self.target) self.trainop = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss, global_step=global_step) # self.trainop = tf.train.RMSPropOptimizer(self.learning_rate, 0.99, 0.0, 1e-6).minimize(self.loss) return self.predict class CNN30: def __init__(self, save_or_load_path=None, trainable=True, learning_rate=0.00002,timestep=9,road=189,predstep=6): self.trainable = trainable self.learning_rate = learning_rate self.road = road self.input_size = timestep * road self.output_size = predstep * road self.bottom = tf.placeholder(tf.float32, shape=[None, self.input_size], name='input') # 25*2*6 self.target = tf.placeholder(tf.float32, shape=[None, self.output_size], name='target') self.timestep = timestep def weight_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(self,shape): initial = tf.truncated_normal(shape, stddev=0.1) return initial def conv2d(self,x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def conv1d(self,x, W): return tf.nn.conv1d(x, W, stride=2, padding='SAME') def max_pool_2x2(self,x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def build_CNN(self, ): # conv first bottom = tf.reshape(self.bottom, [-1, self.road, self.timestep, 1]) W_conv1 = self.weight_variable([3, 3, 1, 64]) b_conv1 = self.bias_variable([64]) h_conv1 = tf.nn.elu(self.conv2d(bottom, W_conv1) + b_conv1) h_pool1 = self.max_pool_2x2(h_conv1) h_flat3 = tf.reshape(h_pool1, [-1, 95 * 5 * 64]) W_fc2 = self.weight_variable([95 * 5 * 64, 1200]) b_fc2 = self.bias_variable([1200]) h = tf.nn.elu(tf.matmul(h_flat3, W_fc2) + b_fc2) # h_flat3 = tf.reshape(h_pool3, [-1, 400]) W_fc2 = self.weight_variable([1200, self.output_size]) b_fc2 = self.bias_variable([self.output_size]) self.predict = tf.nn.elu(tf.matmul(h, W_fc2) + b_fc2) global_step = tf.Variable(0, trainable=False) self.learning_rate = 0.0002 # tf.train.exponential_decay(0.001, global_step, 500, 0.9,staircase=True) self.loss = tf.reduce_mean(tf.squared_difference(self.target, self.predict)) self.accuracy = 1. - tf.reduce_mean(abs(self.target - self.predict) / self.target) self.trainop = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss, global_step=global_step) # self.trainop = tf.train.RMSPropOptimizer(self.learning_rate, 0.99, 0.0, 1e-6).minimize(self.loss) return self.predict
43.346821
119
0.642619
1,132
7,499
4.090106
0.094523
0.046652
0.041469
0.02851
0.988985
0.988985
0.988985
0.988985
0.988985
0.988985
0
0.064072
0.215362
7,499
173
120
43.346821
0.722808
0.094813
0
0.943548
0
0
0.010189
0
0
0
0
0
0
1
0.169355
false
0
0.008065
0.072581
0.346774
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
729d6a65e6746aea2916773666e9ce787cb8c7de
10,772
py
Python
dataconnector.py
iamthinkking/COMP4217_FinalProject
98cadb013bab52677bffb951b6d173caf4bb22b3
[ "MIT" ]
null
null
null
dataconnector.py
iamthinkking/COMP4217_FinalProject
98cadb013bab52677bffb951b6d173caf4bb22b3
[ "MIT" ]
null
null
null
dataconnector.py
iamthinkking/COMP4217_FinalProject
98cadb013bab52677bffb951b6d173caf4bb22b3
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import pymysql class Connection: SQL_HOST = 'localhost' SQL_USR = '' SQL_PWD = '' SQL_DB = 'HOSPITAL' # initialize database object def __init__(self, usr, pwd): self.USR = usr self.PWD = pwd # return an database connection def __enter__(self): # Open database connection self.CON = pymysql.connect("localhost", self.USR, self.PWD, "HOSPITAL", autocommit=True) return self def __exit__(self, exc_type, exc_val, exc_tb): # make sure the database connection gets closed self.CON.close() def get_doctors(self): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL sp_get_doctors();") # Fetch all the tuples in a list of lists. data = cursor.fetchall() except pymysql.err.OperationalError as e: return data finally: return data def get_nurses(self): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL sp_get_nurses();") # Fetch all the tuples in a list of lists. data = cursor.fetchall() except pymysql.err.OperationalError as e: return data finally: return data def GetMedicineAllergyByMostPatients(self): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL GetMedicineAllergyByMostPatients();") # Fetch all the tuples in a list of lists. data = cursor.fetchall() except pymysql.err.OperationalError as e: return data finally: return data def GetInternsByMostPatient(self): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL GetInternsByMostPatient();") # Fetch all the tuples in a list of lists. data = cursor.fetchall() except pymysql.err.OperationalError as e: return data finally: return data def GetInternPerformanceData(self): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL GetInternPerformanceData();") # Fetch all the tuples in a list of lists. data = cursor.fetchall() except pymysql.err.OperationalError as e: return data finally: return data def get_patients(self, q=""): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL get_patients('"+str(q)+"');") # Fetch all the tuples in a list of lists. data = cursor.fetchall() except pymysql.err.OperationalError as e: print(e) return data finally: return data def GetPatientByDiagnosisAndDate(self, start_date, end_date, diagnosis=""): data = () # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute method cursor.execute("CALL GetPatientByDiagnosisAndDate('" + str(start_date) + "', '" + str(end_date) + "', '" + str(diagnosis) + "');") # fetch all the tuples in a list of lists data = cursor.fetchall() return data def get_allergens_of_patient(self, patID): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL get_allergens_of_patient('"+str(patID)+"');") # Fetch all the tuples in a list of lists. data = cursor.fetchall() except pymysql.err.OperationalError as e: print(e) return data finally: return data def add_patient(self, fname, lname, dob, address, phone): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL sp_add_patient('" + fname + "', '" + lname + "', '" + str(dob) + "', '" + address + "', " + str(phone) + ");") self.CON.commit() except pymysql.err.OperationalError as e: return data finally: return data def make_diagnosis(self, docID, patID, icdID, icdDesc, icdname, specifics): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL make_diagnosis(" + str(docID) + ", " + str(patID) + ", " + str(icdID) + ", '" + icdDesc + "', '" + str(icdname) + "', '" + specifics + "');") except pymysql.err.OperationalError as e: return data finally: self.CON.commit() return data def check_vitals(self, nurseID, patID, temp, pulse_arg, bp, resp): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL check_vitals(" + str(nurseID) + ", " + str(patID) + ", " + str(temp) + ", '" + str(pulse_arg) + "', '" + str(bp) + "', '" + str(resp) + "');") except pymysql.err.OperationalError as e: return data finally: self.CON.commit() return data def login(self): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL sp_get_currentuser('" + self.USR + "');") # gets only one tuple from the database's response data = cursor.fetchone() except pymysql.err.OperationalError as e: return data finally: return data def get_role(self): data = () try: # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute() method. cursor.execute("CALL sp_get_currentuser('" + self.USR + "');") # gets only one tuple from the database's response data = cursor.fetchone() except pymysql.err.OperationalError as e: return data finally: return data def GetNursesByPatientAndDate(self, start_date, end_date, pat_ID): data = () # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute method cursor.execute("CALL GetNursesByPatientAndDate('" + str(start_date) + "', '" + str(end_date) + "', '" + str(pat_ID) + "');") # fetch all the tuples in a list of lists data = cursor.fetchall() return data def get_allergens_of_patient(self,patID): data = () # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute method cursor.execute("CALL get_allergens_of_patient('" + str(patID) + "');") # fetch all the tuples in a list of lists data = cursor.fetchall() return data def get_medicine_allergy_by_most_patients(self): data = () # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute method cursor.execute("CALL get_medicine_allergy_by_most_patients();") # fetch all the tuples in a list of lists data = cursor.fetchall() return data def GetResultsByPatient(self,patID): data = () # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute method cursor.execute("CALL GetResultsByPatient('" + str(patID) + "');") # fetch all the tuples in a list of lists data = cursor.fetchall() return data def get_nurses_by_patient_and_date(self,start_date, end_date, patID): data = () # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute method cursor.execute("CALL get_nurses_by_patient_and_date('" + str(start_date) + "', '" + str(end_date) + "', '" + str(patID) + "');") # fetch all the tuples in a list of lists data = cursor.fetchall() return data def get_interns_by_most_patients(self): data = () # prepare a cursor object using cursor() method with self.CON.cursor() as cursor: # execute SQL query using execute method cursor.execute("CALL get_interns_by_most_patients();") # fetch all the tuples in a list of lists data = cursor.fetchall() return data
30.602273
121
0.525529
1,115
10,772
4.991928
0.109417
0.088753
0.04779
0.068272
0.808839
0.794466
0.781171
0.768236
0.768236
0.768236
0
0.00015
0.383123
10,772
351
122
30.689459
0.837472
0.228463
0
0.717391
0
0
0.086698
0.040628
0
0
0
0
0
1
0.119565
false
0
0.005435
0
0.326087
0.01087
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
72c7cb9e21a63cc41a2a8dafac7960b8bc5acb97
370
py
Python
launchpad_py/__init__.py
inniyah/launchpad-py
b8dd4815b05d7e75ba5ca09ced64ddc38f515bad
[ "CC-BY-4.0" ]
1
2020-05-07T04:08:13.000Z
2020-05-07T04:08:13.000Z
launchpad_py/__init__.py
inniyah/launchpad-py
b8dd4815b05d7e75ba5ca09ced64ddc38f515bad
[ "CC-BY-4.0" ]
null
null
null
launchpad_py/__init__.py
inniyah/launchpad-py
b8dd4815b05d7e75ba5ca09ced64ddc38f515bad
[ "CC-BY-4.0" ]
null
null
null
# more specific selections for Python 3 (ASkr, 2/2018) from launchpad_py.launchpad import Launchpad from launchpad_py.launchpad import LaunchpadMk2 from launchpad_py.launchpad import LaunchpadPro from launchpad_py.launchpad import LaunchControlXL from launchpad_py.launchpad import LaunchKeyMini from launchpad_py.launchpad import Dicer from launchpad_py import charset
41.111111
54
0.87027
50
370
6.3
0.38
0.288889
0.333333
0.457143
0.571429
0
0
0
0
0
0
0.021021
0.1
370
8
55
46.25
0.924925
0.140541
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
72ce4318d1d0f496564578d4caec5a73368d7bf6
68,544
py
Python
system/indy-node-tests/TestAuthMapSuite.py
Toktar/indy-test-automation
4d583dda7cbf2a9f451b3a01312a90e55c7bacc8
[ "Apache-2.0" ]
null
null
null
system/indy-node-tests/TestAuthMapSuite.py
Toktar/indy-test-automation
4d583dda7cbf2a9f451b3a01312a90e55c7bacc8
[ "Apache-2.0" ]
null
null
null
system/indy-node-tests/TestAuthMapSuite.py
Toktar/indy-test-automation
4d583dda7cbf2a9f451b3a01312a90e55c7bacc8
[ "Apache-2.0" ]
null
null
null
import pytest import asyncio from system.utils import * from random import randrange as rr import hashlib import time from datetime import datetime, timedelta, timezone from indy import payment import logging logger = logging.getLogger(__name__) @pytest.mark.usefixtures('docker_setup_and_teardown') class TestAuthMapSuite: @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio async def test_case_nym(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, editor_role, editor_role_num): trustee_did, _ = get_default_trustee new_did, new_vk = await did.create_and_store_my_did(wallet_handler, '{}') # add adder to add nym adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' # add editor to edit nym editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, editor_role) assert res['op'] == 'REPLY' req = await ledger.build_auth_rule_request(trustee_did, '1', 'ADD', 'role', '*', '', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' req = await ledger.build_auth_rule_request(trustee_did, '1', 'EDIT', 'verkey', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # add nym with verkey by adder res4 = await send_nym(pool_handler, wallet_handler, adder_did, new_did, adder_vk) # push adder vk print(res4) assert res4['op'] == 'REPLY' # edit verkey by editor res5 = await send_nym(pool_handler, wallet_handler, editor_did, new_did, editor_vk) # push editor vk print(res5) assert res5['op'] == 'REPLY' # negative cases if adder_role != editor_role: # try to add another nym with editor did - should be rejected res6 = await send_nym(pool_handler, wallet_handler, editor_did, random_did_and_json()[0]) print(res6) assert res6['op'] == 'REJECT' # try to edit initial nym one more time with adder did - should be rejected res7 = await send_nym(pool_handler, wallet_handler, adder_did, new_did, adder_vk) print(res7) assert res7['op'] == 'REJECT' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio async def test_case_attrib(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, editor_role, editor_role_num): trustee_did, _ = get_default_trustee # add target nym target_did, target_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, target_did, target_vk) assert res['op'] == 'REPLY' # add adder to add attrib adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' # add editor to edit attrib editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, editor_role) assert res['op'] == 'REPLY' # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '100', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '100', 'EDIT', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # add attrib for target did by non-owner adder res4 = await send_attrib(pool_handler, wallet_handler, adder_did, target_did, None, json.dumps({'key1': 'value1'}), None) print(res4) assert res4['op'] == 'REPLY' # edit attrib for target did by non-owner editor res5 = await send_attrib(pool_handler, wallet_handler, editor_did, target_did, None, json.dumps({'key1': 'value2'}), None) print(res5) assert res5['op'] == 'REPLY' # negative cases if adder_role != editor_role: # try to add another attrib with editor did - should be rejected res6 = await send_attrib(pool_handler, wallet_handler, editor_did, target_did, None, json.dumps({'key2': 'value1'}), None) print(res6) assert res6['op'] == 'REJECT' # try to edit initial attrib one more time with adder did - should be rejected res7 = await send_attrib(pool_handler, wallet_handler, adder_did, target_did, None, json.dumps({'key1': 'value3'}), None) print(res7) assert res7['op'] == 'REJECT' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.asyncio async def test_case_schema(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num): # we can add schema only trustee_did, _ = get_default_trustee # add adder to add schema adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '101', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # add schema res4 = await send_schema(pool_handler, wallet_handler, adder_did, 'schema1', '1.0', json.dumps(['attr1'])) print(res4) assert res4[1]['op'] == 'REPLY' # edit schema - nobody can edit schemas - should be rejected res5 = await send_schema(pool_handler, wallet_handler, adder_did, 'schema1', '1.0', json.dumps(['attr1', 'attr2'])) print(res5) assert res5[1]['op'] == 'REJECT' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio # use the same did with different roles to ADD and EDIT since adder did is a part of unique cred def id async def test_case_cred_def(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, editor_role, editor_role_num): trustee_did, _ = get_default_trustee # add adder to add cred def adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' schema_id, _ = await send_schema(pool_handler, wallet_handler, trustee_did, 'schema1', '1.0', json.dumps(["age", "sex", "height", "name"])) await asyncio.sleep(1) res = await get_schema(pool_handler, wallet_handler, trustee_did, schema_id) schema_id, schema_json = await ledger.parse_get_schema_response(json.dumps(res)) # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '102', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '102', 'EDIT', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # add cred def cred_def_id, cred_def_json = \ await anoncreds.issuer_create_and_store_credential_def(wallet_handler, adder_did, schema_json, 'TAG1', None, json.dumps({'support_revocation': False})) request = await ledger.build_cred_def_request(adder_did, cred_def_json) res4 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, request)) print(res4) assert res4['op'] == 'REPLY' if adder_role != editor_role: # try to edit cred def as adder - should be rejected _request = json.loads(request) _request['operation']['data']['primary']['n'] = '123456789' _request['reqId'] += _request['reqId'] res5 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, json.dumps(_request))) print(res5) assert res5['op'] == 'REJECT' # change adder role to edit cred def res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, None, None, editor_role) print(res) assert res['op'] == 'REPLY' # edit cred def request = json.loads(request) request['operation']['data']['primary']['n'] = '123456' request['reqId'] += request['reqId'] res6 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, json.dumps(request))) print(res6) assert res6['op'] == 'REPLY' if adder_role != editor_role: # try to add another cred def as editor - should be rejected cred_def_id, cred_def_json = \ await anoncreds.issuer_create_and_store_credential_def(wallet_handler, adder_did, schema_json, 'TAG2', None, json.dumps({'support_revocation': True})) request = await ledger.build_cred_def_request(adder_did, cred_def_json) res7 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, request)) print(res7) assert res7['op'] == 'REJECT' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio # use the same did with different roles to ADD and EDIT since adder did is a part of unique revoc reg def id async def test_case_revoc_reg_def(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, editor_role, editor_role_num): trustee_did, _ = get_default_trustee # add adder to add revoc reg def adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' schema_id, _ = await send_schema(pool_handler, wallet_handler, trustee_did, 'schema1', '1.0', json.dumps(['age', 'sex', 'height', 'name'])) await asyncio.sleep(1) res = await get_schema(pool_handler, wallet_handler, trustee_did, schema_id) schema_id, schema_json = await ledger.parse_get_schema_response(json.dumps(res)) cred_def_id, _, res = await send_cred_def(pool_handler, wallet_handler, trustee_did, schema_json, 'cred_def_tag', None, json.dumps({'support_revocation': True})) # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '113', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '113', 'EDIT', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # add revoc reg def tails_writer_config = json.dumps({'base_dir': 'tails', 'uri_pattern': ''}) tails_writer_handle = await blob_storage.open_writer('default', tails_writer_config) revoc_reg_def_id, revoc_reg_def_json, revoc_reg_entry_json = \ await anoncreds.issuer_create_and_store_revoc_reg(wallet_handler, adder_did, None, 'TAG1', cred_def_id, json.dumps({ 'max_cred_num': 1, 'issuance_type': 'ISSUANCE_BY_DEFAULT'}), tails_writer_handle) request = await ledger.build_revoc_reg_def_request(adder_did, revoc_reg_def_json) res4 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, request)) print(res4) assert res4['op'] == 'REPLY' if adder_role != editor_role: # try to edit revoc reg def as adder - should be rejected _request = json.loads(request) _request['operation']['value']['tailsHash'] = random_string(30) _request['reqId'] += _request['reqId'] res5 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, json.dumps(_request))) print(res5) assert res5['op'] == 'REJECT' # change adder role to edit revoc reg def res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, None, None, editor_role) print(res) assert res['op'] == 'REPLY' # edit revoc reg def request = json.loads(request) request['operation']['value']['tailsHash'] = random_string(20) request['reqId'] += request['reqId'] res6 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, json.dumps(request))) print(res6) assert res6['op'] == 'REPLY' if adder_role != editor_role: # try to add another revoc reg def as editor - should be rejected revoc_reg_def_id, revoc_reg_def_json, revoc_reg_entry_json = \ await anoncreds.issuer_create_and_store_revoc_reg(wallet_handler, adder_did, None, 'TAG2', cred_def_id, json.dumps({ 'max_cred_num': 2, 'issuance_type': 'ISSUANCE_BY_DEFAULT'}), tails_writer_handle) request = await ledger.build_revoc_reg_def_request(adder_did, revoc_reg_def_json) res7 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, request)) print(res7) assert res7['op'] == 'REJECT' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio async def test_case_revoc_reg_entry(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, editor_role, editor_role_num): trustee_did, _ = get_default_trustee # add adder to add revoc reg entry adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' schema_id, _ = await send_schema(pool_handler, wallet_handler, trustee_did, 'schema1', '1.0', json.dumps(['age', 'sex', 'height', 'name'])) await asyncio.sleep(1) res = await get_schema(pool_handler, wallet_handler, trustee_did, schema_id) schema_id, schema_json = await ledger.parse_get_schema_response(json.dumps(res)) cred_def_id, _, res = await send_cred_def(pool_handler, wallet_handler, trustee_did, schema_json, 'cred_def_tag', None, json.dumps({'support_revocation': True})) # set rule for revoc reg def adding - network monitor case req = await ledger.build_auth_rule_request(trustee_did, '113', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': '*', 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res21 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res21) assert res21['op'] == 'REPLY' # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '114', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res22 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res22) assert res22['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '114', 'EDIT', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # add revoc reg entry tails_writer_config = json.dumps({'base_dir': 'tails', 'uri_pattern': ''}) tails_writer_handle = await blob_storage.open_writer('default', tails_writer_config) revoc_reg_def_id, revoc_reg_def_json, revoc_reg_entry_json = \ await anoncreds.issuer_create_and_store_revoc_reg(wallet_handler, adder_did, None, 'TAG1', cred_def_id, json.dumps({ 'max_cred_num': 10, 'issuance_type': 'ISSUANCE_BY_DEFAULT'}), tails_writer_handle) req = await ledger.build_revoc_reg_def_request(adder_did, revoc_reg_def_json) res = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) assert res['op'] == 'REPLY' request = await ledger.build_revoc_reg_entry_request(adder_did, revoc_reg_def_id, 'CL_ACCUM', revoc_reg_entry_json) res4 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, request)) print(res4) assert res4['op'] == 'REPLY' if adder_role != editor_role: # try to edit revoc reg entry as adder - should be rejected _request = json.loads(request) _request['operation']['value']['prevAccum'] = _request['operation']['value']['accum'] _request['operation']['value']['accum'] = random_string(20) _request['operation']['value']['revoked'] = [7, 8, 9] _request['reqId'] += _request['reqId'] res5 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, json.dumps(_request))) print(res5) assert res5['op'] == 'REJECT' # change adder role to edit revoc reg def res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, None, None, editor_role) print(res) assert res['op'] == 'REPLY' # edit revoc reg entry request = json.loads(request) request['operation']['value']['prevAccum'] = request['operation']['value']['accum'] request['operation']['value']['accum'] = random_string(10) request['operation']['value']['revoked'] = [1, 2, 3] request['reqId'] += request['reqId'] res6 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, json.dumps(request))) print(res6) assert res6['op'] == 'REPLY' if adder_role != editor_role: # try to add another revoc reg entry as editor - should be rejected revoc_reg_def_id, revoc_reg_def_json, revoc_reg_entry_json = \ await anoncreds.issuer_create_and_store_revoc_reg(wallet_handler, adder_did, None, 'TAG2', cred_def_id, json.dumps({ 'max_cred_num': 20, 'issuance_type': 'ISSUANCE_BY_DEFAULT'}), tails_writer_handle) req = await ledger.build_revoc_reg_def_request(adder_did, revoc_reg_def_json) res = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) assert res['op'] == 'REPLY' request = await ledger.build_revoc_reg_entry_request(adder_did, revoc_reg_def_id, 'CL_ACCUM', revoc_reg_entry_json) res7 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, request)) print(res7) assert res7['op'] == 'REJECT' @pytest.mark.skip('INDY-2024') @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio async def test_case_node(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, editor_role, editor_role_num): trustee_did, _ = get_default_trustee # add adder to add node adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' # add editor to edit node editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, editor_role) assert res['op'] == 'REPLY' # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '0', 'ADD', 'services', '*', str(['VALIDATOR']), json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '0', 'EDIT', 'services', str(['VALIDATOR']), str([]), json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # add node alias = random_string(5) client_ip = '{}.{}.{}.{}'.format(rr(1, 255), 0, 0, rr(1, 255)) client_port = rr(1, 32767) node_ip = '{}.{}.{}.{}'.format(rr(1, 255), 0, 0, rr(1, 255)) node_port = rr(1, 32767) req = await ledger.build_node_request(adder_did, adder_vk, # adder_vk is used as node target did here json.dumps( { 'alias': alias, 'client_ip': client_ip, 'client_port': client_port, 'node_ip': node_ip, 'node_port': node_port, 'services': ['VALIDATOR'] })) res4 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) print(res4) assert res4['op'] == 'REPLY' # edit node req = await ledger.build_node_request(editor_did, adder_vk, # adder_vk is used as node target did here json.dumps( { 'alias': alias, 'services': [] })) res5 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, editor_did, req)) print(res5) assert res5['op'] == 'REPLY' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio async def test_case_pool_upgrade(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, editor_role, editor_role_num): trustee_did, _ = get_default_trustee # add adder to start pool upgrdae adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' # add editor to cancel pool upgrade editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, editor_role) assert res['op'] == 'REPLY' # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '109', 'ADD', 'action', '*', 'start', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '109', 'EDIT', 'action', 'start', 'cancel', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # start pool upgrade init_time = 30 version = '1.9.999' name = 'upgrade' + '_' + version + '_' + datetime.now(tz=timezone.utc).strftime('%Y-%m-%dT%H:%M:%S%z') _sha256 = hashlib.sha256().hexdigest() _timeout = 5 reinstall = False force = False package = 'indy-node' dests = ['Gw6pDLhcBcoQesN72qfotTgFa7cbuqZpkX3Xo6pLhPhv', '8ECVSk179mjsjKRLWiQtssMLgp6EPhWXtaYyStWPSGAb', 'DKVxG2fXXTU8yT5N7hGEbXB3dfdAnYv1JczDUHpmDxya', '4PS3EDQ3dW1tci1Bp6543CfuuebjFrg36kLAUcskGfaA', '4SWokCJWJc69Tn74VvLS6t2G2ucvXqM9FDMsWJjmsUxe', 'Cv1Ehj43DDM5ttNBmC6VPpEfwXWwfGktHwjDJsTV5Fz8', 'BM8dTooz5uykCbYSAAFwKNkYfT4koomBHsSWHTDtkjhW'] docker_7_schedule = json.dumps(dict( {dest: datetime.strftime(datetime.now(tz=timezone.utc) + timedelta(minutes=init_time + i * 5), '%Y-%m-%dT%H:%M:%S%z') for dest, i in zip(dests, range(len(dests)))} )) req = await ledger.build_pool_upgrade_request(adder_did, name, version, 'start', _sha256, _timeout, docker_7_schedule, None, reinstall, force, package) res4 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) print(res4) assert res4['op'] == 'REPLY' # cancel pool upgrade req = await ledger.build_pool_upgrade_request(editor_did, name, version, 'cancel', _sha256, _timeout, docker_7_schedule, None, reinstall, force, package) res5 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, editor_did, req)) print(res5) assert res5['op'] == 'REPLY' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.asyncio async def test_case_pool_restart(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num): # we can add pool restart only trustee_did, _ = get_default_trustee # add adder to restart pool adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' await asyncio.sleep(15) # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '118', 'ADD', 'action', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # restart pool req = await ledger.build_pool_restart_request\ (adder_did, 'start', datetime.strftime(datetime.now(tz=timezone.utc) + timedelta(minutes=60), '%Y-%m-%dT%H:%M:%S%z')) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) res3 = [json.loads(v) for k, v in res3.items()] print(res3) assert all([res['op'] == 'REPLY' for res in res3]) @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.asyncio async def test_case_validator_info(self, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num): # we can add validator info only trustee_did, _ = get_default_trustee # add adder to get validator info adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' await asyncio.sleep(15) # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '119', 'ADD', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' req = await ledger.build_get_validator_info_request(adder_did) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) res3 = [json.loads(v) for k, v in res3.items()] print(res3) assert all([res['op'] == 'REPLY' for res in res3]) @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio async def test_case_pool_config(self, pool_handler, wallet_handler, get_default_trustee, editor_role, editor_role_num): # we can edit pool config only trustee_did, _ = get_default_trustee # add editor to edit pool config editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, editor_role) assert res['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '111', 'EDIT', 'action', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' req = await ledger.build_pool_config_request(editor_did, False, False) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, editor_did, req)) print(res3) assert res3['op'] == 'REPLY' @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.asyncio async def test_case_auth_rule(self, pool_handler, wallet_handler, get_default_trustee, editor_role, editor_role_num): # we can edit auth rule only trustee_did, _ = get_default_trustee # add editor to edit auth rule editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, editor_role) assert res['op'] == 'REPLY' # set rule for editing req = await ledger.build_auth_rule_request(trustee_did, '120', 'EDIT', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' await asyncio.sleep(15) req = await ledger.build_auth_rule_request(editor_did, '111', 'EDIT', 'action', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': '*', 'sig_count': 5, 'need_to_be_owner': True, 'metadata': {} })) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, editor_did, req)) print(res3) assert res3['op'] == 'REPLY' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('sig_count', [0, 1, 3]) @pytest.mark.asyncio async def test_case_mint(self, payment_init, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, sig_count): libsovtoken_payment_method = 'sov' trustee_did, _ = get_default_trustee address = await payment.create_payment_address(wallet_handler, libsovtoken_payment_method, json.dumps( {"seed": str('0000000000000000000000000Wallet0')})) # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '10000', 'ADD', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': sig_count, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' if sig_count == 0: # add identity owner adder to mint tokens adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, None) assert res['op'] == 'REPLY' req, _ = await payment.build_mint_req(wallet_handler, adder_did, json.dumps([{"recipient": address, "amount": 100}]), None) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) print(res1) assert res1['op'] == 'REPLY' elif sig_count == 1: # add adder to mint tokens adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' req, _ = await payment.build_mint_req(wallet_handler, adder_did, json.dumps([{"recipient": address, "amount": 100}]), None) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) print(res1) assert res1['op'] == 'REPLY' else: # add adders to mint tokens adder_did1, adder_vk1 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did1, adder_vk1, None, adder_role) assert res['op'] == 'REPLY' adder_did2, adder_vk2 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did2, adder_vk2, None, adder_role) assert res['op'] == 'REPLY' adder_did3, adder_vk3 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did3, adder_vk3, None, adder_role) assert res['op'] == 'REPLY' req, _ = await payment.build_mint_req(wallet_handler, adder_did1, json.dumps([{"recipient": address, "amount": 100}]), None) req = await ledger.multi_sign_request(wallet_handler, adder_did1, req) req = await ledger.multi_sign_request(wallet_handler, adder_did2, req) req = await ledger.multi_sign_request(wallet_handler, adder_did3, req) res1 = json.loads(await ledger.submit_request(pool_handler, req)) print(res1) assert res1['op'] == 'REPLY' @pytest.mark.parametrize('editor_role, editor_role_num', [ ('NETWORK_MONITOR', '201'), ('TRUST_ANCHOR', '101'), ('STEWARD', '2'), ('TRUSTEE', '0') ]) @pytest.mark.parametrize('sig_count', [0, 1, 3]) @pytest.mark.asyncio async def test_case_set_fees(self, payment_init, pool_handler, wallet_handler, get_default_trustee, editor_role, editor_role_num, sig_count): libsovtoken_payment_method = 'sov' fees = {'1': 1, '100': 1, '101': 1, '102': 1, '113': 1, '114': 1, '10001': 1} trustee_did, _ = get_default_trustee # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '20000', 'EDIT', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': editor_role_num, 'sig_count': sig_count, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' if sig_count == 0: # add identity owner editor to set fees editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, None) assert res['op'] == 'REPLY' req = await payment.build_set_txn_fees_req(wallet_handler, editor_did, libsovtoken_payment_method, json.dumps(fees)) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, editor_did, req)) print(res1) assert res1['op'] == 'REPLY' elif sig_count == 1: # add editor to set fees editor_did, editor_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did, editor_vk, None, editor_role) assert res['op'] == 'REPLY' req = await payment.build_set_txn_fees_req(wallet_handler, editor_did, libsovtoken_payment_method, json.dumps(fees)) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, editor_did, req)) print(res1) assert res1['op'] == 'REPLY' else: # add editors to set fees editor_did1, editor_vk1 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did1, editor_vk1, None, editor_role) assert res['op'] == 'REPLY' editor_did2, editor_vk2 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did2, editor_vk2, None, editor_role) assert res['op'] == 'REPLY' editor_did3, editor_vk3 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, editor_did3, editor_vk3, None, editor_role) assert res['op'] == 'REPLY' req = await payment.build_set_txn_fees_req(wallet_handler, editor_did1, libsovtoken_payment_method, json.dumps(fees)) req = await ledger.multi_sign_request(wallet_handler, editor_did1, req) req = await ledger.multi_sign_request(wallet_handler, editor_did2, req) req = await ledger.multi_sign_request(wallet_handler, editor_did3, req) res1 = json.loads(await ledger.submit_request(pool_handler, req)) print(res1) assert res1['op'] == 'REPLY' @pytest.mark.parametrize('adder_role, adder_role_num', [ ('TRUSTEE', '0'), ('STEWARD', '2'), ('TRUST_ANCHOR', '101'), ('NETWORK_MONITOR', '201') ]) @pytest.mark.parametrize('sig_count', [0, 1, 3]) @pytest.mark.asyncio async def test_case_payment(self, payment_init, pool_handler, wallet_handler, get_default_trustee, adder_role, adder_role_num, sig_count): libsovtoken_payment_method = 'sov' trustee_did, _ = get_default_trustee address1 = await payment.create_payment_address(wallet_handler, libsovtoken_payment_method, json.dumps( {"seed": str('0000000000000000000000000Wallet1')})) address2 = await payment.create_payment_address(wallet_handler, libsovtoken_payment_method, json.dumps( {"seed": str('0000000000000000000000000Wallet2')})) # set rule for easier mint adding req = await ledger.build_auth_rule_request(trustee_did, '10000', 'ADD', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': '*', 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res1) assert res1['op'] == 'REPLY' # set rule for adding req = await ledger.build_auth_rule_request(trustee_did, '10001', 'ADD', '*', '*', '*', json.dumps({ 'constraint_id': 'ROLE', 'role': adder_role_num, 'sig_count': sig_count, 'need_to_be_owner': False, 'metadata': {} })) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # initial minting req, _ = await payment.build_mint_req(wallet_handler, trustee_did, json.dumps([{"recipient": address1, "amount": 100}]), None) res11 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res11) assert res11['op'] == 'REPLY' req, _ = await payment.build_get_payment_sources_request(wallet_handler, trustee_did, address1) res111 = await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req) source1 = \ json.loads(await payment.parse_get_payment_sources_response(libsovtoken_payment_method, res111))[0]['source'] if sig_count == 0: # add identity owner adder to send xfer adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, None) assert res['op'] == 'REPLY' req, _ = await payment.build_payment_req(wallet_handler, adder_did, json.dumps([source1]), json.dumps([{"recipient": address2, "amount": 100}]), None) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) print(res1) assert res1['op'] == 'REPLY' elif sig_count == 1: # add adder to send xfer adder_did, adder_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did, adder_vk, None, adder_role) assert res['op'] == 'REPLY' req, _ = await payment.build_payment_req(wallet_handler, adder_did, json.dumps([source1]), json.dumps([{"recipient": address2, "amount": 100}]), None) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, adder_did, req)) print(res1) assert res1['op'] == 'REPLY' else: # add adders to send xfer adder_did1, adder_vk1 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did1, adder_vk1, None, adder_role) assert res['op'] == 'REPLY' adder_did2, adder_vk2 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did2, adder_vk2, None, adder_role) assert res['op'] == 'REPLY' adder_did3, adder_vk3 = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, adder_did3, adder_vk3, None, adder_role) assert res['op'] == 'REPLY' req, _ = await payment.build_payment_req(wallet_handler, adder_did1, json.dumps([source1]), json.dumps([{"recipient": address2, "amount": 100}]), None) req = await ledger.multi_sign_request(wallet_handler, adder_did1, req) req = await ledger.multi_sign_request(wallet_handler, adder_did2, req) req = await ledger.multi_sign_request(wallet_handler, adder_did3, req) res1 = json.loads(await ledger.submit_request(pool_handler, req)) print(res1) assert res1['op'] == 'REPLY' # TODO might make sense to move to separate module since other tests here # organized per txn type @pytest.mark.asyncio async def test_case_forbidden(self, pool_handler, wallet_handler, get_default_trustee): trustee_did, _ = get_default_trustee trustee_role, trustee_role_num = 'TRUSTEE', '0' logger.info("1 Adding new trustee to ledger") new_trustee_did, new_trustee_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym( pool_handler, wallet_handler, trustee_did, new_trustee_did, new_trustee_vk, None, trustee_role ) assert res['op'] == 'REPLY' logger.info("2 Setting forbidden auth rule for adding trustees") req = await ledger.build_auth_rule_request(trustee_did, '1', 'ADD', 'role', '*', trustee_role_num, json.dumps({ 'constraint_id': 'FORBIDDEN', })) res = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) assert res['op'] == 'REPLY' logger.info("3 Getting newly set forbidden constraint") req = await ledger.build_get_auth_rule_request(trustee_did, '1', 'ADD', 'role', '*', trustee_role_num) res = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) assert res['op'] == 'REPLY' assert res['result']['data'][0]['constraint']['constraint_id'] == 'FORBIDDEN' logger.info("4 Trying to add one more trustee") one_more_new_trustee_did, one_more_new_trustee_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym( pool_handler, wallet_handler, trustee_did, one_more_new_trustee_did, one_more_new_trustee_vk, None, trustee_role ) assert res['op'] == 'REJECT' # TODO might make sense to move to separate module since other tests here # organized per txn type @pytest.mark.asyncio async def test_case_auth_rules(self, pool_handler, wallet_handler, get_default_trustee): trustee_did, _ = get_default_trustee trustee_role, trustee_role_num = 'TRUSTEE', '0' steward_role, steward_role_num = 'STEWARD', '2' logger.info("1 Creating new steward") steward_did, steward_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, steward_did, steward_vk, None, steward_role) assert res['op'] == 'REPLY' logger.info("2 Creating some new trustee") _new_trustee_did, _new_trustee_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym(pool_handler, wallet_handler, trustee_did, _new_trustee_did, _new_trustee_vk, None, trustee_role) assert res['op'] == 'REPLY' logger.info("3 Trying to add new trustee using steward as submitter") new_trustee_did, new_trustee_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym( pool_handler, wallet_handler, steward_did, new_trustee_did, new_trustee_vk, None, trustee_role ) assert res['op'] == 'REJECT' logger.info("4 Trying to add new steward using steward as submitter") new_steward_did, new_steward_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym( pool_handler, wallet_handler, steward_did, new_steward_did, new_steward_vk, None, trustee_role ) assert res['op'] == 'REJECT' logger.info("5 Send auth rules txn to allow stewards to add new trustees and stewrds") one_steward_constraint = { 'constraint_id': 'ROLE', 'role': steward_role_num, 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} } req = await ledger.build_auth_rules_request(trustee_did, json.dumps([ { 'auth_type': '1', 'auth_action': 'ADD', 'field': 'role', 'old_value': '*', 'new_value': trustee_role_num, 'constraint': one_steward_constraint }, { 'auth_type': '1', 'auth_action': 'ADD', 'field': 'role', 'old_value': '*', 'new_value': steward_role_num, 'constraint': one_steward_constraint }, ])) res = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) assert res['op'] == 'REPLY' logger.info("6 Getting recently set auth rules") for role_num in (trustee_role_num, steward_role_num): req = await ledger.build_get_auth_rule_request(trustee_did, '1', 'ADD', 'role', '*', role_num) res = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) assert res['op'] == 'REPLY' assert res['result']['data'][0]['constraint'] == one_steward_constraint logger.info("7 Trying to add new trustee using trustee as submitter") res = await send_nym( pool_handler, wallet_handler, trustee_did, new_trustee_did, new_trustee_vk, None, trustee_role ) assert res['op'] == 'REJECT' logger.info("8 Trying to add new steward using trustee as submitter") res = await send_nym( pool_handler, wallet_handler, trustee_did, new_trustee_did, new_steward_vk, None, trustee_role ) assert res['op'] == 'REJECT' logger.info("9 Adding new trustee using steward as submitter") new_trustee_did, new_trustee_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym( pool_handler, wallet_handler, steward_did, new_trustee_did, new_trustee_vk, None, trustee_role ) assert res['op'] == 'REPLY' logger.info("10 Adding new steward using steward as submitter") new_steward_did, new_steward_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym( pool_handler, wallet_handler, steward_did, new_steward_did, new_steward_vk, None, trustee_role ) assert res['op'] == 'REPLY'
59.345455
126
0.521067
7,107
68,544
4.70508
0.048966
0.080864
0.070158
0.099046
0.903346
0.898562
0.885822
0.876761
0.870241
0.851132
0
0.021087
0.376649
68,544
1,154
127
59.39688
0.761533
0.044307
0
0.790291
0
0
0.104281
0.006559
0.000971
0
0
0.000867
0.113592
1
0
false
0
0.008738
0
0.009709
0.065049
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
72cf2ee1f1f114780fd41988e0ddaa2bfd651b27
18,351
py
Python
test/integration/test_reindex.py
jgough/opensearch-curator
e8d7eb4d969eac551db9f99bd021d0c05e28dc35
[ "Apache-2.0" ]
8
2021-11-10T15:15:16.000Z
2022-03-10T10:09:50.000Z
test/integration/test_reindex.py
jgough/opensearch-curator
e8d7eb4d969eac551db9f99bd021d0c05e28dc35
[ "Apache-2.0" ]
1
2021-11-18T11:28:44.000Z
2021-11-21T09:30:54.000Z
test/integration/test_reindex.py
jgough/opensearch-curator
e8d7eb4d969eac551db9f99bd021d0c05e28dc35
[ "Apache-2.0" ]
3
2022-01-28T18:40:38.000Z
2022-03-22T18:40:59.000Z
import opensearchpy import curator import os import json import string import random import tempfile import click from click import testing as clicktest import time from . import CuratorTestCase from unittest.case import SkipTest from . import testvars as testvars import logging logger = logging.getLogger(__name__) host, port = os.environ.get('TEST_ES_SERVER', 'localhost:9200').split(':') rhost, rport = os.environ.get('REMOTE_ES_SERVER', 'localhost:9201').split(':') port = int(port) if port else 9200 rport = int(rport) if rport else 9201 class TestActionFileReindex(CuratorTestCase): def test_reindex_manual(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 3 self.create_index(source) self.add_docs(source) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_selected(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 3 self.create_index(source) self.add_docs(source) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, 'REINDEX_SELECTION', dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_empty_list(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = '.tasks' self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, curator.get_indices(self.client)[0]) def test_reindex_selected_many_to_one(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' dest = 'my_dest' expected = 6 self.create_index(source1) self.add_docs(source1) self.create_index(source2) for i in ["4", "5", "6"]: ver = curator.get_version(self.client) if ver >= (7, 0, 0): self.client.create( index=source2, doc_type='doc', id=i, body={"doc" + i :'TEST DOCUMENT'}) else: self.client.create( index=source2, doc_type='doc', id=i, body={"doc" + i :'TEST DOCUMENT'}) # Decorators make this pylint exception necessary # pylint: disable=E1123 self.client.indices.flush(index=source2, force=True) self.client.indices.refresh(index=source2) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, 'REINDEX_SELECTION', dest) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.client.indices.refresh(index=dest) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_selected_empty_list_fail(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' dest = 'my_dest' expected = 6 self.create_index(source1) self.add_docs(source1) self.create_index(source2) for i in ["4", "5", "6"]: self.client.create( index=source2, doc_type='log', id=i, body={"doc" + i :'TEST DOCUMENT'}, ) # Decorators make this pylint exception necessary # pylint: disable=E1123 self.client.indices.flush(index=source2, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex_empty_list.format('false', wait_interval, max_wait, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(_.exit_code, 1) def test_reindex_selected_empty_list_pass(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' dest = 'my_dest' expected = 6 self.create_index(source1) self.add_docs(source1) self.create_index(source2) for i in ["4", "5", "6"]: self.client.create( index=source2, doc_type='log', id=i, body={"doc" + i :'TEST DOCUMENT'}, ) # Decorators make this pylint exception necessary # pylint: disable=E1123 self.client.indices.flush(index=source2, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex_empty_list.format('true', wait_interval, max_wait, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(_.exit_code, 0) def test_reindex_from_remote(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' prefix = 'my_' dest = 'my_dest' expected = 6 # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_migrate_from_remote(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' prefix = 'my_' dest = 'MIGRATION' expected = 3 # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) # And now the neat trick of verifying that the reindex worked to both # indices, and they preserved their names self.assertEqual(expected, self.client.count(index=source1)['count']) self.assertEqual(expected, self.client.count(index=source2)['count']) def test_reindex_migrate_from_remote_with_pre_suf_fixes(self): wait_interval = 1 max_wait = 3 source1 = 'my_source1' source2 = 'my_source2' prefix = 'my_' dest = 'MIGRATION' expected = 3 mpfx = 'pre-' msfx = '-fix' # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.migration_reindex.format( wait_interval, max_wait, mpfx, msfx, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) # And now the neat trick of verifying that the reindex worked to both # indices, and they preserved their names self.assertEqual(expected, self.client.count(index='{0}{1}{2}'.format(mpfx,source1,msfx))['count']) self.assertEqual(expected, self.client.count(index='{0}{1}{2}'.format(mpfx,source1,msfx))['count']) def test_reindex_from_remote_no_connection(self): wait_interval = 1 max_wait = 3 bad_port = 70000 dest = 'my_dest' expected = 1 self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, bad_port), 'REINDEX_SELECTION', dest, 'my_' ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, _.exit_code) def test_reindex_from_remote_no_indices(self): wait_interval = 1 max_wait = 3 source1 = 'wrong1' source2 = 'wrong2' prefix = 'my_' dest = 'my_dest' expected = 1 # Build remote client try: rclient = curator.get_client( host=rhost, port=rport, skip_version_test=True) rclient.info() except: raise SkipTest( 'Unable to connect to host at {0}:{1}'.format(rhost, rport)) # Build indices remotely. counter = 0 for rindex in [source1, source2]: rclient.indices.create(index=rindex) for i in range(0, 3): rclient.create( index=rindex, doc_type='log', id=str(counter+1), body={"doc" + str(counter+i) :'TEST DOCUMENT'}, ) counter += 1 # Decorators make this pylint exception necessary # pylint: disable=E1123 rclient.indices.flush(index=rindex, force=True) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.remote_reindex.format( wait_interval, max_wait, 'http://{0}:{1}'.format(rhost, rport), 'REINDEX_SELECTION', dest, prefix ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) # Do our own cleanup here. rclient.indices.delete(index='{0},{1}'.format(source1, source2)) self.assertEqual(expected, _.exit_code) def test_reindex_into_alias(self): wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 3 alias_body = {'aliases' : {dest : {}}} self.client.indices.create(index='dummy', body=alias_body) self.add_docs(source) self.write_config(self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_manual_date_math(self): wait_interval = 1 max_wait = 3 source = '<source-{now/d}>' dest = '<target-{now/d}>' expected = 3 self.create_index(source) self.add_docs(source) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, self.client.count(index=dest)['count']) def test_reindex_bad_mapping(self): # This test addresses GitHub issue #1260 wait_interval = 1 max_wait = 3 source = 'my_source' dest = 'my_dest' expected = 1 ver = curator.get_version(self.client) if ver < (7, 0, 0): request_body = { "settings": { "number_of_shards": 1, "number_of_replicas": 0}, "mappings": { "doc": { "properties": { "doc1": { "type": "keyword" }}}} } else: request_body = { "settings": { "number_of_shards": 1, "number_of_replicas": 0}, "mappings": { "properties": { "doc1": { "type": "keyword" }}} } self.client.indices.create(index=source, body=request_body) self.add_docs(source) # Create the dest index with a different mapping. if ver < (7, 0, 0): request_body['mappings']['doc']['properties']['doc1']['type'] = 'integer' else: request_body['mappings']['properties']['doc1']['type'] = 'integer' self.client.indices.create(index=dest, body=request_body) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.reindex.format(wait_interval, max_wait, source, dest)) test = clicktest.CliRunner() _ = test.invoke( curator.cli, ['--config', self.args['configfile'], self.args['actionfile']], ) self.assertEqual(expected, _.exit_code)
37.681725
107
0.555719
1,954
18,351
5.068577
0.098772
0.045234
0.05937
0.053716
0.897213
0.872476
0.85733
0.848546
0.833704
0.833704
0
0.019331
0.32347
18,351
486
108
37.759259
0.778413
0.058307
0
0.760369
0
0
0.110048
0
0
0
0
0
0.036866
1
0.032258
false
0.002304
0.032258
0
0.06682
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
72dda3613656327f62f267160ac432bf2f3e78fb
34,924
py
Python
game/content/ghplots/lancemates.py
jwvhewitt/gearhead-caramel
dfe1bc5dbf2960b82a97577f4bf687b60040d8bf
[ "Apache-2.0" ]
74
2015-03-09T00:33:09.000Z
2022-02-25T20:28:27.000Z
game/content/ghplots/lancemates.py
jwvhewitt/gearhead-caramel
dfe1bc5dbf2960b82a97577f4bf687b60040d8bf
[ "Apache-2.0" ]
108
2017-12-30T20:26:12.000Z
2021-01-16T12:37:00.000Z
game/content/ghplots/lancemates.py
jwvhewitt/gearhead-caramel
dfe1bc5dbf2960b82a97577f4bf687b60040d8bf
[ "Apache-2.0" ]
61
2018-03-03T09:55:31.000Z
2022-03-18T17:28:33.000Z
import pbge from game.content.plotutility import LMSkillsSelfIntro from game.content import backstory from pbge.plots import Plot from pbge.dialogue import Offer, ContextTag from game.ghdialogue import context import gears import game.content.gharchitecture import game.content.ghterrain import random from game import memobrowser Memo = memobrowser.Memo # ******************* # *** UTILITIES *** # ******************* def get_hire_cost(camp, npc): return (npc.renown * npc.renown * (200 - npc.get_reaction_score(camp.pc, camp)))//10 # ************************** # *** RANDOM_LANCEMATE *** # ************************** class UtterlyRandomLancemate(Plot): LABEL = "RANDOM_LANCEMATE" def custom_init(self, nart): npc = gears.selector.random_character(rank=min(random.randint(10, 50),random.randint(10, 50)), mecha_colors=gears.color.random_mecha_colors(), local_tags=tuple(self.elements["METROSCENE"].attributes), combatant=True) scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) specialties = [sk for sk in gears.stats.NONCOMBAT_SKILLS if sk in npc.statline] if random.randint(-12,3) > len(specialties): npc.statline[random.choice(gears.stats.NONCOMBAT_SKILLS)] += random.randint(1,4) self.register_element("NPC", npc, dident="LOCALE") self.add_sub_plot(nart, "RLM_Relationship") return True def _is_best_scene(self,nart,candidate): return isinstance(candidate,pbge.scenes.Scene) and gears.tags.SCENE_PUBLIC in candidate.attributes class UtterlyGenericLancemate(Plot): LABEL = "RANDOM_LANCEMATE" JOBS = ("Mecha Pilot","Arena Pilot","Recon Pilot","Mercenary","Bounty Hunter") def custom_init(self, nart): npc = gears.selector.random_character(rank=min(random.randint(10, 50),random.randint(10, 50)), job=gears.jobs.ALL_JOBS[random.choice(self.JOBS)], mecha_colors=gears.color.random_mecha_colors(), local_tags=tuple(self.elements["METROSCENE"].attributes), combatant=True) if random.randint(1,20) == 1: npc.statline[random.choice(gears.stats.NONCOMBAT_SKILLS)] += random.randint(1,4) scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) self.register_element("NPC", npc, dident="LOCALE") self.add_sub_plot(nart, "RLM_Relationship") return True def _is_best_scene(self,nart,candidate): return isinstance(candidate,pbge.scenes.Scene) and gears.tags.SCENE_PUBLIC in candidate.attributes class GiftedNewbieLancemate(Plot): # Amazing stats, amazingly crap skills. LABEL = "RANDOM_LANCEMATE" JOBS = ("Mecha Pilot","Arena Pilot","Citizen","Explorer","Factory Worker") UNIQUE = True def custom_init(self, nart): npc = gears.selector.random_character(statline=gears.base.Being.random_stats(random.randint(100, 110)), rank=random.randint(5, 15), job=gears.jobs.ALL_JOBS[random.choice(self.JOBS)], mecha_colors=gears.color.random_mecha_colors(), local_tags=tuple(self.elements["METROSCENE"].attributes), combatant=True, birth_year=nart.camp.year - random.randint(18,23)) if random.randint(1,10) == 1: npc.statline[random.choice(gears.stats.NONCOMBAT_SKILLS)] += random.randint(1,4) scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) self.register_element("NPC", npc, dident="LOCALE") self.add_sub_plot(nart, "RLM_Relationship") return True def _is_best_scene(self,nart,candidate): return isinstance(candidate,pbge.scenes.Scene) and gears.tags.SCENE_PUBLIC in candidate.attributes class OlderMentorLancemate(Plot): LABEL = "RANDOM_LANCEMATE" UNIQUE = True def custom_init(self, nart): npc = gears.selector.random_character(rank=random.randint(41, 85), mecha_colors=gears.color.random_mecha_colors(), local_tags=tuple(self.elements["METROSCENE"].attributes), combatant=True, birth_year=nart.camp.year - random.randint(32,50)) npc.statline[random.choice(gears.stats.NONCOMBAT_SKILLS)] += random.randint(1, 4) scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) self.register_element("NPC", npc, dident="LOCALE") self.add_sub_plot(nart, "RLM_Relationship") return True def _is_best_scene(self,nart,candidate): return isinstance(candidate,pbge.scenes.Scene) and gears.tags.SCENE_PUBLIC in candidate.attributes class DeadzonerInGreenZoneLancemate(Plot): LABEL = "RANDOM_LANCEMATE" JOBS = ("Mercenary","Bandit","Scavenger","Aristo","Tekno","Sheriff") UNIQUE = True @classmethod def matches( self, pstate ): """Returns True if this plot matches the current plot state.""" return gears.personality.GreenZone in pstate.elements["METROSCENE"].attributes def custom_init(self, nart): npc = gears.selector.random_character(rank=min(random.randint(20, 55),random.randint(20, 55)), job=gears.jobs.ALL_JOBS[random.choice(self.JOBS)], mecha_colors=gears.color.random_mecha_colors(), local_tags=(gears.personality.DeadZone,), combatant=True) scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) self.register_element("NPC", npc, dident="LOCALE") self.add_sub_plot(nart, "RLM_Relationship") return True def _is_best_scene(self,nart,candidate): return isinstance(candidate,pbge.scenes.Scene) and gears.tags.SCENE_PUBLIC in candidate.attributes class GladiatorLancemate(Plot): LABEL = "RANDOM_LANCEMATE" UNIQUE = True @classmethod def matches( self, pstate ): """Returns True if this plot matches the current plot state.""" return gears.personality.DeadZone in pstate.elements["METROSCENE"].attributes def custom_init(self, nart): npc = gears.selector.random_character(rank=min(random.randint(25, 65),random.randint(25, 65)), can_cyberize=True, job=gears.jobs.ALL_JOBS["Gladiator"], mecha_colors=gears.color.random_mecha_colors(), local_tags=(gears.personality.DeadZone,), combatant=True) scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) self.register_element("NPC", npc, dident="LOCALE") self.add_sub_plot(nart, "RLM_Relationship") return True def _is_best_scene(self,nart,candidate: gears.GearHeadScene): return isinstance(candidate,pbge.scenes.Scene) and gears.tags.SCENE_PUBLIC in candidate.attributes class MutantLancemate(Plot): LABEL = "RANDOM_LANCEMATE" UNIQUE = True @classmethod def matches( self, pstate ): """Returns True if this plot matches the current plot state.""" return {gears.personality.GreenZone,gears.personality.DeadZone}.intersection(pstate.elements["METROSCENE"].attributes) def custom_init(self, nart): npc = gears.selector.random_character(rank=random.randint(20, 45), mecha_colors=gears.color.random_mecha_colors(), local_tags=tuple(self.elements["METROSCENE"].attributes), combatant=True) scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) mutation = random.choice(gears.personality.MUTATIONS) mutation.apply(npc) npc.personality.add(mutation) specialties = [sk for sk in gears.stats.NONCOMBAT_SKILLS if sk in npc.statline] if random.randint(-12,3) > len(specialties): npc.statline[random.choice(gears.stats.NONCOMBAT_SKILLS)] += random.randint(1,4) self.register_element("NPC", npc, dident="LOCALE") self.add_sub_plot(nart, "RLM_Relationship") return True def _is_best_scene(self,nart,candidate): return isinstance(candidate, pbge.scenes.Scene) and gears.tags.SCENE_PUBLIC in candidate.attributes class FormerLancemateReturns(Plot): LABEL = "RANDOM_LANCEMATE" active = True scope = "METRO" def custom_init(self, nart): npc: gears.base.Character = nart.camp.egg.seek_dramatis_person(nart.camp, self._is_good_npc, self) if npc: scene = self.seek_element(nart, "LOCALE", self._is_best_scene, scope=self.elements["METROSCENE"]) self.register_element("NPC", npc, dident="LOCALE") #print(npc,scene) self.bs = backstory.Backstory(("LONGTIMENOSEE",),keywords=[t.name.upper() for t in npc.get_tags()]) return npc def _is_good_npc(self,nart,candidate): return isinstance(candidate, gears.base.Character) and candidate.relationship and gears.relationships.RT_LANCEMATE in candidate.relationship.tags def _is_best_scene(self,nart,candidate): return isinstance(candidate,gears.GearHeadScene) and gears.tags.SCENE_PUBLIC in candidate.attributes def _get_dialogue_grammar(self, npc, camp): mygram = dict() if npc is self.elements["NPC"]: for k in self.bs.results.keys(): mygram[k] = [self.bs.get_one(k),] else: mygram["[News]"] = ["{NPC} has been hanging out at {LOCALE}".format(**self.elements), ] return mygram def NPC_offers(self, camp): mylist = list() mylist.append(Offer("[INFO_PERSONAL]", context=ContextTag([context.PERSONAL]), no_repeats=True, effect=self.end_plot)) return mylist def t_START(self, camp): if self.elements["NPC"] in camp.party: self.end_plot(camp) # ************************** # *** RLM_Relationship *** # ************************** # Elements: # NPC: The NPC who needs a personality # METROSCENE: The city or whatever that the NPC calls home # # These subplots contain a personality for a random (potential) lancemate. # Also include a means for the lancemate to gain the "RT_LANCEMATE" tag. class RLM_Beginner(Plot): LABEL = "RLM_Relationship" active = True scope = True UNIQUE = True @classmethod def matches( self, pstate ): """Returns True if this plot matches the current plot state.""" return pstate.elements["NPC"].renown < 25 def custom_init(self, nart): npc = self.elements["NPC"] npc.relationship = gears.relationships.Relationship(attitude=gears.relationships.A_JUNIOR) # This character gets fewer mecha points. npc.relationship.data["mecha_level_bonus"] = -10 self._got_rumor = False return True def NPC_offers(self, camp): mylist = list() npc = self.elements["NPC"] if gears.relationships.RT_LANCEMATE not in npc.relationship.tags: if camp.can_add_lancemate(): mylist.append(Offer("I can't believe you asked me... [LETSGO]", context=ContextTag((context.JOIN,)), effect=self._join_lance )) mylist.append(Offer( "[HELLO] Some day I want to become a cavalier like you.", context=ContextTag((context.HELLO,)) )) mylist.append(LMSkillsSelfIntro(npc)) return mylist def _get_dialogue_grammar(self, npc, camp): mygram = dict() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"]: # This is an NPC in Wujung. Give them some news. mygram["[News]"] = ["{} has dreams of someday becoming a cavalier".format(self.elements["NPC"]), ] return mygram def _join_lance(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) effect = game.content.plotutility.AutoJoiner(npc) effect(camp) self.end_plot(camp) def _get_generic_offers(self, npc, camp): """Get any offers that could apply to non-element NPCs.""" goffs = list() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"] and not self._got_rumor: mynpc = self.elements["NPC"] goffs.append(Offer( msg="As far as I know {} usually hangs out at {}.".format(mynpc,mynpc.get_scene()), context=ContextTag((context.INFO,)), effect=self._get_rumor, subject=str(mynpc), data={"subject": str(mynpc)}, no_repeats=True )) return goffs def _get_rumor(self,camp): mynpc = self.elements["NPC"] self._got_rumor = True self.memo = Memo( "{} dreams of becoming a cavalier.".format(mynpc) , mynpc.get_scene() ) class RLM_Friendly(Plot): LABEL = "RLM_Relationship" active = True scope = True UNIQUE = True def custom_init(self, nart): npc = self.elements["NPC"] npc.relationship = gears.relationships.Relationship(attitude=gears.relationships.A_FRIENDLY) self._got_rumor = False return True def NPC_offers(self, camp): mylist = list() npc = self.elements["NPC"] if gears.relationships.RT_LANCEMATE not in npc.relationship.tags: if camp.can_add_lancemate() and npc.get_reaction_score(camp.pc, camp) > 0: mylist.append(Offer("[THANKS_FOR_CHOOSING_ME] [LETSGO]", context=ContextTag((context.JOIN,)), effect=self._join_lance )) mylist.append(Offer( "[HELLO] [WAITINGFORMISSION]", context=ContextTag((context.HELLO,)) )) mylist.append(LMSkillsSelfIntro(npc)) return mylist def _join_lance(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) effect = game.content.plotutility.AutoJoiner(npc) effect(camp) self.end_plot(camp) def _get_dialogue_grammar(self, npc, camp): mygram = dict() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"] and not self._got_rumor: # This is an NPC in Wujung. Give them some news. mygram["[News]"] = ["{} is looking for a lance to join".format(self.elements["NPC"]), ] return mygram def _get_generic_offers(self, npc, camp): """Get any offers that could apply to non-element NPCs.""" goffs = list() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"] and not self._got_rumor: mynpc = self.elements["NPC"] goffs.append(Offer( msg="You can usually find {} at {}, if you're planning to invite {} to join your lance.".format(mynpc,mynpc.get_scene(),mynpc.gender.object_pronoun), context=ContextTag((context.INFO,)), effect=self._get_rumor, subject=str(mynpc), data={"subject": str(mynpc)}, no_repeats=True )) return goffs def _get_rumor(self,camp): mynpc = self.elements["NPC"] self._got_rumor = True self.memo = Memo( "{} is looking for a lance to join.".format(mynpc) , mynpc.get_scene() ) class RLM_Medic(Plot): LABEL = "RLM_Relationship" active = True scope = True UNIQUE = True VIRTUES = (gears.personality.Peace,gears.personality.Fellowship) @classmethod def matches( self, pstate ): """Returns True if this plot matches the current plot state.""" return pstate.elements["NPC"].job and gears.tags.Medic in pstate.elements["NPC"].job.tags def custom_init(self, nart): npc = self.elements["NPC"] npc.relationship = gears.relationships.Relationship(expectation=gears.relationships.E_GREATERGOOD) new_virtue = random.choice(self.VIRTUES) if new_virtue not in npc.personality: npc.personality.add(new_virtue) return True def NPC_offers(self, camp): mylist = list() npc = self.elements["NPC"] if gears.relationships.RT_LANCEMATE not in npc.relationship.tags: if camp.can_add_lancemate(): mylist.append(Offer("[THANKS_FOR_CHOOSING_ME] [LETSGO]", context=ContextTag((context.JOIN,)), effect=self._join_lance )) else: mylist.append(Offer("You've got a full crew right now, but if you ever find yourself in need of a qualified medic come back and find me.", context=ContextTag((context.JOIN,)), effect=self._defer_join )) mylist.append(Offer( "[HELLO] Lately I've been spending too much time here, when I'd rather be out in the danger zone saving lives.", context=ContextTag((context.HELLO,)) )) mylist.append(LMSkillsSelfIntro(npc)) return mylist def _get_dialogue_grammar(self, npc, camp): mygram = dict() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"]: # This is an NPC in Wujung. Give them some news. mygram["[News]"] = ["{} wants to leave {} so {} can make a positive difference in the world".format(self.elements["NPC"],self.elements["NPC"].get_scene(),self.elements["NPC"].gender.subject_pronoun), ] return mygram def _join_lance(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) effect = game.content.plotutility.AutoJoiner(npc) effect(camp) self.end_plot(camp) def _defer_join(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) self.end_plot(camp) class RLM_Mercenary(Plot): LABEL = "RLM_Relationship" active = True scope = True UNIQUE = True @classmethod def matches( self, pstate ): """Returns True if this plot matches the current plot state.""" return pstate.elements["NPC"].job and {gears.tags.Adventurer,gears.tags.Military}.intersection(pstate.elements["NPC"].job.tags) def custom_init(self, nart): npc = self.elements["NPC"] npc.relationship = gears.relationships.Relationship(expectation=gears.relationships.E_MERCENARY) # This character gets extra mecha points, showing their good investment sense. npc.relationship.data["mecha_level_bonus"] = 10 self._got_rumor = False return True def NPC_offers(self, camp): mylist = list() npc = self.elements["NPC"] self.hire_cost = get_hire_cost(camp,npc) if gears.relationships.RT_LANCEMATE not in npc.relationship.tags: if camp.can_add_lancemate(): mylist.append(Offer("I'll join your lance for a mere ${}. [DOYOUACCEPTMYOFFER]".format(self.hire_cost), context=ContextTag((context.PROPOSAL, context.JOIN)), data={"subject": "joining my lance"}, subject=self, subject_start=True, )) mylist.append(Offer("[DENY_JOIN] [GOODBYE]", context=ContextTag((context.DENY, context.JOIN)), subject=self )) if camp.credits >= self.hire_cost: mylist.append(Offer("[THANKS_FOR_CHOOSING_ME] [LETSGO]", context=ContextTag((context.ACCEPT, context.JOIN)), subject=self, effect=self._join_lance )) mylist.append(Offer( "[HELLO] I am a mercenary pilot, looking for my next contract.", context=ContextTag((context.HELLO,)) )) mylist.append(LMSkillsSelfIntro(npc)) return mylist def _get_dialogue_grammar(self, npc, camp): mygram = dict() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"]: # This is an NPC in Wujung. Give them some news. mygram["[News]"] = ["{} is hoping to make some quick cash".format(self.elements["NPC"]), ] return mygram def _join_lance(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) camp.credits -= self.hire_cost effect = game.content.plotutility.AutoJoiner(npc) effect(camp) self.end_plot(camp) def _get_generic_offers(self, npc, camp): """Get any offers that could apply to non-element NPCs.""" goffs = list() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"] and not self._got_rumor: mynpc = self.elements["NPC"] goffs.append(Offer( msg="As far as I know {} can usually be found at {}.".format(mynpc,mynpc.get_scene()), context=ContextTag((context.INFO,)), effect=self._get_rumor, subject=str(mynpc), data={"subject": str(mynpc)}, no_repeats=True )) return goffs def _get_rumor(self,camp): mynpc = self.elements["NPC"] self._got_rumor = True self.memo = Memo("{} is a mercenary pilot looking for a job.".format(mynpc) , mynpc.get_scene() ) class RLM_Professional(Plot): LABEL = "RLM_Relationship" active = True scope = True UNIQUE = True @classmethod def matches( self, pstate ): """Returns True if this plot matches the current plot state.""" return pstate.elements["NPC"].renown > 20 def custom_init(self, nart): npc = self.elements["NPC"] npc.relationship = gears.relationships.Relationship(expectation=gears.relationships.E_PROFESSIONAL) # This character gets 10 extra stat points, showing their elite nature. npc.roll_stats(10, clear_first=False) self._got_rumor = False return True def NPC_offers(self, camp): mylist = list() npc = self.elements["NPC"] self.hire_cost = get_hire_cost(camp,npc) if gears.relationships.RT_LANCEMATE not in npc.relationship.tags: if camp.can_add_lancemate(): mylist.append(Offer( "[NOEXPOSURE] I think ${} is a fair signing price. [DOYOUACCEPTMYOFFER]".format(self.hire_cost), context=ContextTag((context.PROPOSAL, context.JOIN)), data={"subject": "joining my lance"}, subject=self, subject_start=True, )) mylist.append(Offer("[DENY_JOIN] [GOODBYE]", context=ContextTag((context.DENY, context.JOIN)), subject=self )) if camp.credits >= self.hire_cost: mylist.append(Offer("[THANKS_FOR_CHOOSING_ME] [LETSGO]", context=ContextTag((context.ACCEPT, context.JOIN)), subject=self, effect=self._join_lance )) mylist.append(Offer( "[HELLO] I see you are also a cavalier.", context=ContextTag((context.HELLO,)) )) mylist.append(LMSkillsSelfIntro(npc)) return mylist def _get_dialogue_grammar(self, npc, camp): mygram = dict() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"]: # This is an NPC in Wujung. Give them some news. mygram["[News]"] = ["{} is an experienced pilot looking for work".format(self.elements["NPC"]), ] return mygram def _join_lance(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) camp.credits -= self.hire_cost effect = game.content.plotutility.AutoJoiner(npc) effect(camp) self.end_plot(camp) def _get_generic_offers(self, npc, camp): """Get any offers that could apply to non-element NPCs.""" goffs = list() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"] and not self._got_rumor: mynpc = self.elements["NPC"] goffs.append(Offer( msg="You can usually find {} at {}. Bring cash if you're planning to hire {}.".format(mynpc,mynpc.get_scene(),mynpc.gender.object_pronoun), context=ContextTag((context.INFO,)), effect=self._get_rumor, subject=str(mynpc), data={"subject": str(mynpc)}, no_repeats=True )) return goffs def _get_rumor(self,camp): mynpc = self.elements["NPC"] self._got_rumor = True self.memo = Memo( "{} is an experienced pilot looking for work.".format(mynpc) , mynpc.get_scene() ) class RLM_RatherGeneric(Plot): LABEL = "RLM_Relationship" active = True scope = True def custom_init(self, nart): npc = self.elements["NPC"] npc.relationship = gears.relationships.Relationship() self._got_rumor = False return True def NPC_offers(self, camp): mylist = list() npc = self.elements["NPC"] self.hire_cost = get_hire_cost(camp,npc) if gears.relationships.RT_LANCEMATE not in npc.relationship.tags: if camp.can_add_lancemate(): if npc.get_reaction_score(camp.pc, camp) > 60: mylist.append(Offer("[IWOULDLOVETO] [THANKS_FOR_CHOOSING_ME]", context=ContextTag((context.PROPOSAL, context.JOIN)), data={"subject": "joining my lance"}, effect=self._join_lance )) else: mylist.append(Offer("My regular signing rate is ${}. [DOYOUACCEPTMYOFFER]".format(self.hire_cost), context=ContextTag((context.PROPOSAL, context.JOIN)), data={"subject": "joining my lance"}, subject=self, subject_start=True, )) mylist.append(Offer("[DENY_JOIN] [GOODBYE]", context=ContextTag((context.DENY, context.JOIN)), subject=self )) if camp.credits >= self.hire_cost: mylist.append(Offer("[THANKS_FOR_CHOOSING_ME] [LETSGO]", context=ContextTag((context.ACCEPT, context.JOIN)), subject=self, effect=self._pay_to_join )) mylist.append(Offer( "[HELLO] [WAITINGFORMISSION]", context=ContextTag((context.HELLO,)) )) else: mylist.append(Offer( "[HELLO] Must be nice going off, having adventures with your lancemates. I'd like to do that again someday.", context=ContextTag((context.HELLO,)) )) mylist.append(LMSkillsSelfIntro(npc)) return mylist def _get_dialogue_grammar(self, npc, camp): mygram = dict() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"]: mygram["[News]"] = ["{} is looking for a new lance to join".format(self.elements["NPC"]), ] return mygram def _pay_to_join(self,camp): camp.credits -= self.hire_cost self._join_lance(camp) def _join_lance(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) effect = game.content.plotutility.AutoJoiner(npc) effect(camp) self.end_plot(camp) def _get_generic_offers(self, npc, camp): """Get any offers that could apply to non-element NPCs.""" goffs = list() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"] and not self._got_rumor: mynpc = self.elements["NPC"] goffs.append(Offer( msg="You can find {} at {}.".format(mynpc,mynpc.get_scene()), context=ContextTag((context.INFO,)), effect=self._get_rumor, subject=str(mynpc), data={"subject": str(mynpc)}, no_repeats=True )) return goffs def _get_rumor(self,camp): mynpc = self.elements["NPC"] self._got_rumor = True self.memo = Memo("{} is looking for a new lance.".format(mynpc) , mynpc.get_scene() ) class RLM_DamagedGoodsSale(Plot): LABEL = "RLM_Relationship" active = True scope = True UNIQUE = True def custom_init(self, nart): npc = self.elements["NPC"] npc.relationship = gears.relationships.Relationship(expectation=gears.relationships.E_IMPROVER) # This NPC gets a stat bonus but a crappy mech to show their history. npc.relationship.data["mecha_level_bonus"] = -15 npc.roll_stats(5, clear_first=False) self._got_rumor = False return True def NPC_offers(self, camp): mylist = list() npc = self.elements["NPC"] self.hire_cost = get_hire_cost(camp,npc)//2 if gears.relationships.RT_LANCEMATE not in npc.relationship.tags: if camp.can_add_lancemate(): if npc.get_reaction_score(camp.pc, camp) > 20: mylist.append(Offer("[IWOULDLOVETO] I'll do my best to not let you down.", context=ContextTag((context.PROPOSAL, context.JOIN)), data={"subject": "joining my lance"}, effect=self._join_lance )) else: mylist.append(Offer("I'll sign up with you for just ${}. [DOYOUACCEPTMYOFFER]".format(self.hire_cost), context=ContextTag((context.PROPOSAL, context.JOIN)), data={"subject": "joining my lance"}, subject=self, subject_start=True, )) mylist.append(Offer("[DENY_JOIN] [GOODBYE]", context=ContextTag((context.DENY, context.JOIN)), subject=self )) if camp.credits >= self.hire_cost: mylist.append(Offer("[THANKS_FOR_CHOOSING_ME] I'll do my best to not let you down.", context=ContextTag((context.ACCEPT, context.JOIN)), subject=self, effect=self._pay_to_join )) mylist.append(Offer( "[HELLO] The life of a cavalier is full of ups and downs... right now I'm in one of those downs.", context=ContextTag((context.HELLO,)) )) else: mylist.append(Offer( "[HELLO] Be careful out there... all it takes is one little mistake to cost you everything.", context=ContextTag((context.HELLO,)) )) mylist.append(LMSkillsSelfIntro(npc)) return mylist def _get_dialogue_grammar(self, npc, camp): mygram = dict() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"]: mygram["[News]"] = ["{NPC} is a down on {NPC.gender.possessive_determiner} luck cavalier looking for another chance".format(**self.elements), ] return mygram def _pay_to_join(self,camp): camp.credits -= self.hire_cost self._join_lance(camp) def _join_lance(self, camp): npc = self.elements["NPC"] npc.relationship.tags.add(gears.relationships.RT_LANCEMATE) effect = game.content.plotutility.AutoJoiner(npc) effect(camp) self.end_plot(camp) def _get_generic_offers(self, npc, camp): """Get any offers that could apply to non-element NPCs.""" goffs = list() if camp.scene.get_root_scene() is self.elements["METROSCENE"] and npc is not self.elements["NPC"] and not self._got_rumor: mynpc = self.elements["NPC"] goffs.append(Offer( msg="You can find {} at {}. Don't say that you weren't warned.".format(mynpc,mynpc.get_scene()), context=ContextTag((context.INFO,)), effect=self._get_rumor, subject=str(mynpc), data={"subject": str(mynpc)}, no_repeats=True )) return goffs def _get_rumor(self,camp): mynpc = self.elements["NPC"] self._got_rumor = True self.memo = Memo( "{} is looking for a new lance.".format(mynpc) , mynpc.get_scene() )
45.005155
213
0.583295
3,931
34,924
5.048079
0.107097
0.051401
0.043086
0.020863
0.824934
0.815662
0.807347
0.792582
0.777968
0.770712
0
0.004401
0.303803
34,924
775
214
45.063226
0.811755
0.050424
0
0.781403
0
0.006525
0.113389
0.006108
0
0
0
0
0
1
0.115824
false
0
0.017945
0.016313
0.32137
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
72e3ac4fde0a35b1aa2592f2a98574d5dd8e6f76
10,192
py
Python
nca47/api/controllers/v1/firewall/securityZone.py
WosunOO/nca_xianshu
bbb548cb67b755a57528796d4c5a66ee68df2678
[ "Apache-2.0" ]
null
null
null
nca47/api/controllers/v1/firewall/securityZone.py
WosunOO/nca_xianshu
bbb548cb67b755a57528796d4c5a66ee68df2678
[ "Apache-2.0" ]
null
null
null
nca47/api/controllers/v1/firewall/securityZone.py
WosunOO/nca_xianshu
bbb548cb67b755a57528796d4c5a66ee68df2678
[ "Apache-2.0" ]
null
null
null
from oslo_serialization import jsonutils as json from nca47.api.controllers.v1 import base from nca47.common.i18n import _ from nca47.common.i18n import _LI, _LE from nca47.common.exception import Nca47Exception from oslo_log import log from nca47.api.controllers.v1 import tools from nca47.manager.central import CentralManager from nca47.common.exception import ParamFormatError from amqp.five import string from nca47.common.exception import BadRequest from oslo_messaging import RemoteError from nca47.common import exception LOG = log.getLogger(__name__) class SecurityZoneController(base.BaseRestController): def __init__(self): self.manager = CentralManager.get_instance() super(SecurityZoneController, self).__init__() def create(self, req, *args, **kwargs): try: url = req.url if len(args) > 1: raise BadRequest(resource="SecurityZone create", msg=url) context = req.context body_values = json.loads(req.body) valid_attributes = ['tenant_id', 'dc_name', 'network_zone', 'name', 'ifnames', 'priority', 'vfwname'] values = tools.validat_values(body_values, valid_attributes) LOG.info(_LI("input the SecurityZone values with dic format \ is %(json)s"), {"json": body_values}) values["name"] = (values["tenant_id"] + "_" + values["network_zone"] + "_" + values["name"]) response = self.manager.create_securityZone(context, values) return response except Nca47Exception as e: self.response.status = e.code LOG.error(_LE('Error exception! error info: %' + e.message)) LOG.exception(e) self.response.status = e.code return tools.ret_info(e.code, e.message) except RemoteError as exception: self.response.status = 500 message = exception.value return tools.ret_info(self.response.status, message) except Exception as e: LOG.exception(e) self.response.status = 500 return tools.ret_info(self.response.status, e.message) def remove(self, req, *args, **kwargs): try: url = req.url if len(args) > 1: raise BadRequest(resource="SecurityZone del", msg=url) context = req.context body_values = json.loads(req.body) valid_attributes = ['tenant_id', 'dc_name', 'network_zone', 'id'] values = tools.validat_values(body_values, valid_attributes) # input the SecurityZone values with dic format LOG.info(_LI("delete the SecurityZone values with dic forma \ is %(json)s"), {"json": body_values}) response = self.manager.del_securityZone(context, values) return response except Nca47Exception as e: self.response.status = e.code LOG.error(_LE('Error exception! error info: %' + e.message)) LOG.exception(e) self.response.status = e.code return tools.ret_info(e.code, e.message) except RemoteError as exception: self.response.status = 500 message = exception.value return tools.ret_info(self.response.status, message) except Exception as e: LOG.exception(e) self.response.status = 500 return tools.ret_info(self.response.status, e.message) def list(self, req, *args, **kwargs): try: url = req.url if len(args) > 1: raise BadRequest(resource="SecurityZone getAll", msg=url) context = req.context body_values = json.loads(req.body) valid_attributes = ['tenant_id', 'dc_name', 'network_zone', 'vfwname'] values = tools.validat_values(body_values, valid_attributes) # get_all the SecurityZone values with dic format LOG.info(_LI("get_all the SecurityZone values with dic format \ is %(json)s"), {"json": body_values}) response = self.manager.get_securityZones(context, values) return response except Nca47Exception as e: self.response.status = e.code LOG.error(_LE('Error exception! error info: %' + e.message)) LOG.exception(e) self.response.status = e.code return tools.ret_info(e.code, e.message) except RemoteError as exception: self.response.status = 500 message = exception.value return tools.ret_info(self.response.status, message) except Exception as e: LOG.exception(e) self.response.status = 500 return tools.ret_info(self.response.status, e.message) def show(self, req, *args, **kwargs): try: url = req.url if len(args) > 1: raise BadRequest(resource="SecurityZone get", msg=url) context = req.context body_values = json.loads(req.body) valid_attributes = ['id'] values = tools.validat_values(body_values, valid_attributes) # get the staticnat values with dic format LOG.info(_LI("get the SecurityZone values with dic format\ is %(json)s"), {"json": body_values}) response = self.manager.get_securityZone(context, values) return response except Nca47Exception as e: self.response.status = e.code LOG.error(_LE('Error exception! error info: %' + e.message)) LOG.exception(e) self.response.status = e.code return tools.ret_info(e.code, e.message) except RemoteError as exception: self.response.status = 500 message = exception.value return tools.ret_info(self.response.status, message) except Exception as e: LOG.exception(e) self.response.status = 500 return tools.ret_info(self.response.status, e.message) def addif(self, req, *args, **kwargs): try: url = req.url if len(args) > 1: raise BadRequest(resource="SecurityZone add vlan", msg=url) context = req.context body_values = json.loads(req.body) valid_attributes = ['tenant_id', 'dc_name', 'network_zone', 'id', 'ifname'] values = tools.validat_values(body_values, valid_attributes) # input the SecurityZone values with dic format LOG.info(_LI("input the SecurityZone values with dic formatO is\ %(json)s"), {"json": body_values}) response = self.manager.get_securityZone(context, values) if not isinstance(values["ifname"], string): raise ParamFormatError(param_name="ifname") if values["ifname"] in response.ifnames: message = ("securityZone with ifname=" + values["ifname"] + " already exists") return tools.ret_info("400", message) response.ifnames.append(values["ifname"]) values["ifnames"] = response.ifnames response = self.manager.update_securityZone(context, values) return response except Nca47Exception as e: self.response.status = e.code LOG.error(_LE('Error exception! error info: %' + e.message)) LOG.exception(e) self.response.status = e.code return tools.ret_info(e.code, e.message) except RemoteError as exception: self.response.status = 500 message = exception.value return tools.ret_info(self.response.status, message) except Exception as e: LOG.exception(e) self.response.status = 500 return tools.ret_info(self.response.status, e.message) def delif(self, req, *args, **kwargs): try: url = req.url if len(args) > 1: raise BadRequest(resource="SecurityZone del vlan", msg=url) context = req.context body_values = json.loads(req.body) valid_attributes = ['tenant_id', 'dc_name', 'network_zone', 'id', 'ifname'] values = tools.validat_values(body_values, valid_attributes) # input the SecurityZone values with dic format LOG.info(_LI("input the SecurityZone values with dic format\ is %(json)s"), {"json": body_values}) response = self.manager.get_securityZone(context, values) if not isinstance(values["ifname"], string): raise ParamFormatError(param_name="ifname") if values["ifname"] not in response.ifnames: message = ("securityZone with ifname=" + values["ifname"]+" don't exist!") return tools.ret_info("400", message) response.ifnames.remove(values["ifname"]) values["ifnames"] = response.ifnames response = self.manager.update_securityZone(context, values) return response except Nca47Exception as e: self.response.status = e.code LOG.error(_LE('Error exception! error info: %' + e.message)) LOG.exception(e) self.response.status = e.code return tools.ret_info(e.code, e.message) except RemoteError as exception: self.response.status = 500 message = exception.value return tools.ret_info(self.response.status, message) except Exception as e: LOG.exception(e) self.response.status = 500 return tools.ret_info(self.response.status, e.message)
45.097345
77
0.577414
1,111
10,192
5.190819
0.10441
0.074909
0.112363
0.062424
0.891625
0.862494
0.851743
0.851743
0.829894
0.766083
0
0.012547
0.327512
10,192
225
78
45.297778
0.828859
0.022174
0
0.748815
0
0
0.07008
0
0
0
0
0
0
1
0.033175
false
0
0.061611
0
0.222749
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
f412b42dfc85a5a206a8dd5d9f02a0078c055cdd
60,615
py
Python
sdk/python/pulumi_gcp/accesscontextmanager/service_perimeter.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
121
2018-06-18T19:16:42.000Z
2022-03-31T06:06:48.000Z
sdk/python/pulumi_gcp/accesscontextmanager/service_perimeter.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
492
2018-06-22T19:41:03.000Z
2022-03-31T15:33:53.000Z
sdk/python/pulumi_gcp/accesscontextmanager/service_perimeter.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
43
2018-06-19T01:43:13.000Z
2022-03-23T22:43:37.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['ServicePerimeterArgs', 'ServicePerimeter'] @pulumi.input_type class ServicePerimeterArgs: def __init__(__self__, *, parent: pulumi.Input[str], title: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, perimeter_type: Optional[pulumi.Input[str]] = None, spec: Optional[pulumi.Input['ServicePerimeterSpecArgs']] = None, status: Optional[pulumi.Input['ServicePerimeterStatusArgs']] = None, use_explicit_dry_run_spec: Optional[pulumi.Input[bool]] = None): """ The set of arguments for constructing a ServicePerimeter resource. :param pulumi.Input[str] parent: The AccessPolicy this ServicePerimeter lives in. Format: accessPolicies/{policy_id} :param pulumi.Input[str] title: Human readable title. Must be unique within the Policy. :param pulumi.Input[str] description: Description of the ServicePerimeter and its use. Does not affect behavior. :param pulumi.Input[str] name: Resource name for the ServicePerimeter. The short_name component must begin with a letter and only include alphanumeric and '_'. Format: accessPolicies/{policy_id}/servicePerimeters/{short_name} :param pulumi.Input[str] perimeter_type: Specifies the type of the Perimeter. There are two types: regular and bridge. Regular Service Perimeter contains resources, access levels, and restricted services. Every resource can be in at most ONE regular Service Perimeter. In addition to being in a regular service perimeter, a resource can also be in zero or more perimeter bridges. A perimeter bridge only contains resources. Cross project operations are permitted if all effected resources share some perimeter (whether bridge or regular). Perimeter Bridge does not contain access levels or services: those are governed entirely by the regular perimeter that resource is in. Perimeter Bridges are typically useful when building more complex topologies with many independent perimeters that need to share some data with a common perimeter, but should not be able to share data among themselves. Default value is `PERIMETER_TYPE_REGULAR`. Possible values are `PERIMETER_TYPE_REGULAR` and `PERIMETER_TYPE_BRIDGE`. :param pulumi.Input['ServicePerimeterSpecArgs'] spec: Proposed (or dry run) ServicePerimeter configuration. This configuration allows to specify and test ServicePerimeter configuration without enforcing actual access restrictions. Only allowed to be set when the `useExplicitDryRunSpec` flag is set. Structure is documented below. :param pulumi.Input['ServicePerimeterStatusArgs'] status: ServicePerimeter configuration. Specifies sets of resources, restricted services and access levels that determine perimeter content and boundaries. Structure is documented below. :param pulumi.Input[bool] use_explicit_dry_run_spec: Use explicit dry run spec flag. Ordinarily, a dry-run spec implicitly exists for all Service Perimeters, and that spec is identical to the status for those Service Perimeters. When this flag is set, it inhibits the generation of the implicit spec, thereby allowing the user to explicitly provide a configuration ("spec") to use in a dry-run version of the Service Perimeter. This allows the user to test changes to the enforced config ("status") without actually enforcing them. This testing is done through analyzing the differences between currently enforced and suggested restrictions. useExplicitDryRunSpec must bet set to True if any of the fields in the spec are set to non-default values. """ pulumi.set(__self__, "parent", parent) pulumi.set(__self__, "title", title) if description is not None: pulumi.set(__self__, "description", description) if name is not None: pulumi.set(__self__, "name", name) if perimeter_type is not None: pulumi.set(__self__, "perimeter_type", perimeter_type) if spec is not None: pulumi.set(__self__, "spec", spec) if status is not None: pulumi.set(__self__, "status", status) if use_explicit_dry_run_spec is not None: pulumi.set(__self__, "use_explicit_dry_run_spec", use_explicit_dry_run_spec) @property @pulumi.getter def parent(self) -> pulumi.Input[str]: """ The AccessPolicy this ServicePerimeter lives in. Format: accessPolicies/{policy_id} """ return pulumi.get(self, "parent") @parent.setter def parent(self, value: pulumi.Input[str]): pulumi.set(self, "parent", value) @property @pulumi.getter def title(self) -> pulumi.Input[str]: """ Human readable title. Must be unique within the Policy. """ return pulumi.get(self, "title") @title.setter def title(self, value: pulumi.Input[str]): pulumi.set(self, "title", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description of the ServicePerimeter and its use. Does not affect behavior. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Resource name for the ServicePerimeter. The short_name component must begin with a letter and only include alphanumeric and '_'. Format: accessPolicies/{policy_id}/servicePerimeters/{short_name} """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="perimeterType") def perimeter_type(self) -> Optional[pulumi.Input[str]]: """ Specifies the type of the Perimeter. There are two types: regular and bridge. Regular Service Perimeter contains resources, access levels, and restricted services. Every resource can be in at most ONE regular Service Perimeter. In addition to being in a regular service perimeter, a resource can also be in zero or more perimeter bridges. A perimeter bridge only contains resources. Cross project operations are permitted if all effected resources share some perimeter (whether bridge or regular). Perimeter Bridge does not contain access levels or services: those are governed entirely by the regular perimeter that resource is in. Perimeter Bridges are typically useful when building more complex topologies with many independent perimeters that need to share some data with a common perimeter, but should not be able to share data among themselves. Default value is `PERIMETER_TYPE_REGULAR`. Possible values are `PERIMETER_TYPE_REGULAR` and `PERIMETER_TYPE_BRIDGE`. """ return pulumi.get(self, "perimeter_type") @perimeter_type.setter def perimeter_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "perimeter_type", value) @property @pulumi.getter def spec(self) -> Optional[pulumi.Input['ServicePerimeterSpecArgs']]: """ Proposed (or dry run) ServicePerimeter configuration. This configuration allows to specify and test ServicePerimeter configuration without enforcing actual access restrictions. Only allowed to be set when the `useExplicitDryRunSpec` flag is set. Structure is documented below. """ return pulumi.get(self, "spec") @spec.setter def spec(self, value: Optional[pulumi.Input['ServicePerimeterSpecArgs']]): pulumi.set(self, "spec", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input['ServicePerimeterStatusArgs']]: """ ServicePerimeter configuration. Specifies sets of resources, restricted services and access levels that determine perimeter content and boundaries. Structure is documented below. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input['ServicePerimeterStatusArgs']]): pulumi.set(self, "status", value) @property @pulumi.getter(name="useExplicitDryRunSpec") def use_explicit_dry_run_spec(self) -> Optional[pulumi.Input[bool]]: """ Use explicit dry run spec flag. Ordinarily, a dry-run spec implicitly exists for all Service Perimeters, and that spec is identical to the status for those Service Perimeters. When this flag is set, it inhibits the generation of the implicit spec, thereby allowing the user to explicitly provide a configuration ("spec") to use in a dry-run version of the Service Perimeter. This allows the user to test changes to the enforced config ("status") without actually enforcing them. This testing is done through analyzing the differences between currently enforced and suggested restrictions. useExplicitDryRunSpec must bet set to True if any of the fields in the spec are set to non-default values. """ return pulumi.get(self, "use_explicit_dry_run_spec") @use_explicit_dry_run_spec.setter def use_explicit_dry_run_spec(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "use_explicit_dry_run_spec", value) @pulumi.input_type class _ServicePerimeterState: def __init__(__self__, *, create_time: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parent: Optional[pulumi.Input[str]] = None, perimeter_type: Optional[pulumi.Input[str]] = None, spec: Optional[pulumi.Input['ServicePerimeterSpecArgs']] = None, status: Optional[pulumi.Input['ServicePerimeterStatusArgs']] = None, title: Optional[pulumi.Input[str]] = None, update_time: Optional[pulumi.Input[str]] = None, use_explicit_dry_run_spec: Optional[pulumi.Input[bool]] = None): """ Input properties used for looking up and filtering ServicePerimeter resources. :param pulumi.Input[str] create_time: Time the AccessPolicy was created in UTC. :param pulumi.Input[str] description: Description of the ServicePerimeter and its use. Does not affect behavior. :param pulumi.Input[str] name: Resource name for the ServicePerimeter. The short_name component must begin with a letter and only include alphanumeric and '_'. Format: accessPolicies/{policy_id}/servicePerimeters/{short_name} :param pulumi.Input[str] parent: The AccessPolicy this ServicePerimeter lives in. Format: accessPolicies/{policy_id} :param pulumi.Input[str] perimeter_type: Specifies the type of the Perimeter. There are two types: regular and bridge. Regular Service Perimeter contains resources, access levels, and restricted services. Every resource can be in at most ONE regular Service Perimeter. In addition to being in a regular service perimeter, a resource can also be in zero or more perimeter bridges. A perimeter bridge only contains resources. Cross project operations are permitted if all effected resources share some perimeter (whether bridge or regular). Perimeter Bridge does not contain access levels or services: those are governed entirely by the regular perimeter that resource is in. Perimeter Bridges are typically useful when building more complex topologies with many independent perimeters that need to share some data with a common perimeter, but should not be able to share data among themselves. Default value is `PERIMETER_TYPE_REGULAR`. Possible values are `PERIMETER_TYPE_REGULAR` and `PERIMETER_TYPE_BRIDGE`. :param pulumi.Input['ServicePerimeterSpecArgs'] spec: Proposed (or dry run) ServicePerimeter configuration. This configuration allows to specify and test ServicePerimeter configuration without enforcing actual access restrictions. Only allowed to be set when the `useExplicitDryRunSpec` flag is set. Structure is documented below. :param pulumi.Input['ServicePerimeterStatusArgs'] status: ServicePerimeter configuration. Specifies sets of resources, restricted services and access levels that determine perimeter content and boundaries. Structure is documented below. :param pulumi.Input[str] title: Human readable title. Must be unique within the Policy. :param pulumi.Input[str] update_time: Time the AccessPolicy was updated in UTC. :param pulumi.Input[bool] use_explicit_dry_run_spec: Use explicit dry run spec flag. Ordinarily, a dry-run spec implicitly exists for all Service Perimeters, and that spec is identical to the status for those Service Perimeters. When this flag is set, it inhibits the generation of the implicit spec, thereby allowing the user to explicitly provide a configuration ("spec") to use in a dry-run version of the Service Perimeter. This allows the user to test changes to the enforced config ("status") without actually enforcing them. This testing is done through analyzing the differences between currently enforced and suggested restrictions. useExplicitDryRunSpec must bet set to True if any of the fields in the spec are set to non-default values. """ if create_time is not None: pulumi.set(__self__, "create_time", create_time) if description is not None: pulumi.set(__self__, "description", description) if name is not None: pulumi.set(__self__, "name", name) if parent is not None: pulumi.set(__self__, "parent", parent) if perimeter_type is not None: pulumi.set(__self__, "perimeter_type", perimeter_type) if spec is not None: pulumi.set(__self__, "spec", spec) if status is not None: pulumi.set(__self__, "status", status) if title is not None: pulumi.set(__self__, "title", title) if update_time is not None: pulumi.set(__self__, "update_time", update_time) if use_explicit_dry_run_spec is not None: pulumi.set(__self__, "use_explicit_dry_run_spec", use_explicit_dry_run_spec) @property @pulumi.getter(name="createTime") def create_time(self) -> Optional[pulumi.Input[str]]: """ Time the AccessPolicy was created in UTC. """ return pulumi.get(self, "create_time") @create_time.setter def create_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "create_time", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description of the ServicePerimeter and its use. Does not affect behavior. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Resource name for the ServicePerimeter. The short_name component must begin with a letter and only include alphanumeric and '_'. Format: accessPolicies/{policy_id}/servicePerimeters/{short_name} """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def parent(self) -> Optional[pulumi.Input[str]]: """ The AccessPolicy this ServicePerimeter lives in. Format: accessPolicies/{policy_id} """ return pulumi.get(self, "parent") @parent.setter def parent(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "parent", value) @property @pulumi.getter(name="perimeterType") def perimeter_type(self) -> Optional[pulumi.Input[str]]: """ Specifies the type of the Perimeter. There are two types: regular and bridge. Regular Service Perimeter contains resources, access levels, and restricted services. Every resource can be in at most ONE regular Service Perimeter. In addition to being in a regular service perimeter, a resource can also be in zero or more perimeter bridges. A perimeter bridge only contains resources. Cross project operations are permitted if all effected resources share some perimeter (whether bridge or regular). Perimeter Bridge does not contain access levels or services: those are governed entirely by the regular perimeter that resource is in. Perimeter Bridges are typically useful when building more complex topologies with many independent perimeters that need to share some data with a common perimeter, but should not be able to share data among themselves. Default value is `PERIMETER_TYPE_REGULAR`. Possible values are `PERIMETER_TYPE_REGULAR` and `PERIMETER_TYPE_BRIDGE`. """ return pulumi.get(self, "perimeter_type") @perimeter_type.setter def perimeter_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "perimeter_type", value) @property @pulumi.getter def spec(self) -> Optional[pulumi.Input['ServicePerimeterSpecArgs']]: """ Proposed (or dry run) ServicePerimeter configuration. This configuration allows to specify and test ServicePerimeter configuration without enforcing actual access restrictions. Only allowed to be set when the `useExplicitDryRunSpec` flag is set. Structure is documented below. """ return pulumi.get(self, "spec") @spec.setter def spec(self, value: Optional[pulumi.Input['ServicePerimeterSpecArgs']]): pulumi.set(self, "spec", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input['ServicePerimeterStatusArgs']]: """ ServicePerimeter configuration. Specifies sets of resources, restricted services and access levels that determine perimeter content and boundaries. Structure is documented below. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input['ServicePerimeterStatusArgs']]): pulumi.set(self, "status", value) @property @pulumi.getter def title(self) -> Optional[pulumi.Input[str]]: """ Human readable title. Must be unique within the Policy. """ return pulumi.get(self, "title") @title.setter def title(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "title", value) @property @pulumi.getter(name="updateTime") def update_time(self) -> Optional[pulumi.Input[str]]: """ Time the AccessPolicy was updated in UTC. """ return pulumi.get(self, "update_time") @update_time.setter def update_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "update_time", value) @property @pulumi.getter(name="useExplicitDryRunSpec") def use_explicit_dry_run_spec(self) -> Optional[pulumi.Input[bool]]: """ Use explicit dry run spec flag. Ordinarily, a dry-run spec implicitly exists for all Service Perimeters, and that spec is identical to the status for those Service Perimeters. When this flag is set, it inhibits the generation of the implicit spec, thereby allowing the user to explicitly provide a configuration ("spec") to use in a dry-run version of the Service Perimeter. This allows the user to test changes to the enforced config ("status") without actually enforcing them. This testing is done through analyzing the differences between currently enforced and suggested restrictions. useExplicitDryRunSpec must bet set to True if any of the fields in the spec are set to non-default values. """ return pulumi.get(self, "use_explicit_dry_run_spec") @use_explicit_dry_run_spec.setter def use_explicit_dry_run_spec(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "use_explicit_dry_run_spec", value) class ServicePerimeter(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parent: Optional[pulumi.Input[str]] = None, perimeter_type: Optional[pulumi.Input[str]] = None, spec: Optional[pulumi.Input[pulumi.InputType['ServicePerimeterSpecArgs']]] = None, status: Optional[pulumi.Input[pulumi.InputType['ServicePerimeterStatusArgs']]] = None, title: Optional[pulumi.Input[str]] = None, use_explicit_dry_run_spec: Optional[pulumi.Input[bool]] = None, __props__=None): """ ServicePerimeter describes a set of GCP resources which can freely import and export data amongst themselves, but not export outside of the ServicePerimeter. If a request with a source within this ServicePerimeter has a target outside of the ServicePerimeter, the request will be blocked. Otherwise the request is allowed. There are two types of Service Perimeter - Regular and Bridge. Regular Service Perimeters cannot overlap, a single GCP project can only belong to a single regular Service Perimeter. Service Perimeter Bridges can contain only GCP projects as members, a single GCP project may belong to multiple Service Perimeter Bridges. To get more information about ServicePerimeter, see: * [API documentation](https://cloud.google.com/access-context-manager/docs/reference/rest/v1/accessPolicies.servicePerimeters) * How-to Guides * [Service Perimeter Quickstart](https://cloud.google.com/vpc-service-controls/docs/quickstart) > **Warning:** If you are using User ADCs (Application Default Credentials) with this resource, you must specify a `billing_project` and set `user_project_override` to true in the provider configuration. Otherwise the ACM API will return a 403 error. Your account must have the `serviceusage.services.use` permission on the `billing_project` you defined. ## Example Usage ### Access Context Manager Service Perimeter Basic ```python import pulumi import pulumi_gcp as gcp access_policy = gcp.accesscontextmanager.AccessPolicy("access-policy", parent="organizations/123456789", title="my policy") service_perimeter = gcp.accesscontextmanager.ServicePerimeter("service-perimeter", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), status=gcp.accesscontextmanager.ServicePerimeterStatusArgs( restricted_services=["storage.googleapis.com"], ), title="restrict_storage") access_level = gcp.accesscontextmanager.AccessLevel("access-level", basic=gcp.accesscontextmanager.AccessLevelBasicArgs( conditions=[gcp.accesscontextmanager.AccessLevelBasicConditionArgs( device_policy=gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyArgs( os_constraints=[gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyOsConstraintArgs( os_type="DESKTOP_CHROME_OS", )], require_screen_lock=False, ), regions=[ "CH", "IT", "US", ], )], ), parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), title="chromeos_no_lock") ``` ### Access Context Manager Service Perimeter Secure Data Exchange ```python import pulumi import pulumi_gcp as gcp access_policy = gcp.accesscontextmanager.AccessPolicy("access-policy", parent="organizations/123456789", title="my policy") secure_data_exchange = gcp.accesscontextmanager.ServicePerimeters("secure-data-exchange", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), service_perimeters=[ gcp.accesscontextmanager.ServicePerimetersServicePerimeterArgs( name=access_policy.name.apply(lambda name: f"accessPolicies/{name}/servicePerimeters/"), title="", status=gcp.accesscontextmanager.ServicePerimetersServicePerimeterStatusArgs( restricted_services=["storage.googleapis.com"], ), ), gcp.accesscontextmanager.ServicePerimetersServicePerimeterArgs( name=access_policy.name.apply(lambda name: f"accessPolicies/{name}/servicePerimeters/"), title="", status=gcp.accesscontextmanager.ServicePerimetersServicePerimeterStatusArgs( restricted_services=["bigtable.googleapis.com"], vpc_accessible_services=gcp.accesscontextmanager.ServicePerimetersServicePerimeterStatusVpcAccessibleServicesArgs( enable_restriction=True, allowed_services=["bigquery.googleapis.com"], ), ), ), ]) access_level = gcp.accesscontextmanager.AccessLevel("access-level", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), title="secure_data_exchange", basic=gcp.accesscontextmanager.AccessLevelBasicArgs( conditions=[gcp.accesscontextmanager.AccessLevelBasicConditionArgs( device_policy=gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyArgs( require_screen_lock=False, os_constraints=[gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyOsConstraintArgs( os_type="DESKTOP_CHROME_OS", )], ), regions=[ "CH", "IT", "US", ], )], )) test_access = gcp.accesscontextmanager.ServicePerimeter("test-access", parent=f"accessPolicies/{google_access_context_manager_access_policy['test-access']['name']}", title="%s", perimeter_type="PERIMETER_TYPE_REGULAR", status=gcp.accesscontextmanager.ServicePerimeterStatusArgs( restricted_services=[ "bigquery.googleapis.com", "storage.googleapis.com", ], access_levels=[access_level.name], vpc_accessible_services=gcp.accesscontextmanager.ServicePerimeterStatusVpcAccessibleServicesArgs( enable_restriction=True, allowed_services=[ "bigquery.googleapis.com", "storage.googleapis.com", ], ), ingress_policies=[gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyArgs( ingress_from=gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressFromArgs( sources=[gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressFromSourceArgs( access_level=google_access_context_manager_access_level["test-access"]["name"], )], identity_type="ANY_IDENTITY", ), ingress_to=gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToArgs( resources=["*"], operations=[ gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationArgs( service_name="bigquery.googleapis.com", method_selectors=[ gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( method="BigQueryStorage.ReadRows", ), gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( method="TableService.ListTables", ), gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( permission="bigquery.jobs.get", ), ], ), gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationArgs( service_name="storage.googleapis.com", method_selectors=[gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( method="google.storage.objects.create", )], ), ], ), )], egress_policies=[gcp.accesscontextmanager.ServicePerimeterStatusEgressPolicyArgs( egress_from=gcp.accesscontextmanager.ServicePerimeterStatusEgressPolicyEgressFromArgs( identity_type="ANY_USER_ACCOUNT", ), )], )) ``` ### Access Context Manager Service Perimeter Dry Run ```python import pulumi import pulumi_gcp as gcp access_policy = gcp.accesscontextmanager.AccessPolicy("access-policy", parent="organizations/123456789", title="my policy") service_perimeter = gcp.accesscontextmanager.ServicePerimeter("service-perimeter", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), spec=gcp.accesscontextmanager.ServicePerimeterSpecArgs( restricted_services=["storage.googleapis.com"], ), status=gcp.accesscontextmanager.ServicePerimeterStatusArgs( restricted_services=["bigquery.googleapis.com"], ), title="restrict_bigquery_dryrun_storage", use_explicit_dry_run_spec=True) ``` ## Import ServicePerimeter can be imported using any of these accepted formats ```sh $ pulumi import gcp:accesscontextmanager/servicePerimeter:ServicePerimeter default {{name}} ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description of the ServicePerimeter and its use. Does not affect behavior. :param pulumi.Input[str] name: Resource name for the ServicePerimeter. The short_name component must begin with a letter and only include alphanumeric and '_'. Format: accessPolicies/{policy_id}/servicePerimeters/{short_name} :param pulumi.Input[str] parent: The AccessPolicy this ServicePerimeter lives in. Format: accessPolicies/{policy_id} :param pulumi.Input[str] perimeter_type: Specifies the type of the Perimeter. There are two types: regular and bridge. Regular Service Perimeter contains resources, access levels, and restricted services. Every resource can be in at most ONE regular Service Perimeter. In addition to being in a regular service perimeter, a resource can also be in zero or more perimeter bridges. A perimeter bridge only contains resources. Cross project operations are permitted if all effected resources share some perimeter (whether bridge or regular). Perimeter Bridge does not contain access levels or services: those are governed entirely by the regular perimeter that resource is in. Perimeter Bridges are typically useful when building more complex topologies with many independent perimeters that need to share some data with a common perimeter, but should not be able to share data among themselves. Default value is `PERIMETER_TYPE_REGULAR`. Possible values are `PERIMETER_TYPE_REGULAR` and `PERIMETER_TYPE_BRIDGE`. :param pulumi.Input[pulumi.InputType['ServicePerimeterSpecArgs']] spec: Proposed (or dry run) ServicePerimeter configuration. This configuration allows to specify and test ServicePerimeter configuration without enforcing actual access restrictions. Only allowed to be set when the `useExplicitDryRunSpec` flag is set. Structure is documented below. :param pulumi.Input[pulumi.InputType['ServicePerimeterStatusArgs']] status: ServicePerimeter configuration. Specifies sets of resources, restricted services and access levels that determine perimeter content and boundaries. Structure is documented below. :param pulumi.Input[str] title: Human readable title. Must be unique within the Policy. :param pulumi.Input[bool] use_explicit_dry_run_spec: Use explicit dry run spec flag. Ordinarily, a dry-run spec implicitly exists for all Service Perimeters, and that spec is identical to the status for those Service Perimeters. When this flag is set, it inhibits the generation of the implicit spec, thereby allowing the user to explicitly provide a configuration ("spec") to use in a dry-run version of the Service Perimeter. This allows the user to test changes to the enforced config ("status") without actually enforcing them. This testing is done through analyzing the differences between currently enforced and suggested restrictions. useExplicitDryRunSpec must bet set to True if any of the fields in the spec are set to non-default values. """ ... @overload def __init__(__self__, resource_name: str, args: ServicePerimeterArgs, opts: Optional[pulumi.ResourceOptions] = None): """ ServicePerimeter describes a set of GCP resources which can freely import and export data amongst themselves, but not export outside of the ServicePerimeter. If a request with a source within this ServicePerimeter has a target outside of the ServicePerimeter, the request will be blocked. Otherwise the request is allowed. There are two types of Service Perimeter - Regular and Bridge. Regular Service Perimeters cannot overlap, a single GCP project can only belong to a single regular Service Perimeter. Service Perimeter Bridges can contain only GCP projects as members, a single GCP project may belong to multiple Service Perimeter Bridges. To get more information about ServicePerimeter, see: * [API documentation](https://cloud.google.com/access-context-manager/docs/reference/rest/v1/accessPolicies.servicePerimeters) * How-to Guides * [Service Perimeter Quickstart](https://cloud.google.com/vpc-service-controls/docs/quickstart) > **Warning:** If you are using User ADCs (Application Default Credentials) with this resource, you must specify a `billing_project` and set `user_project_override` to true in the provider configuration. Otherwise the ACM API will return a 403 error. Your account must have the `serviceusage.services.use` permission on the `billing_project` you defined. ## Example Usage ### Access Context Manager Service Perimeter Basic ```python import pulumi import pulumi_gcp as gcp access_policy = gcp.accesscontextmanager.AccessPolicy("access-policy", parent="organizations/123456789", title="my policy") service_perimeter = gcp.accesscontextmanager.ServicePerimeter("service-perimeter", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), status=gcp.accesscontextmanager.ServicePerimeterStatusArgs( restricted_services=["storage.googleapis.com"], ), title="restrict_storage") access_level = gcp.accesscontextmanager.AccessLevel("access-level", basic=gcp.accesscontextmanager.AccessLevelBasicArgs( conditions=[gcp.accesscontextmanager.AccessLevelBasicConditionArgs( device_policy=gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyArgs( os_constraints=[gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyOsConstraintArgs( os_type="DESKTOP_CHROME_OS", )], require_screen_lock=False, ), regions=[ "CH", "IT", "US", ], )], ), parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), title="chromeos_no_lock") ``` ### Access Context Manager Service Perimeter Secure Data Exchange ```python import pulumi import pulumi_gcp as gcp access_policy = gcp.accesscontextmanager.AccessPolicy("access-policy", parent="organizations/123456789", title="my policy") secure_data_exchange = gcp.accesscontextmanager.ServicePerimeters("secure-data-exchange", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), service_perimeters=[ gcp.accesscontextmanager.ServicePerimetersServicePerimeterArgs( name=access_policy.name.apply(lambda name: f"accessPolicies/{name}/servicePerimeters/"), title="", status=gcp.accesscontextmanager.ServicePerimetersServicePerimeterStatusArgs( restricted_services=["storage.googleapis.com"], ), ), gcp.accesscontextmanager.ServicePerimetersServicePerimeterArgs( name=access_policy.name.apply(lambda name: f"accessPolicies/{name}/servicePerimeters/"), title="", status=gcp.accesscontextmanager.ServicePerimetersServicePerimeterStatusArgs( restricted_services=["bigtable.googleapis.com"], vpc_accessible_services=gcp.accesscontextmanager.ServicePerimetersServicePerimeterStatusVpcAccessibleServicesArgs( enable_restriction=True, allowed_services=["bigquery.googleapis.com"], ), ), ), ]) access_level = gcp.accesscontextmanager.AccessLevel("access-level", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), title="secure_data_exchange", basic=gcp.accesscontextmanager.AccessLevelBasicArgs( conditions=[gcp.accesscontextmanager.AccessLevelBasicConditionArgs( device_policy=gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyArgs( require_screen_lock=False, os_constraints=[gcp.accesscontextmanager.AccessLevelBasicConditionDevicePolicyOsConstraintArgs( os_type="DESKTOP_CHROME_OS", )], ), regions=[ "CH", "IT", "US", ], )], )) test_access = gcp.accesscontextmanager.ServicePerimeter("test-access", parent=f"accessPolicies/{google_access_context_manager_access_policy['test-access']['name']}", title="%s", perimeter_type="PERIMETER_TYPE_REGULAR", status=gcp.accesscontextmanager.ServicePerimeterStatusArgs( restricted_services=[ "bigquery.googleapis.com", "storage.googleapis.com", ], access_levels=[access_level.name], vpc_accessible_services=gcp.accesscontextmanager.ServicePerimeterStatusVpcAccessibleServicesArgs( enable_restriction=True, allowed_services=[ "bigquery.googleapis.com", "storage.googleapis.com", ], ), ingress_policies=[gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyArgs( ingress_from=gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressFromArgs( sources=[gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressFromSourceArgs( access_level=google_access_context_manager_access_level["test-access"]["name"], )], identity_type="ANY_IDENTITY", ), ingress_to=gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToArgs( resources=["*"], operations=[ gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationArgs( service_name="bigquery.googleapis.com", method_selectors=[ gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( method="BigQueryStorage.ReadRows", ), gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( method="TableService.ListTables", ), gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( permission="bigquery.jobs.get", ), ], ), gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationArgs( service_name="storage.googleapis.com", method_selectors=[gcp.accesscontextmanager.ServicePerimeterStatusIngressPolicyIngressToOperationMethodSelectorArgs( method="google.storage.objects.create", )], ), ], ), )], egress_policies=[gcp.accesscontextmanager.ServicePerimeterStatusEgressPolicyArgs( egress_from=gcp.accesscontextmanager.ServicePerimeterStatusEgressPolicyEgressFromArgs( identity_type="ANY_USER_ACCOUNT", ), )], )) ``` ### Access Context Manager Service Perimeter Dry Run ```python import pulumi import pulumi_gcp as gcp access_policy = gcp.accesscontextmanager.AccessPolicy("access-policy", parent="organizations/123456789", title="my policy") service_perimeter = gcp.accesscontextmanager.ServicePerimeter("service-perimeter", parent=access_policy.name.apply(lambda name: f"accessPolicies/{name}"), spec=gcp.accesscontextmanager.ServicePerimeterSpecArgs( restricted_services=["storage.googleapis.com"], ), status=gcp.accesscontextmanager.ServicePerimeterStatusArgs( restricted_services=["bigquery.googleapis.com"], ), title="restrict_bigquery_dryrun_storage", use_explicit_dry_run_spec=True) ``` ## Import ServicePerimeter can be imported using any of these accepted formats ```sh $ pulumi import gcp:accesscontextmanager/servicePerimeter:ServicePerimeter default {{name}} ``` :param str resource_name: The name of the resource. :param ServicePerimeterArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ServicePerimeterArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parent: Optional[pulumi.Input[str]] = None, perimeter_type: Optional[pulumi.Input[str]] = None, spec: Optional[pulumi.Input[pulumi.InputType['ServicePerimeterSpecArgs']]] = None, status: Optional[pulumi.Input[pulumi.InputType['ServicePerimeterStatusArgs']]] = None, title: Optional[pulumi.Input[str]] = None, use_explicit_dry_run_spec: Optional[pulumi.Input[bool]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ServicePerimeterArgs.__new__(ServicePerimeterArgs) __props__.__dict__["description"] = description __props__.__dict__["name"] = name if parent is None and not opts.urn: raise TypeError("Missing required property 'parent'") __props__.__dict__["parent"] = parent __props__.__dict__["perimeter_type"] = perimeter_type __props__.__dict__["spec"] = spec __props__.__dict__["status"] = status if title is None and not opts.urn: raise TypeError("Missing required property 'title'") __props__.__dict__["title"] = title __props__.__dict__["use_explicit_dry_run_spec"] = use_explicit_dry_run_spec __props__.__dict__["create_time"] = None __props__.__dict__["update_time"] = None super(ServicePerimeter, __self__).__init__( 'gcp:accesscontextmanager/servicePerimeter:ServicePerimeter', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, create_time: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parent: Optional[pulumi.Input[str]] = None, perimeter_type: Optional[pulumi.Input[str]] = None, spec: Optional[pulumi.Input[pulumi.InputType['ServicePerimeterSpecArgs']]] = None, status: Optional[pulumi.Input[pulumi.InputType['ServicePerimeterStatusArgs']]] = None, title: Optional[pulumi.Input[str]] = None, update_time: Optional[pulumi.Input[str]] = None, use_explicit_dry_run_spec: Optional[pulumi.Input[bool]] = None) -> 'ServicePerimeter': """ Get an existing ServicePerimeter resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] create_time: Time the AccessPolicy was created in UTC. :param pulumi.Input[str] description: Description of the ServicePerimeter and its use. Does not affect behavior. :param pulumi.Input[str] name: Resource name for the ServicePerimeter. The short_name component must begin with a letter and only include alphanumeric and '_'. Format: accessPolicies/{policy_id}/servicePerimeters/{short_name} :param pulumi.Input[str] parent: The AccessPolicy this ServicePerimeter lives in. Format: accessPolicies/{policy_id} :param pulumi.Input[str] perimeter_type: Specifies the type of the Perimeter. There are two types: regular and bridge. Regular Service Perimeter contains resources, access levels, and restricted services. Every resource can be in at most ONE regular Service Perimeter. In addition to being in a regular service perimeter, a resource can also be in zero or more perimeter bridges. A perimeter bridge only contains resources. Cross project operations are permitted if all effected resources share some perimeter (whether bridge or regular). Perimeter Bridge does not contain access levels or services: those are governed entirely by the regular perimeter that resource is in. Perimeter Bridges are typically useful when building more complex topologies with many independent perimeters that need to share some data with a common perimeter, but should not be able to share data among themselves. Default value is `PERIMETER_TYPE_REGULAR`. Possible values are `PERIMETER_TYPE_REGULAR` and `PERIMETER_TYPE_BRIDGE`. :param pulumi.Input[pulumi.InputType['ServicePerimeterSpecArgs']] spec: Proposed (or dry run) ServicePerimeter configuration. This configuration allows to specify and test ServicePerimeter configuration without enforcing actual access restrictions. Only allowed to be set when the `useExplicitDryRunSpec` flag is set. Structure is documented below. :param pulumi.Input[pulumi.InputType['ServicePerimeterStatusArgs']] status: ServicePerimeter configuration. Specifies sets of resources, restricted services and access levels that determine perimeter content and boundaries. Structure is documented below. :param pulumi.Input[str] title: Human readable title. Must be unique within the Policy. :param pulumi.Input[str] update_time: Time the AccessPolicy was updated in UTC. :param pulumi.Input[bool] use_explicit_dry_run_spec: Use explicit dry run spec flag. Ordinarily, a dry-run spec implicitly exists for all Service Perimeters, and that spec is identical to the status for those Service Perimeters. When this flag is set, it inhibits the generation of the implicit spec, thereby allowing the user to explicitly provide a configuration ("spec") to use in a dry-run version of the Service Perimeter. This allows the user to test changes to the enforced config ("status") without actually enforcing them. This testing is done through analyzing the differences between currently enforced and suggested restrictions. useExplicitDryRunSpec must bet set to True if any of the fields in the spec are set to non-default values. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _ServicePerimeterState.__new__(_ServicePerimeterState) __props__.__dict__["create_time"] = create_time __props__.__dict__["description"] = description __props__.__dict__["name"] = name __props__.__dict__["parent"] = parent __props__.__dict__["perimeter_type"] = perimeter_type __props__.__dict__["spec"] = spec __props__.__dict__["status"] = status __props__.__dict__["title"] = title __props__.__dict__["update_time"] = update_time __props__.__dict__["use_explicit_dry_run_spec"] = use_explicit_dry_run_spec return ServicePerimeter(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createTime") def create_time(self) -> pulumi.Output[str]: """ Time the AccessPolicy was created in UTC. """ return pulumi.get(self, "create_time") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description of the ServicePerimeter and its use. Does not affect behavior. """ return pulumi.get(self, "description") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name for the ServicePerimeter. The short_name component must begin with a letter and only include alphanumeric and '_'. Format: accessPolicies/{policy_id}/servicePerimeters/{short_name} """ return pulumi.get(self, "name") @property @pulumi.getter def parent(self) -> pulumi.Output[str]: """ The AccessPolicy this ServicePerimeter lives in. Format: accessPolicies/{policy_id} """ return pulumi.get(self, "parent") @property @pulumi.getter(name="perimeterType") def perimeter_type(self) -> pulumi.Output[Optional[str]]: """ Specifies the type of the Perimeter. There are two types: regular and bridge. Regular Service Perimeter contains resources, access levels, and restricted services. Every resource can be in at most ONE regular Service Perimeter. In addition to being in a regular service perimeter, a resource can also be in zero or more perimeter bridges. A perimeter bridge only contains resources. Cross project operations are permitted if all effected resources share some perimeter (whether bridge or regular). Perimeter Bridge does not contain access levels or services: those are governed entirely by the regular perimeter that resource is in. Perimeter Bridges are typically useful when building more complex topologies with many independent perimeters that need to share some data with a common perimeter, but should not be able to share data among themselves. Default value is `PERIMETER_TYPE_REGULAR`. Possible values are `PERIMETER_TYPE_REGULAR` and `PERIMETER_TYPE_BRIDGE`. """ return pulumi.get(self, "perimeter_type") @property @pulumi.getter def spec(self) -> pulumi.Output[Optional['outputs.ServicePerimeterSpec']]: """ Proposed (or dry run) ServicePerimeter configuration. This configuration allows to specify and test ServicePerimeter configuration without enforcing actual access restrictions. Only allowed to be set when the `useExplicitDryRunSpec` flag is set. Structure is documented below. """ return pulumi.get(self, "spec") @property @pulumi.getter def status(self) -> pulumi.Output[Optional['outputs.ServicePerimeterStatus']]: """ ServicePerimeter configuration. Specifies sets of resources, restricted services and access levels that determine perimeter content and boundaries. Structure is documented below. """ return pulumi.get(self, "status") @property @pulumi.getter def title(self) -> pulumi.Output[str]: """ Human readable title. Must be unique within the Policy. """ return pulumi.get(self, "title") @property @pulumi.getter(name="updateTime") def update_time(self) -> pulumi.Output[str]: """ Time the AccessPolicy was updated in UTC. """ return pulumi.get(self, "update_time") @property @pulumi.getter(name="useExplicitDryRunSpec") def use_explicit_dry_run_spec(self) -> pulumi.Output[Optional[bool]]: """ Use explicit dry run spec flag. Ordinarily, a dry-run spec implicitly exists for all Service Perimeters, and that spec is identical to the status for those Service Perimeters. When this flag is set, it inhibits the generation of the implicit spec, thereby allowing the user to explicitly provide a configuration ("spec") to use in a dry-run version of the Service Perimeter. This allows the user to test changes to the enforced config ("status") without actually enforcing them. This testing is done through analyzing the differences between currently enforced and suggested restrictions. useExplicitDryRunSpec must bet set to True if any of the fields in the spec are set to non-default values. """ return pulumi.get(self, "use_explicit_dry_run_spec")
52.480519
147
0.640502
6,120
60,615
6.207516
0.066013
0.034746
0.029113
0.027218
0.948381
0.937326
0.929113
0.922664
0.918794
0.912345
0
0.001461
0.288394
60,615
1,154
148
52.525997
0.879283
0.647727
0
0.743119
1
0
0.115593
0.055118
0
0
0
0
0
1
0.16208
false
0.003058
0.021407
0
0.281346
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
f432670cd6f74e0a57b036d2bab7509d31c45355
34,716
py
Python
venv/lib/python3.8/site-packages/arch/tests/univariate/test_recursions.py
YileC928/finm-portfolio-2021
3fa1e97423fa731bce0cad3457807e1873120891
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/arch/tests/univariate/test_recursions.py
YileC928/finm-portfolio-2021
3fa1e97423fa731bce0cad3457807e1873120891
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/arch/tests/univariate/test_recursions.py
YileC928/finm-portfolio-2021
3fa1e97423fa731bce0cad3457807e1873120891
[ "MIT" ]
null
null
null
import os import timeit from typing import List import numpy as np from numpy.random import RandomState from numpy.testing import assert_allclose, assert_almost_equal import pytest from scipy.special import gamma import arch.univariate.recursions_python as recpy CYTHON_COVERAGE = os.environ.get("ARCH_CYTHON_COVERAGE", "0") in ("true", "1", "True") try: import arch.univariate.recursions as rec_cython missing_extension = False except ImportError: missing_extension = True if missing_extension: rec = recpy else: rec = rec_cython try: import numba # noqa missing_numba = False except ImportError: missing_numba = True pytestmark = pytest.mark.filterwarnings("ignore::arch.compat.numba.PerformanceWarning") class Timer(object): def __init__( self, first, first_name, second, second_name, model_name, setup, repeat=5, number=10, ) -> None: self.first_code = first self.second_code = second self.setup = setup self.first_name = first_name self.second_name = second_name self.model_name = model_name self.repeat = repeat self.number = number self._run = False self.times: List[float] = [] self._codes = [first, second] self.ratio = np.inf def display(self): if not self._run: self.time() self.ratio = self.times[0] / self.times[1] title = self.model_name + " timing" print("\n" + title) print("-" * len(title)) print(self.first_name + ": " + "{:0.3f} ms".format(1000 * self.times[0])) print(self.second_name + ": " + "{:0.3f} ms".format(1000 * self.times[1])) if self.ratio < 1: print( "{0} is {1:0.1f}% faster".format( self.first_name, 100 * (1 / self.ratio - 1) ) ) else: print( "{0} is {1:0.1f}% faster".format( self.second_name, 100 * (self.ratio - 1) ) ) print( self.first_name + "/" + self.second_name + " Ratio: {:0.3f}\n".format(self.ratio) ) def time(self): self.times = [] for code in self._codes: timer = timeit.Timer(code, setup=self.setup) self.times.append(min(timer.repeat(self.repeat, self.number))) class TestRecursions(object): @classmethod def setup_class(cls): cls.nobs = 1000 cls.rng = RandomState(12345) cls.resids = cls.rng.standard_normal(cls.nobs) cls.sigma2 = np.zeros_like(cls.resids) var = cls.resids.var() var_bounds = np.array([var / 1000000.0, var * 1000000.0]) cls.var_bounds = np.ones((cls.nobs, 2)) * var_bounds cls.backcast = 1.0 cls.timer_setup = """ import numpy as np import arch.univariate.recursions as rec import arch.univariate.recursions_python as recpy nobs = 10000 resids = np.random.standard_normal(nobs) sigma2 = np.zeros_like(resids) var = resids.var() backcast = 1.0 var_bounds = np.array([var / 1000000.0, var * 1000000.0]) var_bounds = np.ones((nobs, 2)) * var_bounds """ def test_garch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) fresids = resids ** 2.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_numba = sigma2.copy() recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([0.1, -0.4, 0.3, 0.2]) recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 0.4, 3, 2]) recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 0.4, 0.3, 0.2]) mod_fresids = fresids.copy() mod_fresids[:1] = np.inf recpy.garch_recursion_python( parameters, mod_fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.garch_recursion( parameters, mod_fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_harch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) lags = np.array([1, 5, 22], dtype=np.int32) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() recpy.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_numba = sigma2.copy() rec.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([-0.1, -0.4, 0.3, 0.2]) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) mod_resids = resids.copy() mod_resids[:10] = np.inf recpy.harch_recursion_python( parameters, mod_resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.harch_recursion( parameters, mod_resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_arch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) p = 3 recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() recpy.arch_recursion( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) sigma2_numba = sigma2.copy() rec.arch_recursion( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([-0.1, -0.4, 0.3, 0.2]) recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) mod_resids = resids.copy() mod_resids[:10] = np.inf recpy.arch_recursion_python( parameters, mod_resids, sigma2, p, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.arch_recursion( parameters, mod_resids, sigma2, p, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_garch_power_1(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) fresids = np.abs(resids) ** 1.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_python, sigma2) def test_garch_direct(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) fresids = np.abs(resids) ** 2.0 sresids = np.sign(resids) for t in range(nobs): if t == 0: sigma2[t] = parameters.dot( np.array([1.0, backcast, 0.5 * backcast, backcast]) ) else: var = np.array( [ 1.0, resids[t - 1] ** 2.0, resids[t - 1] ** 2.0 * (resids[t - 1] < 0), sigma2[t - 1], ] ) sigma2[t] = parameters.dot(var) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_python, sigma2) def test_garch_no_q(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3]) fresids = resids ** 2.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 0, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 0, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_python, sigma2) def test_garch_no_p(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3]) fresids = resids ** 2.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 0, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 0, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_python, sigma2) def test_garch_no_o(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) fresids = resids ** 2.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 0, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 0, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_python, sigma2) def test_garch_arch(self): backcast = self.backcast nobs, resids, sigma2 = self.nobs, self.resids, self.sigma2 parameters = np.array([0.1, 0.4, 0.3, 0.2]) fresids = resids ** 2.0 sresids = np.sign(resids) rec.garch_recursion( parameters, fresids, sresids, sigma2, 3, 0, 0, nobs, backcast, self.var_bounds, ) sigma2_garch = sigma2.copy() rec.arch_recursion( parameters, resids, sigma2, 3, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_garch, sigma2) def test_bounds(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([1e100, 0.4, 0.3, 0.2]) lags = np.array([1, 5, 22], dtype=np.int32) recpy.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() rec.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_python, sigma2) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([-1e100, 0.4, 0.3, 0.2]) recpy.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() rec.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_python, sigma2) assert_almost_equal(sigma2, self.var_bounds[:, 0]) parameters = np.array([1e100, 0.4, 0.3, 0.2]) fresids = resids ** 2.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_python, sigma2) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([-1e100, 0.4, 0.3, 0.2]) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_python, sigma2) assert_almost_equal(sigma2, self.var_bounds[:, 0]) parameters = np.array([1e100, 0.4, 0.3, 0.2]) recpy.arch_recursion( parameters, resids, sigma2, 3, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() rec.arch_recursion( parameters, resids, sigma2, 3, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_python, sigma2) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([-1e100, 0.4, 0.3, 0.2]) recpy.arch_recursion( parameters, resids, sigma2, 3, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() rec.arch_recursion( parameters, resids, sigma2, 3, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_python, sigma2) assert_almost_equal(sigma2, self.var_bounds[:, 0]) def test_egarch(self): nobs = self.nobs parameters = np.array([0.0, 0.1, -0.1, 0.95]) resids, sigma2 = self.resids, self.sigma2 p = o = q = 1 backcast = 0.0 var_bounds = self.var_bounds lnsigma2 = np.empty_like(sigma2) std_resids = np.empty_like(sigma2) abs_std_resids = np.empty_like(sigma2) recpy.egarch_recursion( parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids, ) sigma2_numba = sigma2.copy() recpy.egarch_recursion_python( parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids, ) sigma2_python = sigma2.copy() rec.egarch_recursion( parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids, ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) norm_const = np.sqrt(2 / np.pi) for t in range(nobs): lnsigma2[t] = parameters[0] if t == 0: lnsigma2[t] += parameters[3] * backcast else: stdresid = resids[t - 1] / np.sqrt(sigma2[t - 1]) lnsigma2[t] += parameters[1] * (np.abs(stdresid) - norm_const) lnsigma2[t] += parameters[2] * stdresid lnsigma2[t] += parameters[3] * lnsigma2[t - 1] sigma2[t] = np.exp(lnsigma2[t]) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([-100.0, 0.1, -0.1, 0.95]) recpy.egarch_recursion_python( parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.0, 0.1, -0.1, 9.5]) recpy.egarch_recursion_python( parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.0, 0.1, -0.1, 0.95]) mod_resids = resids.copy() mod_resids[:1] = np.inf recpy.egarch_recursion_python( parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_midas_hyperbolic(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.8, 0]) j = np.arange(1, 22 + 1) weights = gamma(j + 0.6) / (gamma(j + 1) * gamma(0.6)) weights = weights / weights.sum() recpy.midas_recursion( parameters, weights, resids, sigma2, nobs, backcast, self.var_bounds ) sigma2_numba = sigma2.copy() recpy.midas_recursion_python( parameters, weights, resids, sigma2, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() rec.midas_recursion( parameters, weights, resids, sigma2, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) mod_resids = resids.copy() mod_resids[:10] = np.inf recpy.midas_recursion_python( parameters, weights, mod_resids, sigma2, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 10e10, 0]) j = np.arange(1, 22 + 1) weights = gamma(j + 0.6) / (gamma(j + 1) * gamma(0.6)) weights = weights / weights.sum() recpy.midas_recursion_python( parameters, weights, resids, sigma2, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.midas_recursion( parameters, weights, resids, sigma2, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, -0.4, 0]) recpy.midas_recursion_python( parameters, weights, resids, sigma2, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.midas_recursion( parameters, weights, resids, sigma2, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_figarch_recursion(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([1.0, 0.2, 0.4, 0.3]) fresids = resids ** 2 p = q = 1 trunc_lag = 1000 rec.figarch_recursion( parameters, fresids, sigma2, p, q, nobs, trunc_lag, backcast, self.var_bounds, ) lam = rec.figarch_weights(parameters[1:], p, q, trunc_lag=trunc_lag) lam_rev = lam[::-1] omega_tilde = parameters[0] / (1 - parameters[-1]) sigma2_direct = np.empty_like(sigma2) for t in range(nobs): backcasts = trunc_lag - t sigma2_direct[t] = omega_tilde if backcasts: sigma2_direct[t] += backcast * lam_rev[:backcasts].sum() if t: sigma2_direct[t] += np.sum(lam_rev[-t:] * fresids[max(0, t - 1000) : t]) assert_almost_equal(sigma2_direct, sigma2) recpy.figarch_recursion( parameters, fresids, sigma2, p, q, nobs, trunc_lag, backcast, self.var_bounds, ) sigma2_numba = sigma2.copy() recpy.figarch_recursion_python( parameters, fresids, sigma2, p, q, nobs, trunc_lag, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.figarch_recursion( parameters, fresids, sigma2, p, q, nobs, trunc_lag, backcast, self.var_bounds, ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) def test_figarch_weights(self): parameters = np.array([1.0, 0.4]) lam = rec.figarch_weights(parameters[1:], 0, 0, trunc_lag=1000) lam_direct = np.empty_like(lam) lam_direct[0] = parameters[-1] for i in range(1, 1000): lam_direct[i] = (i - parameters[-1]) / (i + 1) * lam_direct[i - 1] assert_almost_equal(lam, lam_direct) @pytest.mark.skipif( missing_numba or missing_extension, reason="numba not installed" ) def test_garch_performance(self): garch_setup = """ parameters = np.array([.1, .4, .3, .2]) fresids = resids ** 2.0 sresids = np.sign(resids) """ garch_first = """ recpy.garch_recursion(parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, var_bounds) """ garch_second = """ rec.garch_recursion(parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, var_bounds) """ timer = Timer( garch_first, "Numba", garch_second, "Cython", "GARCH", self.timer_setup + garch_setup, ) timer.display() assert timer.ratio < 10.0 if not (missing_numba or CYTHON_COVERAGE): assert 0.1 < timer.ratio @pytest.mark.skipif( missing_numba or missing_extension, reason="numba not installed" ) def test_harch_performance(self): harch_setup = """ parameters = np.array([.1, .4, .3, .2]) lags = np.array([1, 5, 22], dtype=np.int32) """ harch_first = """ recpy.harch_recursion(parameters, resids, sigma2, lags, nobs, backcast, var_bounds) """ harch_second = """ rec.harch_recursion(parameters, resids, sigma2, lags, nobs, backcast, var_bounds) """ timer = Timer( harch_first, "Numba", harch_second, "Cython", "HARCH", self.timer_setup + harch_setup, ) timer.display() assert timer.ratio < 10.0 if not (missing_numba or CYTHON_COVERAGE): assert 0.1 < timer.ratio @pytest.mark.skipif( missing_numba or missing_extension, reason="numba not installed" ) def test_egarch_performance(self): egarch_setup = """ parameters = np.array([0.0, 0.1, -0.1, 0.95]) p = o = q = 1 backcast = 0.0 lnsigma2 = np.empty_like(sigma2) std_resids = np.empty_like(sigma2) abs_std_resids = np.empty_like(sigma2) """ egarch_first = """ recpy.egarch_recursion(parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids) """ egarch_second = """ rec.egarch_recursion(parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids) """ timer = Timer( egarch_first, "Numba", egarch_second, "Cython", "EGARCH", self.timer_setup + egarch_setup, ) timer.display() assert timer.ratio < 10.0 if not (missing_numba or CYTHON_COVERAGE): assert 0.1 < timer.ratio @pytest.mark.skipif( missing_numba or missing_extension, reason="numba not installed" ) def test_midas_performance(self): midas_setup = """ from scipy.special import gamma parameters = np.array([.1, 0.8, 0]) j = np.arange(1,22+1) weights = gamma(j+0.6) / (gamma(j+1) * gamma(0.6)) weights = weights / weights.sum() """ midas_first = """ recpy.midas_recursion(parameters, weights, resids, sigma2, nobs, backcast, var_bounds) """ midas_second = """ rec.midas_recursion(parameters, weights, resids, sigma2, nobs, backcast, var_bounds) """ timer = Timer( midas_first, "Numba", midas_second, "Cython", "MIDAS", self.timer_setup + midas_setup, ) timer.display() assert timer.ratio < 10.0 if not (missing_numba or CYTHON_COVERAGE): assert 0.1 < timer.ratio @pytest.mark.skipif( missing_numba or missing_extension, reason="numba not installed" ) def test_figarch_performance(self): midas_setup = """ p = q = 1 trunc_lag = 1000 parameters = np.array([1.0, 0.2, 0.2, 0.04]) fresids = resids ** 2.0 """ midas_first = """ recpy.figarch_recursion(parameters, fresids, sigma2, p, q, nobs, trunc_lag, backcast, var_bounds) """ midas_second = """ rec.figarch_recursion(parameters, fresids, sigma2, p, q, nobs, trunc_lag, backcast, var_bounds) """ timer = Timer( midas_first, "Numba", midas_second, "Cython", "FIGARCH", self.timer_setup + midas_setup, ) timer.display() assert timer.ratio < 10.0 if not (missing_numba or CYTHON_COVERAGE): assert 0.1 < timer.ratio def test_garch_aparch_equiv(self): parameters = np.array([0.1, 0.1, 0.8]) fresids = self.resids ** 2 sresids = np.sign(self.resids) sigma2 = np.empty(1000) p = q = 1 o = 0 recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, p, o, q, self.nobs, self.backcast, self.var_bounds, ) sigma2_garch = sigma2.copy() parameters = np.array([0.1, 0.1, 0.8, 2]) sigma2[:] = np.nan sigma2_delta = np.empty_like(sigma2) recpy.aparch_recursion_python( parameters, self.resids, np.abs(self.resids), sigma2, sigma2_delta, p, o, q, self.nobs, self.backcast, self.var_bounds, ) assert_allclose(sigma2_garch, sigma2, atol=1e-6) sigma2[:] = np.nan recpy.aparch_recursion( parameters, self.resids, np.abs(self.resids), sigma2, sigma2_delta, p, o, q, self.nobs, self.backcast, self.var_bounds, ) assert_allclose(sigma2_garch, sigma2, atol=1e-6) sigma2[:] = np.nan rec.aparch_recursion( parameters, self.resids, np.abs(self.resids), sigma2, sigma2_delta, p, o, q, self.nobs, self.backcast, self.var_bounds, ) assert_allclose(sigma2_garch, sigma2, atol=1e-6) def test_asym_aparch_smoke(self): sigma2 = np.empty(1000) p = o = q = 1 parameters = np.array([0.1, 0.1, 0.1, 0.8, 1.3]) sigma2[:] = np.nan sigma2_delta = np.empty_like(sigma2) recpy.aparch_recursion_python( parameters, self.resids, np.abs(self.resids), sigma2, sigma2_delta, p, o, q, self.nobs, self.backcast, self.var_bounds, ) assert np.all(np.isfinite(sigma2)) sigma2_py = sigma2.copy() sigma2[:] = np.nan recpy.aparch_recursion( parameters, self.resids, np.abs(self.resids), sigma2, sigma2_delta, p, o, q, self.nobs, self.backcast, self.var_bounds, ) assert np.all(np.isfinite(sigma2)) assert_allclose(sigma2_py, sigma2) sigma2[:] = np.nan rec.aparch_recursion( parameters, self.resids, np.abs(self.resids), sigma2, sigma2_delta, p, o, q, self.nobs, self.backcast, self.var_bounds, ) assert np.all(np.isfinite(sigma2)) assert_allclose(sigma2_py, sigma2) def test_bounds_check(): var_bounds = np.array([0.1, 10]) assert_almost_equal(recpy.bounds_check_python(-1.0, var_bounds), 0.1) assert_almost_equal( recpy.bounds_check_python(20.0, var_bounds), 10 + np.log(20.0 / 10.0) ) assert_almost_equal(recpy.bounds_check_python(np.inf, var_bounds), 1010.0)
28.857855
97
0.514863
3,856
34,716
4.474844
0.049793
0.073022
0.085135
0.076673
0.815068
0.797334
0.778673
0.759548
0.7439
0.728253
0
0.04987
0.377348
34,716
1,202
98
28.881864
0.748381
0.000115
0
0.728094
0
0.00542
0.068799
0.015673
0
0
0
0
0.088528
1
0.023487
false
0
0.015357
0
0.04065
0.006323
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
f4431b68372b44ad4517e0ab87e6c368a124ad83
142
py
Python
backend/server/tables/__init__.py
shiv12095/realtimeviz
ee2bf10b5f9467212f9a9ce8957d80456ebd0259
[ "MIT" ]
1
2021-03-03T13:54:15.000Z
2021-03-03T13:54:15.000Z
backend/server/tables/__init__.py
shiv12095/realtimeviz
ee2bf10b5f9467212f9a9ce8957d80456ebd0259
[ "MIT" ]
null
null
null
backend/server/tables/__init__.py
shiv12095/realtimeviz
ee2bf10b5f9467212f9a9ce8957d80456ebd0259
[ "MIT" ]
1
2021-03-03T13:59:48.000Z
2021-03-03T13:59:48.000Z
from .lime_bike_feed import LimeBikeFeed from .lime_bike_trips import LimeBikeTrips from .lime_bike_trips_analyze import LimeBikeTripsAnalyze
35.5
57
0.894366
19
142
6.315789
0.526316
0.2
0.3
0.283333
0
0
0
0
0
0
0
0
0.084507
142
3
58
47.333333
0.923077
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
be43dfd884e7a14b827d8c59b29470159f680616
5,332
py
Python
deploy/trained_model.py
Samyak005/Multi-Hop-QG
15cc794a48ac9df058689c410007ea52b0e12a6a
[ "MIT" ]
null
null
null
deploy/trained_model.py
Samyak005/Multi-Hop-QG
15cc794a48ac9df058689c410007ea52b0e12a6a
[ "MIT" ]
null
null
null
deploy/trained_model.py
Samyak005/Multi-Hop-QG
15cc794a48ac9df058689c410007ea52b0e12a6a
[ "MIT" ]
null
null
null
import torch import logging # Transformer version 4.9.1 - Newer versions may not work. from transformers import AutoTokenizer from trained_gpt_model import get_inference2 def t5_supp_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 't5-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/t5_model_hotpot_supporting_facts_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string def t5_full_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 't5-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/t5_model_hotpot_full_context_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string def bart_supp_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 'facebook/bart-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/bart_model_hotpot_supporting_facts_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string def bart_full_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 'facebook/bart-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/bart_model_hotpot_full_context_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string # if __name__ == "__main__": # review_text = "<answer> a fusional language <context> Typologically, Estonian represents a transitional form from an agglutinating language to a fusional language. The canonical word order is SVO (subject–verb–object)." # t5_supp_inference(review_text, md2, device) def get_inference(answer, context, model_name): valuation_text = "<answer> " + answer + " <context> " + context if model_name == 't5_supp': return t5_supp_inference(valuation_text) elif model_name == 't5_full': return t5_full_inference(valuation_text) elif model_name == 'bart_supp': return bart_supp_inference(valuation_text) elif model_name == 'bart_full': return bart_full_inference(valuation_text) elif model_name == 'gpt2': return get_inference2(answer, context)
33.534591
225
0.69036
659
5,332
5.31563
0.169954
0.074222
0.038824
0.028547
0.850699
0.842992
0.842992
0.796175
0.796175
0.796175
0
0.007976
0.200488
5,332
158
226
33.746835
0.813277
0.128095
0
0.774194
0
0
0.148132
0.071691
0
0
0
0
0
1
0.040323
false
0
0.032258
0
0.145161
0.064516
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
be763dff688768c2aba41209e3bec63f50ee2a53
19,099
py
Python
boa_test/tests/test_ico_template.py
mixbee/neo-boa
da7366c26c7b8e60afb9ac27439a1da37b0be355
[ "MIT" ]
4
2018-08-22T03:30:34.000Z
2019-04-16T10:54:08.000Z
boa_test/tests/test_ico_template.py
mixbee/neo-boa
da7366c26c7b8e60afb9ac27439a1da37b0be355
[ "MIT" ]
3
2018-09-03T09:19:26.000Z
2019-01-24T00:06:29.000Z
boa_test/tests/test_ico_template.py
mixbee/neo-boa
da7366c26c7b8e60afb9ac27439a1da37b0be355
[ "MIT" ]
12
2018-07-19T06:36:44.000Z
2019-05-13T05:45:58.000Z
from boa_test.tests.boa_test import BoaFixtureTest from boa.compiler import Compiler from neo.Core.TX.Transaction import Transaction from neo.Prompt.Commands.BuildNRun import TestBuild from neo.EventHub import events from neo.SmartContract.SmartContractEvent import SmartContractEvent, NotifyEvent from neo.Settings import settings from neo.Prompt.Utils import parse_param from neo.Core.FunctionCode import FunctionCode from neocore.Fixed8 import Fixed8 from boa_test.example.demo.nex.token import * import shutil import os from logzero import logger settings.USE_DEBUG_STORAGE = True settings.DEBUG_STORAGE_PATH = './fixtures/debugstorage' class TestContract(BoaFixtureTest): dispatched_events = [] dispatched_logs = [] @classmethod def tearDownClass(cls): super(BoaFixtureTest, cls).tearDownClass() try: if os.path.exists(settings.debug_storage_leveldb_path): shutil.rmtree(settings.debug_storage_leveldb_path) else: logger.error("debug storage path doesn't exist") except Exception as e: logger.error("couldn't remove debug storage %s " % e) @classmethod def setUpClass(cls): super(TestContract, cls).setUpClass() def on_notif(evt): print(evt) cls.dispatched_events.append(evt) print("dispatched events %s " % cls.dispatched_events) def on_log(evt): print(evt) cls.dispatched_logs.append(evt) events.on(SmartContractEvent.RUNTIME_NOTIFY, on_notif) events.on(SmartContractEvent.RUNTIME_LOG, on_log) def test_ICOTemplate_1(self): output = Compiler.instance().load('%s/boa_test/example/demo/ICO_Template.py' % TestContract.dirname).default out = output.write() # print(output.to_s()) tx, results, total_ops, engine = TestBuild(out, ['name', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetString(), TOKEN_NAME) tx, results, total_ops, engine = TestBuild(out, ['symbol', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetString(), TOKEN_SYMBOL) tx, results, total_ops, engine = TestBuild(out, ['decimals', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), TOKEN_DECIMALS) tx, results, total_ops, engine = TestBuild(out, ['totalSupply', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 0) tx, results, total_ops, engine = TestBuild(out, ['nonexistentmethod', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetString(), 'unknown operation') # deploy with wallet 2 should fail CheckWitness tx, results, total_ops, engine = TestBuild(out, ['deploy', '[]'], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) tx, results, total_ops, engine = TestBuild(out, ['deploy', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), True) # second time, it should already be deployed and return false tx, results, total_ops, engine = TestBuild(out, ['deploy', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # now total supply should be equal to the initial owner amount tx, results, total_ops, engine = TestBuild(out, ['totalSupply', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), TOKEN_INITIAL_AMOUNT) # now the owner should have a balance of the TOKEN_INITIAL_AMOUNT tx, results, total_ops, engine = TestBuild(out, ['balanceOf', parse_param([bytearray(TOKEN_OWNER)])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), TOKEN_INITIAL_AMOUNT) def test_ICOTemplate_2(self): output = Compiler.instance().load('%s/boa_test/example/demo/ICO_Template.py' % TestContract.dirname).default out = output.write() # now transfer tokens to wallet 2 TestContract.dispatched_events = [] test_transfer_amount = 2400000001 tx, results, total_ops, engine = TestBuild(out, ['transfer', parse_param([bytearray(TOKEN_OWNER), self.wallet_2_script_hash.Data, test_transfer_amount])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), True) self.assertEqual(len(TestContract.dispatched_events), 1) evt = TestContract.dispatched_events[0] self.assertIsInstance(evt, NotifyEvent) self.assertEqual(evt.addr_from.Data, bytearray(TOKEN_OWNER)) self.assertEqual(evt.addr_to, self.wallet_2_script_hash) self.assertEqual(evt.amount, test_transfer_amount) # now get balance of wallet 2 tx, results, total_ops, engine = TestBuild(out, ['balanceOf', parse_param([self.wallet_2_script_hash.Data])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), test_transfer_amount) # now the owner should have less tx, results, total_ops, engine = TestBuild(out, ['balanceOf', parse_param([bytearray(TOKEN_OWNER)])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), TOKEN_INITIAL_AMOUNT - test_transfer_amount) # now this transfer should fail tx, results, total_ops, engine = TestBuild(out, ['transfer', parse_param([bytearray(TOKEN_OWNER), self.wallet_2_script_hash.Data, TOKEN_INITIAL_AMOUNT])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # this transfer should fail because it is not signed by the 'from' address tx, results, total_ops, engine = TestBuild(out, ['transfer', parse_param([bytearray(TOKEN_OWNER), self.wallet_2_script_hash.Data, 10000])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # now this transfer should fail, this is from address with no tokens tx, results, total_ops, engine = TestBuild(out, ['transfer', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, 1000])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # get balance of bad data tx, results, total_ops, engine = TestBuild(out, ['balanceOf', parse_param(['abc'])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 0) # get balance no params tx, results, total_ops, engine = TestBuild(out, ['balanceOf', parse_param([])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) def test_ICOTemplate_3_KYC(self): output = Compiler.instance().load('%s/boa_test/example/demo/ICO_Template.py' % TestContract.dirname).default out = output.write() print(output.to_s()) # now transfer tokens to wallet 2 TestContract.dispatched_events = [] # test mint tokens without being kyc verified tx, results, total_ops, engine = TestBuild(out, ['mintTokens', '[]', '--attach-neo=10'], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # Try to register as a non owner tx, results, total_ops, engine = TestBuild(out, ['crowdsale_register', parse_param([self.wallet_3_script_hash.Data])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # Get status of non registered address tx, results, total_ops, engine = TestBuild(out, ['crowdsale_status', parse_param([self.wallet_3_script_hash.Data])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) TestContract.dispatched_events = [] # register an address tx, results, total_ops, engine = TestBuild(out, ['crowdsale_register', parse_param([self.wallet_3_script_hash.Data])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 1) # it should dispatch an event self.assertEqual(len(TestContract.dispatched_events), 1) evt = TestContract.dispatched_events[0] self.assertEqual(evt.event_payload.Value[0].Value, b'kyc_registration') # register 2 addresses at once tx, results, total_ops, engine = TestBuild(out, ['crowdsale_register', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 2) # now check reg status tx, results, total_ops, engine = TestBuild(out, ['crowdsale_status', parse_param([self.wallet_3_script_hash.Data])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), True) def test_ICOTemplate_4_attachments(self): output = Compiler.instance().load('%s/boa_test/example/demo/ICO_Template.py' % TestContract.dirname).default out = output.write() # test mint tokens without being kyc verified tx, results, total_ops, engine = TestBuild(out, ['get_attachments', '[]', '--attach-neo=10'], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) attachments = results[0].GetArray() self.assertEqual(len(attachments), 4) fn = FunctionCode(out, '0705', '05') self.assertEqual(attachments[0].GetByteArray(), fn.ScriptHash().Data) self.assertEqual(attachments[1].GetByteArray(), self.wallet_3_script_hash.Data) self.assertEqual(attachments[2].GetBigInteger(), Fixed8.FromDecimal(10).value) self.assertEqual(attachments[3].GetBigInteger(), 0) tx, results, total_ops, engine = TestBuild(out, ['get_attachments', '[]'], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) attachments = results[0].GetArray() self.assertEqual(len(attachments), 4) self.assertEqual(attachments[1].GetByteArray(), bytearray()) self.assertEqual(attachments[2].GetBigInteger(), 0) self.assertEqual(attachments[3].GetBigInteger(), 0) tx, results, total_ops, engine = TestBuild(out, ['get_attachments', '[]', '--attach-neo=3', '--attach-gas=3.12'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) attachments = results[0].GetArray() self.assertEqual(len(attachments), 4) self.assertEqual(attachments[1].GetByteArray(), self.wallet_1_script_hash.Data) self.assertEqual(attachments[2].GetBigInteger(), Fixed8.FromDecimal(3).value) self.assertEqual(attachments[3].GetBigInteger(), Fixed8.FromDecimal(3.12).value) def test_ICOTemplate_5_mint(self): output = Compiler.instance().load('%s/boa_test/example/demo/ICO_Template.py' % TestContract.dirname).default out = output.write() # register an address tx, results, total_ops, engine = TestBuild(out, ['crowdsale_register', parse_param([self.wallet_3_script_hash.Data])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 1) TestContract.dispatched_events = [] # test mint tokens, this should return true tx, results, total_ops, engine = TestBuild(out, ['mintTokens', '[]', '--attach-neo=10'], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), True) # it should dispatch an event self.assertEqual(len(TestContract.dispatched_events), 1) evt = TestContract.dispatched_events[0] self.assertIsInstance(evt, NotifyEvent) self.assertEqual(evt.amount, 10 * TOKENS_PER_NEO) self.assertEqual(evt.addr_to, self.wallet_3_script_hash) # test mint tokens again, this should be false since you can't do it twice tx, results, total_ops, engine = TestBuild(out, ['mintTokens', '[]', '--attach-neo=10'], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # now the minter should have a balance tx, results, total_ops, engine = TestBuild(out, ['balanceOf', parse_param([self.wallet_3_script_hash.Data])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 10 * TOKENS_PER_NEO) # now the total circulation should be bigger tx, results, total_ops, engine = TestBuild(out, ['totalSupply', '[]'], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), (10 * TOKENS_PER_NEO) + TOKEN_INITIAL_AMOUNT) def test_ICOTemplate_6_approval(self): output = Compiler.instance().load('%s/boa_test/example/demo/ICO_Template.py' % TestContract.dirname).default out = output.write() # tranfer_from, approve, allowance tx, results, total_ops, engine = TestBuild(out, ['allowance', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 0) # try to transfer from tx, results, total_ops, engine = TestBuild(out, ['transferFrom', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, 10000])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # try to approve from someone not yourself tx, results, total_ops, engine = TestBuild(out, ['approve', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, 10000])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 0) # try to approve more than you have tx, results, total_ops, engine = TestBuild(out, ['approve', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, TOKEN_INITIAL_AMOUNT])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 0) TestContract.dispatched_events = [] # approve should work tx, results, total_ops, engine = TestBuild(out, ['approve', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, 1234])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), True) # it should dispatch an event self.assertEqual(len(TestContract.dispatched_events), 1) evt = TestContract.dispatched_events[0] self.assertIsInstance(evt, NotifyEvent) self.assertEqual(evt.notify_type, b'approve') self.assertEqual(evt.amount, 1234) # check allowance tx, results, total_ops, engine = TestBuild(out, ['allowance', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 1234) # approve should not be additive, it should overwrite previous approvals tx, results, total_ops, engine = TestBuild(out, ['approve', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, 133234])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), True) tx, results, total_ops, engine = TestBuild(out, ['allowance', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 133234) # now you can transfer from tx, results, total_ops, engine = TestBuild(out, ['transferFrom', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, 10000])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), True) # now the recevier should have a balance # it is equal to 10000 plus test_transfer_amount = 2400000001 tx, results, total_ops, engine = TestBuild(out, ['balanceOf', parse_param([self.wallet_2_script_hash.Data])], self.GetWallet1(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 10000 + 2400000001) # now the allowance should be less tx, results, total_ops, engine = TestBuild(out, ['allowance', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 133234 - 10000) # try to transfer too much, even with approval tx, results, total_ops, engine = TestBuild(out, ['transferFrom', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, 14440000])], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) # cant approve negative amounts tx, results, total_ops, engine = TestBuild(out, ['approve', parse_param([self.wallet_3_script_hash.Data, self.wallet_2_script_hash.Data, -1000])], self.GetWallet3(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBoolean(), False) def test_many_ops(self): output = Compiler.instance().load('%s/boa_test/example/demo/ICO_Template.py' % TestContract.dirname).default out = output.write() # tranfer_from, approve, allowance tx, results, total_ops, engine = TestBuild(out, ['another_op_5', bytearray()], self.GetWallet2(), '0705', '05') self.assertEqual(len(results), 1) self.assertEqual(results[0].GetBigInteger(), 6)
51.899457
202
0.673857
2,327
19,099
5.386334
0.103567
0.136429
0.076113
0.078746
0.806925
0.785862
0.770385
0.751795
0.748923
0.741184
0
0.041723
0.185559
19,099
367
203
52.040872
0.764063
0.084664
0
0.579167
0
0
0.075498
0.017383
0
0
0
0
0.4875
1
0.045833
false
0
0.058333
0
0.116667
0.016667
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
7
be7fc184a7b92d4ec6db9908dc208989d6e4f546
23,144
py
Python
Mining_Projects/getAllProjects_Parallel.py
ai-se/heroes_compsci
613fd623a6da073b2c62c773ed902acb0c756809
[ "MIT" ]
null
null
null
Mining_Projects/getAllProjects_Parallel.py
ai-se/heroes_compsci
613fd623a6da073b2c62c773ed902acb0c756809
[ "MIT" ]
12
2019-12-17T04:04:19.000Z
2019-12-26T20:23:02.000Z
Mining_Projects/getAllProjects_Parallel.py
ai-se/heroes_compsci
613fd623a6da073b2c62c773ed902acb0c756809
[ "MIT" ]
1
2020-03-12T22:19:48.000Z
2020-03-12T22:19:48.000Z
""" @Author Jchakra""" """ This code is to download project information using GitHub API (Following Amrit's Hero paper criteria of how to find good projects) """ from multiprocessing import Process,Lock import time import json import requests ## Downloading all the projects def func1(): repo_result = [] Token_list = [''**'',''**'',''**'',''**'',''**''] i = 0 api_url = 'https://api.github.com/' while i < 10000: # This number will be increased to collect all the projects repo_url = api_url + 'repositories?since=' + str(i) exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) repo_response = requests.get(repo_url, headers=headers).json() #print(repo_response) try: if ( len(repo_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 project_list = [] try: for j in range(0,len(repo_response)): project_id = repo_response[j]['id'] project_name = repo_response[j]['name'] project_full_name = repo_response[j]['full_name'] project_html_url = repo_response[j]['html_url'] project_owner_name = repo_response[j]['owner']['login'] project_obj = {"id" : project_id, "name": project_name, "full_name" : project_full_name, "html_url" : project_html_url, "owner" : project_owner_name , "issues" : "", "commits" : "", "PR" : ""} project_list.append(project_obj) except: print ("exception occurred") try: last_id = repo_response[99]["id"] i = last_id repo_result = repo_result + project_list except: print(" exception inside function 1 ") break ## Removing projects having less than 8 issues p = 0 while p < len(repo_result): repo_owner = repo_result[p]['owner'] repo_name = repo_result[p]['name'] issue_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'issues' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) issue_response = requests.get(issue_url, headers=headers).json() try: if ( len(issue_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(issue_response) > 10): repo_result[p]["issues"] = len(issue_response) p = p + 1 else: repo_result.pop(p) ## Selecting the projects with Pull Request > 0 m = 0 while m < len(repo_result): repo_owner = repo_result[m]['owner'] repo_name = repo_result[m]['name'] PR_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'pulls?state=all' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) PR_response = requests.get(PR_url, headers=headers).json() try: if ( len(PR_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(PR_response) > 0): repo_result[m]["PR"] = len(PR_response) m = m + 1 else: repo_result.pop(m) ## Selecting Projects with commits > 20 n = 0 while n < len(repo_result): repo_owner = repo_result[n]['owner'] repo_name = repo_result[n]['name'] commit_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'commits' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) commit_response = requests.get(commit_url, headers=headers).json() try: if ( len(commit_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(commit_response) > 20): repo_result[n]["commits"] = len(commit_response) n = n + 1 else: repo_result.pop(n) with open("repo_file1.json", "w") as repo_file: json.dump(repo_result, repo_file) print("function 1 finished", len(repo_result)) def func2(): repo_result = [] Token_list = [''**'',''**'',''**'',''**'',''**''] i = 10000 api_url = 'https://api.github.com/' while i < 20000: # This number will be increased to collect all the projects repo_url = api_url + 'repositories?since=' + str(i) exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) repo_response = requests.get(repo_url, headers=headers).json() #print(repo_response) try: if ( len(repo_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 project_list = [] try: for j in range(0,len(repo_response)): project_id = repo_response[j]['id'] project_name = repo_response[j]['name'] project_full_name = repo_response[j]['full_name'] project_html_url = repo_response[j]['html_url'] project_owner_name = repo_response[j]['owner']['login'] project_obj = {"id" : project_id, "name": project_name, "full_name" : project_full_name, "html_url" : project_html_url, "owner" : project_owner_name , "issues" : "", "commits" : "", "PR" : ""} project_list.append(project_obj) except: print ("exception occurred") try: last_id = repo_response[99]["id"] i = last_id repo_result = repo_result + project_list except: print(" exception inside function 2 ") break ## Removing projects having less than 8 issues p = 0 while p < len(repo_result): repo_owner = repo_result[p]['owner'] repo_name = repo_result[p]['name'] issue_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'issues' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) issue_response = requests.get(issue_url, headers=headers).json() try: if ( len(issue_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(issue_response) > 10): repo_result[p]["issues"] = len(issue_response) p = p + 1 else: repo_result.pop(p) ## Selecting the projects with Pull Request > 0 m = 0 while m < len(repo_result): repo_owner = repo_result[m]['owner'] repo_name = repo_result[m]['name'] PR_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'pulls?state=all' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) PR_response = requests.get(PR_url, headers=headers).json() try: if ( len(PR_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(PR_response) > 0): repo_result[m]["PR"] = len(PR_response) m = m + 1 else: repo_result.pop(m) ## Selecting Projects with commits > 20 n = 0 while n < len(repo_result): repo_owner = repo_result[n]['owner'] repo_name = repo_result[n]['name'] commit_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'commits' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) commit_response = requests.get(commit_url, headers=headers).json() try: if ( len(commit_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(commit_response) > 20): repo_result[n]["commits"] = len(commit_response) n = n + 1 else: repo_result.pop(n) with open("repo_file2.json", "w") as repo_file: json.dump(repo_result, repo_file) print("function 2 finished", len(repo_result)) def func3(): repo_result = [] Token_list = [''**'',''**'',''**'',''**'',''**''] i = 20000 api_url = 'https://api.github.com/' while i < 30000: # This number will be increased to collect all the projects repo_url = api_url + 'repositories?since=' + str(i) exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) repo_response = requests.get(repo_url, headers=headers).json() #print(repo_response) try: if ( len(repo_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 project_list = [] try: for j in range(0,len(repo_response)): project_id = repo_response[j]['id'] project_name = repo_response[j]['name'] project_full_name = repo_response[j]['full_name'] project_html_url = repo_response[j]['html_url'] project_owner_name = repo_response[j]['owner']['login'] project_obj = {"id" : project_id, "name": project_name, "full_name" : project_full_name, "html_url" : project_html_url, "owner" : project_owner_name , "issues" : "", "commits" : "", "PR" : ""} project_list.append(project_obj) except: print ("exception occurred") try: last_id = repo_response[99]["id"] i = last_id repo_result = repo_result + project_list except: print(" exception inside function 3 ") break ## Removing projects having less than 8 issues p = 0 while p < len(repo_result): repo_owner = repo_result[p]['owner'] repo_name = repo_result[p]['name'] issue_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'issues' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) issue_response = requests.get(issue_url, headers=headers).json() try: if ( len(issue_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(issue_response) > 10): repo_result[p]["issues"] = len(issue_response) p = p + 1 else: repo_result.pop(p) ## Selecting the projects with Pull Request > 0 m = 0 while m < len(repo_result): repo_owner = repo_result[m]['owner'] repo_name = repo_result[m]['name'] PR_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'pulls?state=all' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) PR_response = requests.get(PR_url, headers=headers).json() try: if ( len(PR_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(PR_response) > 0): repo_result[m]["PR"] = len(PR_response) m = m + 1 else: repo_result.pop(m) ## Selecting Projects with commits > 20 n = 0 while n < len(repo_result): repo_owner = repo_result[n]['owner'] repo_name = repo_result[n]['name'] commit_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'commits' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) commit_response = requests.get(commit_url, headers=headers).json() try: if ( len(commit_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(commit_response) > 20): repo_result[n]["commits"] = len(commit_response) n = n + 1 else: repo_result.pop(n) with open("repo_file3.json", "w") as repo_file: json.dump(repo_result, repo_file) print("function 3 finished", len(repo_result)) def func4(): repo_result = [] Token_list = [''**'',''**'',''**'',''**'',''**''] i = 30000 api_url = 'https://api.github.com/' while i < 40000: # This number will be increased to collect all the projects repo_url = api_url + 'repositories?since=' + str(i) exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) repo_response = requests.get(repo_url, headers=headers).json() #print(repo_response) try: if ( len(repo_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 project_list = [] try: for j in range(0,len(repo_response)): project_id = repo_response[j]['id'] project_name = repo_response[j]['name'] project_full_name = repo_response[j]['full_name'] project_html_url = repo_response[j]['html_url'] project_owner_name = repo_response[j]['owner']['login'] project_obj = {"id" : project_id, "name": project_name, "full_name" : project_full_name, "html_url" : project_html_url, "owner" : project_owner_name , "issues" : "", "commits" : "", "PR" : ""} project_list.append(project_obj) except: print ("exception occurred") try: last_id = repo_response[99]["id"] i = last_id repo_result = repo_result + project_list except: print(" exception inside function 4 ") break ## Removing projects having less than 8 issues p = 0 while p < len(repo_result): repo_owner = repo_result[p]['owner'] repo_name = repo_result[p]['name'] issue_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'issues' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) issue_response = requests.get(issue_url, headers=headers).json() try: if ( len(issue_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(issue_response) > 10): repo_result[p]["issues"] = len(issue_response) p = p + 1 else: repo_result.pop(p) ## Selecting the projects with Pull Request > 0 m = 0 while m < len(repo_result): repo_owner = repo_result[m]['owner'] repo_name = repo_result[m]['name'] PR_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'pulls?state=all' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) PR_response = requests.get(PR_url, headers=headers).json() try: if ( len(PR_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(PR_response) > 0): repo_result[m]["PR"] = len(PR_response) m = m + 1 else: repo_result.pop(m) ## Selecting Projects with commits > 20 n = 0 while n < len(repo_result): repo_owner = repo_result[n]['owner'] repo_name = repo_result[n]['name'] commit_url = api_url + 'repos/' + repo_owner + '/' + repo_name + '/' + 'commits' exception_count = 0 while exception_count < 2: try: for k in range(0,len(Token_list)): headers = {'Content-Type': 'application/json','Authorization': 'Bearer {0}'.format(Token_list[k])} #print(Token_list[k]) commit_response = requests.get(commit_url, headers=headers).json() try: if ( len(commit_response['message']) > 0): if( k == len(Token_list) - 1): time.sleep(600) exception_count = exception_count + 1 else: continue except: break if ( exception_count == 0): break else: continue except: exception_count = 0 if(len(commit_response) > 20): repo_result[n]["commits"] = len(commit_response) n = n + 1 else: repo_result.pop(n) with open("repo_file4.json", "w") as repo_file: json.dump(repo_result, repo_file) print("function 4 finished", len(repo_result)) if __name__ == '__main__': lock = Lock() p1 = Process(target=func1) p2 = Process(target=func2) p3 = Process(target=func3) p4 = Process(target=func4) p1.start() p2.start() p3.start() p4.start() p1.join() p2.join() p3.join() p4.join()
29.407878
169
0.527523
2,636
23,144
4.419196
0.055387
0.115375
0.061808
0.018886
0.959396
0.946347
0.946347
0.946347
0.936389
0.936389
0
0.021969
0.347045
23,144
787
170
29.407878
0.748875
0.061614
0
0.929293
0
0
0.098522
0
0
0
0
0
0
1
0.006734
false
0
0.006734
0
0.013468
0.020202
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
fe619b4bba8137e17d2356d7038bb205bbb3ddcb
8,074
py
Python
src/ralph/discovery/tests/plugins/samples/http_ibm_system_x.py
quamilek/ralph
bf7231ea096924332b874718b33cd1f43f9c783b
[ "Apache-2.0" ]
null
null
null
src/ralph/discovery/tests/plugins/samples/http_ibm_system_x.py
quamilek/ralph
bf7231ea096924332b874718b33cd1f43f9c783b
[ "Apache-2.0" ]
null
null
null
src/ralph/discovery/tests/plugins/samples/http_ibm_system_x.py
quamilek/ralph
bf7231ea096924332b874718b33cd1f43f9c783b
[ "Apache-2.0" ]
null
null
null
macs_response = '''<?xml version="1.0"?><s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"><s:Header><wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To><wsa:Action>http://www.ibm.com/iBMC/sp/Monitors/GetHostMacAddressesResponse</wsa:Action><wsa:RelatesTo>dt:1348742659504</wsa:RelatesTo><wsa:From><wsa:Address>http://10.10.10.10/wsman</wsa:Address></wsa:From><wsa:MessageID>uuid:111efb9a-f7d8-4977-8472-bcad40212a71</wsa:MessageID></s:Header><s:Body><GetHostMacAddressesResponse><HostMACaddress><HostMaddr><Description>Host Ethernet MAC Address 1</Description><Address>6E:F3:DD:E5:96:40</Address></HostMaddr><HostMaddr><Description>Host Ethernet MAC Address 2</Description><Address>6E:F3:DD:E5:96:42</Address></HostMaddr></HostMACaddress></GetHostMacAddressesResponse></s:Body></s:Envelope> ''' memory_response = '''<?xml version="1.0"?><s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"><s:Header><wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To><wsa:Action>http://www.ibm.com/iBMC/sp/Monitors/GetMemoryInfoResponse</wsa:Action><wsa:RelatesTo>dt:1348742659500</wsa:RelatesTo><wsa:From><wsa:Address>http://10.10.10.10/wsman</wsa:Address></wsa:From><wsa:MessageID>uuid:dc560696-2ba4-4917-b7e7-1aac1983b727</wsa:MessageID></s:Header><s:Body><GetMemoryInfoResponse><Memory><MemoryInfo><Description>DIMM 2</Description><PartNumber>HMT351R7BFR4A-H9</PartNumber><SerialNumber>33b8a62f</SerialNumber><ManufactureDate>4511</ManufactureDate><Type>DDR3</Type><Size>4</Size></MemoryInfo><MemoryInfo><Description>DIMM 3</Description><PartNumber>M393B1K70CH0-YH9</PartNumber><SerialNumber>b38aa385</SerialNumber><ManufactureDate>2211</ManufactureDate><Type>DDR3</Type><Size>8</Size></MemoryInfo><MemoryInfo><Description>DIMM 6</Description><PartNumber>M393B1K70CH0-YH9</PartNumber><SerialNumber>a78aa385</SerialNumber><ManufactureDate>2211</ManufactureDate><Type>DDR3</Type><Size>8</Size></MemoryInfo><MemoryInfo><Description>DIMM 9</Description><PartNumber>EBJ40RF4ECFA-DJ-F</PartNumber><SerialNumber>b524042b</SerialNumber><ManufactureDate>4711</ManufactureDate><Type>DDR3</Type><Size>4</Size></MemoryInfo><MemoryInfo><Description>DIMM 11</Description><PartNumber>EBJ40RF4ECFA-DJ-F</PartNumber><SerialNumber>ba24042b</SerialNumber><ManufactureDate>4711</ManufactureDate><Type>DDR3</Type><Size>4</Size></MemoryInfo><MemoryInfo><Description>DIMM 12</Description><PartNumber>M393B1K70CH0-YH9</PartNumber><SerialNumber>8e8aa385</SerialNumber><ManufactureDate>2211</ManufactureDate><Type>DDR3</Type><Size>8</Size></MemoryInfo><MemoryInfo><Description>DIMM 15</Description><PartNumber>M393B1K70CH0-YH9</PartNumber><SerialNumber>7feda482</SerialNumber><ManufactureDate>2211</ManufactureDate><Type>DDR3</Type><Size>8</Size></MemoryInfo><MemoryInfo><Description>DIMM 18</Description><PartNumber>EBJ40RF4ECFA-DJ-F</PartNumber><SerialNumber>d924042b</SerialNumber><ManufactureDate>4711</ManufactureDate><Type>DDR3</Type><Size>4</Size></MemoryInfo></Memory></GetMemoryInfoResponse></s:Body></s:Envelope> ''' generic_data_response = '''<?xml version="1.0"?><s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"><s:Header><wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To><wsa:Action>http://www.ibm.com/iBMC/sp/Monitors/GetVitalProductDataResponse</wsa:Action><wsa:RelatesTo>dt:1348742659499</wsa:RelatesTo><wsa:From><wsa:Address>http://10.10.10.10/wsman</wsa:Address></wsa:From><wsa:MessageID>uuid:e6829941-2510-4b3d-b9f3-61c7be372dfd</wsa:MessageID></s:Header><s:Body><GetVitalProductDataResponse><GetVitalProductDataResponse><MachineLevelVPD><ProductName>System x3550 M3</ProductName><MachineTypeAndModel>794452G</MachineTypeAndModel><SerialNumber>KD55ARA</SerialNumber><UUID>99A4E4A303023961B8E1561E33328996</UUID></MachineLevelVPD><ComponentLevelVPD><FRUNumber>59Y3915</FRUNumber><FRUName>DASD Backplane 1</FRUName><SerialNumber>Y010RW1AR1Y0</SerialNumber><MfgID>USIS</MfgID></ComponentLevelVPD><ComponentLevelVPD><FRUNumber>39Y7229</FRUNumber><FRUName>Power Supply 1</FRUName><SerialNumber>K1411183222</SerialNumber><MfgID>ACBE</MfgID></ComponentLevelVPD><ComponentLevelVPD><FRUNumber>39Y7229</FRUNumber><FRUName>Power Supply 2</FRUName><SerialNumber>K141115Y2BK</SerialNumber><MfgID>ACBE</MfgID></ComponentLevelVPD><ComponentActivityLog><FRUNumber>39Y7229</FRUNumber><FRUName>Power Supply 1</FRUName><SerialNumber>K1411183222</SerialNumber><MfgID>ACBE</MfgID><Action>Added</Action><TimeStamp>11/25/2011:13:53:13</TimeStamp></ComponentActivityLog><ComponentActivityLog><FRUNumber>59Y3915</FRUNumber><FRUName>DASD Backplane 1</FRUName><SerialNumber>Y010RW1AR1Y0</SerialNumber><MfgID>USIS</MfgID><Action>Added</Action><TimeStamp>11/25/2011:13:53:13</TimeStamp></ComponentActivityLog><ComponentActivityLog><FRUNumber>39Y7229</FRUNumber><FRUName>Power Supply 2</FRUName><SerialNumber>K141115Y2BK</SerialNumber><MfgID>ACBE</MfgID><Action>Added</Action><TimeStamp>01/27/2012:10:28:39</TimeStamp></ComponentActivityLog><VPD><FirmwareName>IMM</FirmwareName><VersionString>YUOOC7E</VersionString><ReleaseDate>09/30/2011</ReleaseDate></VPD><VPD><FirmwareName>UEFI</FirmwareName><VersionString>D6E154A</VersionString><ReleaseDate>09/23/2011</ReleaseDate></VPD><VPD><FirmwareName>DSA</FirmwareName><VersionString>DSYT89P </VersionString><ReleaseDate>10/28/2011</ReleaseDate></VPD></GetVitalProductDataResponse></GetVitalProductDataResponse></s:Body></s:Envelope> ''' sn_response = '''<?xml version="1.0"?><s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"><s:Header><wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To><wsa:Action>http://www.ibm.com/iBMC/sp/iBMCControl/GetSPNameSettingsResponse</wsa:Action><wsa:RelatesTo>dt:1348742647137</wsa:RelatesTo><wsa:From><wsa:Address>http://10.10.10.10/wsman</wsa:Address></wsa:From><wsa:MessageID>uuid:d2ac4b59-9f60-456e-a182-6a077557e4c1</wsa:MessageID></s:Header><s:Body><GetSPNameSettingsResponse><SPName>SN# KD55ARA</SPName></GetSPNameSettingsResponse></s:Body></s:Envelope> ''' processors_response = '''<?xml version="1.0"?><s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"><s:Header><wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To><wsa:Action>http://www.ibm.com/iBMC/sp/Monitors/GetProcessorInfoResponse</wsa:Action><wsa:RelatesTo>dt:1348757382511</wsa:RelatesTo><wsa:From><wsa:Address>http://rack-605-12-mgmt.dc2/wsman</wsa:Address></wsa:From><wsa:MessageID>uuid:9e5ec08d-0fac-449a-80fa-37cc78290a21</wsa:MessageID></s:Header><s:Body><GetProcessorInfoResponse><Processor><ProcessorInfo><Description>Processor 1</Description><Speed>2666</Speed><Identifier>3030363735304141</Identifier><Type>Central</Type><Family>Intel Xeon</Family><Cores>8</Cores><Threads>1</Threads><Voltage>1.087000</Voltage><Datawidth>64</Datawidth></ProcessorInfo><ProcessorInfo><Description>Processor 2</Description><Speed>2666</Speed><Identifier>3030363735304141</Identifier><Type>Central</Type><Family>Intel Xeon</Family><Cores>8</Cores><Threads>1</Threads><Voltage>1.087000</Voltage><Datawidth>64</Datawidth></ProcessorInfo></Processor></GetProcessorInfoResponse></s:Body></s:Envelope> '''
621.076923
2,572
0.792172
1,050
8,074
6.085714
0.198095
0.016432
0.042254
0.049296
0.746479
0.715493
0.647261
0.602973
0.592958
0.582316
0
0.100038
0.012014
8,074
12
2,573
672.833333
0.701015
0
1
0.5
0
0.5
0.983775
0.541244
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
1
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
feac612781029aac47e6d21c85d8519de53dcb55
7,188
py
Python
tests/test_installation.py
phdye/nimporter
64eccc74950811e03efdde50649e84ca1fe87ae4
[ "MIT" ]
null
null
null
tests/test_installation.py
phdye/nimporter
64eccc74950811e03efdde50649e84ca1fe87ae4
[ "MIT" ]
null
null
null
tests/test_installation.py
phdye/nimporter
64eccc74950811e03efdde50649e84ca1fe87ae4
[ "MIT" ]
null
null
null
""" Test to make sure that libraries built with Nimporter can be installed via Pip. """ import sys, os, subprocess, shutil, pkg_resources, json, warnings from pathlib import Path import pytest import nimporter PYTHON = 'python' if sys.platform == 'win32' else 'python3' PIP = 'pip' if shutil.which('pip') else 'pip3' @pytest.mark.integration_test def test_ensure_nimporter_installed(): "Make sure that Nimporter is installed before running integration tests." libs = {lib.key.lower() for lib in pkg_resources.working_set} assert 'nimporter' in libs, ( f'Nimporter is not installed. Please install via:' f'`{PIP} install .` before running the integration tests.' ) @pytest.mark.integration_test def test_create_sdist(): "Test the successful creation of a source distribution." with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py sdist'.split()).wait() dist = Path('dist') egg = Path('project1.egg-info') try: assert dist.exists() assert egg.exists() targets = list(dist.glob('project1*')) assert len(targets) == 1 assert targets[0].exists() # Make sure the appropriate compiler is being used for extension in Path('nim-extensions').iterdir(): (nim_build_data_file,) = extension.glob('*json') nim_build_data = json.loads(nim_build_data_file.read_text()) expected = nimporter.NimCompiler.get_compatible_compiler() installed_ccs = nimporter.NimCompiler.get_installed_compilers() if not expected: warnings.warn( f'No compatible C compiler installed: {installed_ccs}' ) else: cc_path = installed_ccs[expected] actual = nim_build_data['linkcmd'].split()[0].strip() if not actual.startswith(cc_path.stem): warnings.warn( f'Nim used a different C compiler than what Python ' f'expects. Python uses {cc_path.stem} and Nim used ' f'{actual}' ) finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(egg.absolute())) @pytest.mark.integration_test def test_create_bdist(): "Test the successful create of a wheel." with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py bdist_wheel'.split()).wait() dist = Path('dist') build = Path('build') egg = Path('project1.egg-info') try: assert dist.exists() assert build.exists() assert egg.exists() targets = list(Path('dist').glob('project1*.whl')) assert len(targets) == 1 assert targets[0].exists() # Make sure the appropriate compiler is being used for extension in Path('nim-extensions').iterdir(): (nim_build_data_file,) = extension.glob('*json') nim_build_data = json.loads(nim_build_data_file.read_text()) expected = nimporter.NimCompiler.get_compatible_compiler() installed_ccs = nimporter.NimCompiler.get_installed_compilers() if not expected: warnings.warn( f'No compatible C compiler installed: {installed_ccs}' ) else: cc_path = installed_ccs[expected] actual = nim_build_data['linkcmd'].split()[0].strip() if not actual.startswith(cc_path.stem): warnings.warn( f'Nim used a different C compiler than what Python ' f'expects. Python uses {cc_path.stem} and Nim used ' f'{actual}' ) finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(build.absolute())) shutil.rmtree(str(egg.absolute())) @pytest.mark.slow_integration_test def test_install_sdist(): "Make sure that the project can be installed by Pip" with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py sdist'.split()).wait() dist = Path('dist') egg = Path('project1.egg-info') try: assert dist.exists() assert egg.exists() targets = list(dist.glob('project1*')) assert len(targets) == 1 (target,) = targets assert target.exists() subprocess.Popen(f'{PIP} install {target}'.split()).wait() finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(egg.absolute())) # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. with nimporter.cd('../..'): try: import proj1 assert proj1 import proj1.performance assert proj1.performance import proj1.lib1 assert proj1.lib1 assert proj1.foo assert proj1.bar assert proj1.baz assert proj1.baz() == 1 except Exception as e: warnings.warn(str(e)) # Cannot delete a DLL in use by another process on Windows if sys.platform != 'win32': subprocess.Popen(f'{PIP} uninstall project1 -y'.split()).wait() @pytest.mark.slow_integration_test def test_install_bdist(): "Make sure that the wheel can be installed by Pip" with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py bdist_wheel'.split()).wait() dist = Path('dist') build = Path('build') egg = Path('project1.egg-info') try: assert dist.exists() assert build.exists() assert egg.exists() targets = list(Path('dist').glob('project1*.whl')) assert len(targets) == 1 wheel = targets[0] assert wheel.exists() subprocess.Popen(f'{PIP} install {wheel}'.split()).wait() finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(build.absolute())) shutil.rmtree(str(egg.absolute())) # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. with nimporter.cd('../..'): try: import proj1 assert proj1 import proj1.performance assert proj1.performance import proj1.lib1 assert proj1.lib1 assert proj1.foo assert proj1.bar assert proj1.baz assert proj1.baz() == 1 except Exception as e: warnings.warn(str(e)) # Cannot delete a DLL in use by another process on Windows if sys.platform != 'win32': subprocess.Popen(f'{PIP} uninstall project1 -y'.split()).wait()
38.854054
80
0.564969
805
7,188
4.963975
0.191304
0.038539
0.037538
0.034535
0.832833
0.832833
0.808809
0.792292
0.768268
0.768268
0
0.012233
0.329021
7,188
184
81
39.065217
0.816297
0.11241
0
0.801282
0
0
0.1775
0
0
0
0
0
0.211538
1
0.032051
false
0
0.153846
0
0.185897
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
2284f5a8afa9699354bd56f97faf33c044aeae81
160
py
Python
cnn/donas_utils/dataset/__init__.py
eric8607242/darts
34c79a0956039f56a6a87bfb7f4b1ae2af615bea
[ "Apache-2.0" ]
null
null
null
cnn/donas_utils/dataset/__init__.py
eric8607242/darts
34c79a0956039f56a6a87bfb7f4b1ae2af615bea
[ "Apache-2.0" ]
null
null
null
cnn/donas_utils/dataset/__init__.py
eric8607242/darts
34c79a0956039f56a6a87bfb7f4b1ae2af615bea
[ "Apache-2.0" ]
null
null
null
from .dataset import get_cifar100, get_cifar10, get_imagenet_lmdb, get_imagenet __all__ = ["get_cifar100", "get_cifar10", "get_imagenet_lmdb", "get_imagenet"]
40
79
0.8
22
160
5.181818
0.409091
0.385965
0.245614
0.368421
0.824561
0.824561
0.824561
0.824561
0.824561
0
0
0.068493
0.0875
160
3
80
53.333333
0.712329
0
0
0
0
0
0.325
0
0
0
0
0
0
1
0
false
0
0.5
0
0.5
0
1
0
0
null
1
1
1
1
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
11
22a8b0a10c5a619e3d02f83382579627b355c5a9
186
py
Python
.venv/lib/python3.8/site-packages/poetry/core/_vendor/lark/__pyinstaller/__init__.py
RivtLib/replit01
ce1ae18b446a9c844f40e88a51c71fbc45ab3ad7
[ "MIT" ]
1
2020-08-07T16:09:57.000Z
2020-08-07T16:09:57.000Z
.venv/lib/python3.8/site-packages/poetry/core/_vendor/lark/__pyinstaller/__init__.py
RivtLib/replit01
ce1ae18b446a9c844f40e88a51c71fbc45ab3ad7
[ "MIT" ]
null
null
null
.venv/lib/python3.8/site-packages/poetry/core/_vendor/lark/__pyinstaller/__init__.py
RivtLib/replit01
ce1ae18b446a9c844f40e88a51c71fbc45ab3ad7
[ "MIT" ]
null
null
null
# For usage of lark with PyInstaller. See https://pyinstaller-sample-hook.readthedocs.io/en/latest/index.html import os def get_hook_dirs(): return [os.path.dirname(__file__)]
31
110
0.747312
28
186
4.75
0.892857
0
0
0
0
0
0
0
0
0
0
0
0.134409
186
6
111
31
0.826087
0.575269
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
true
0
0.333333
0.333333
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
1
1
1
0
0
7
22b050a05912835a15d1f775a59389484ca92826
142
py
Python
scripts/update_asp_l1.py
sot/mica
136a9b0d9521efda5208067b51cf0c8700b4def3
[ "BSD-3-Clause" ]
null
null
null
scripts/update_asp_l1.py
sot/mica
136a9b0d9521efda5208067b51cf0c8700b4def3
[ "BSD-3-Clause" ]
150
2015-01-23T17:09:53.000Z
2022-01-10T00:50:54.000Z
scripts/update_asp_l1.py
sot/mica
136a9b0d9521efda5208067b51cf0c8700b4def3
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Licensed under a 3-clause BSD style license - see LICENSE.rst import mica.archive.asp_l1 mica.archive.asp_l1.main()
20.285714
63
0.760563
25
142
4.24
0.8
0.207547
0.264151
0.301887
0
0
0
0
0
0
0
0.024194
0.126761
142
6
64
23.666667
0.830645
0.577465
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
7
22f3df9c130fc202edc44714de04e929f4e7eab3
91,430
py
Python
test/model/data/all_foreground_valid_data.py
TiankunZhou/dials
bd5c95b73c442cceb1c61b1690fd4562acf4e337
[ "BSD-3-Clause" ]
2
2021-03-17T11:25:46.000Z
2021-11-18T04:20:54.000Z
test/model/data/all_foreground_valid_data.py
TiankunZhou/dials
bd5c95b73c442cceb1c61b1690fd4562acf4e337
[ "BSD-3-Clause" ]
2
2020-07-31T22:37:30.000Z
2020-07-31T23:08:55.000Z
test/model/data/all_foreground_valid_data.py
TiankunZhou/dials
bd5c95b73c442cceb1c61b1690fd4562acf4e337
[ "BSD-3-Clause" ]
1
2020-02-04T15:39:06.000Z
2020-02-04T15:39:06.000Z
from __future__ import absolute_import, division, print_function data = r"""cdials_array_family_flex_ext shoebox p1 (tRp2 (cscitbx_array_family_flex_ext grid p3 ((I0 t(I8 tI01 tRp4 (I8 tbS'\x02\x01\x02\x08\x00\x03\\\x01\x03m\x01\x03\x04\x06\x03\x15\x06\x00\x02\x01\x02\x03\x02\x01\x02\x11\x02\x11\x02\x9c\x02\x06\x02\x80\x02\x06\x02\xe8\x02\x05\x02\x86\x02\x07\x02\xe0\x02\x03\x02\xa0\x02\x04\x02\x80\x02\x03\x02\x80\x02\x05\x02\xf4\x02\x06\x02\x88\x02\x06\x02\xe8\x02\x06\x02\xdc\x02\x06\x02\x85\x02\x08\x02\xc8\x02\x05\x02\x84\x02\x06\x02\xf0\x02\x04\x02\x90\x02\x06\x00\x02\x84\x02\x06\x02\x84\x02\x06\x02\xf0\x02\x06\x02\xf0\x02\x05\x02\x82\x02\x07\x02\xd8\x02\x05\x02\xd8\x02\x06\x02\x80\x02\x02\x02\xa0\x02\x04\x02\xa2\x02\x07\x02\xc0\x02\x04\x02\xe8\x02\x06\x02\xe0\x02\x03\x02\xa0\x02\x03\x02\x8c\x02\x06\x02\xac\x02\x06\x02\x9c\x02\x06\x02\xb8\x02\x06\x02\xc0\x02\x03\x02\xb4\x02\x06\x02\xc8\x02\x06\x02\xe0\x02\x03\x02\x90\x02\x04\x02\x88\x02\x06\x02\xc8\x02\x06\x02\xba\x02\x07\x82\xc0\x02\x02\x02\xb6\x02\x07\x02\x80\x02\x06\x02\x80\x02\x05\x02\xa0\x02\x04\x02\xf0\x02\x06\x02\xfc\x02\x06\x02\xc8\x02\x05\x02\xf4\x02\x06\x02\xb6\x02\x07\x02\x80\x02\x06\x02\x80\x02\x03\x02\xd8\x02\x05\x02\xf0\x02\x06\x02\x88\x02\x05\x02\xec\x02\x06\x00\x02\xc0\x02\x03\x02\xc0\x02\x04\x02\xe0\x02\x03\x02\xe0\x02\x04\x02\xd4\x02\x06\x02\xa2\x02\x07\x02\xa0\x02\x03\x02\xfc\x02\x07\x02\xc0\x02\x03\x02\x9c\x02\x07\x02\xe0\x02\x05\x02\xe0\x02\x05\x02\x8c\x02\x06\x02\xe0\x02\x03\x02\x80\x02\x07\x02\xe0\x02\x06\x02\xa4\x02\x06\x02\xf8\x02\x06\x02\xb8\x02\x05\x02\xee\x02\x07\x02\xe0\x02\x06\x02\xc4\x02\x06\x02\xc0\x02\x05\x02\xd0\x02\x06\x02\xc2\x02\x07\x02\xa0\x02\x03\x02\x90\x02\x05\x02\x9a\x02\x07\x02\xd0\x02\x05\x02\xd8\x02\x05\x02\x80\x02\x06\x02\xac\x02\x06\x02\x88\x02\x07\x02\xb0\x02\x04\x02\xa6\x02\x07\x02\xa0\x02\x05\x02\xa0\x02\x04\x02\x92\x02\x07\x02\xe2\x02\x07\x02\x94\x02\x06\x02\x90\x02\x04\x02\xc0\x02\x04\x02\x98\x02\x05\x02\xd4\x02\x06\x02\xb8\x02\x05\x02\xd0\x02\x05\x02\x90\x02\x06\x02\xd4\x02\x06\x02\xdc\x02\x06\x02\x90\x02\x04\x02\x90\x02\x06\x02\xa4\x02\x06\x02\xa0\x02\x07\x02\xe8\x02\x07\x02\xe0\x02\x06\x02\x96\x02\x07\x02\x98\x02\x06\x02\xd4\x02\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x03\x02\x01\x02\x11\x02\x11\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x03\x02\x01\x02\x11\x02\x11\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x04\x98UU\x02\x06\x00\x02\xb5\x02\xc6\x03\xab\x05\x03\xbc\x05\x00\x02\x01\x02\x03\x02\x01\x02\x11\x02\x11\x02\xc0\x02\x02\x02\xa0\x02\x05\x82\x80\x02\x01\x02\xd0\x02\x05\x02\xa0\x02\x06\x02\x84\x02\x06\x02\xd0\x02\x06\x02\xa0\x02\x03\x02\x80\x02\x01\x02\xa0\x02\x03\x02\x80\x02\x01\x02\xf0\x02\x05\x02\xa8\x02\x06\x02\xd4\x02\x06\x02\xbc\x02\x06\x02\x8a\x02\x07\x02\xe4\x02\x06\x00\x82\x80\x02\x03\x02\xc0\x02\x02\x02\x90\x02\x04\x02\xaa\x02\x07\x02\xc0\x02\x05\x02\xa0\x02\x06\x02\xf0\x02\x04\x02\xe0\x02\x03\x82\x80\x02\x01\x02\xa0\x02\x03\x02\xe0\x02\x04\x02\xd8\x02\x05\x02\xc4\x02\x06\x83\xc3P\x02\x11\x02\x80\x02\x04\x02\x92\x02\x07\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x02\xc0\x02\x03\x82\x80\x02\x02\x02\xf4\x02\x06\x02\xa4\x02\x06\x02\xf0\x02\x04\x02\x80\x02\x06\x02\x80\x02\x04\x02\xe6\x02\x07\x02\x94\x02\x07\x02\x98\x02\x06\x02\xb0\x02\x04\x02\xa8\x02\x07\x02\x98\x02\x06\x02\xa0\x02\x05\x02\xa4\x02\x07\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x02\xc0\x02\x02\x00\x02\xd0\x02\x04\x02\xf0\x02\x05\x02\x80\x02\x02\x02\xf8\x02\x05\x02\x94\x02\x06\x02\x96\x02\x07\x02\x80\x02\x01\x00\x02\xc0\x02\x04\x02\xc0\x02\x02\x02\xf0\x02\x06\x02\x80\x02\x06\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x82\xe0\x02\x03\x82\x80\x02\x01\x02\x80\x02\x02\x02\xc0\x02\x02\x02\xdc\x02\x06\x02\xf8\x02\x06\x02\xb8\x02\x05\x02\xa8\x02\x05\x02\x80\x02\x02\x02\x80\x02\x01\x82\xc0\x02\x02\x82\x80\x02\x02\x02\xb0\x02\x04\x02\xda\x02\x07\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x82\x80\x02\x02\x82\x80\x02\x01\x02\xd0\x02\x05\x02\x80\x02\x03\x02\x88\x02\x06\x02\x80\x02\x02\x02\x80\x02\x01\x82\x80\x02\x01\x00\x02\x88\x02\x05\x02\xf0\x02\x06\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x00\x82\xc0\x02\x02\x82\xc0\x02\x03\x02\xe8\x02\x05\x02\xa8\x02\x07\x02\x96\x02\x07\x02\x8e\x02\x07\x02\xbc\x02\x07\x02\xa8\x02\x05\x02\xb0\x02\x04\x82\x80\x02\x03\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x02\xc0\x02\x03\x02\xd0\x02\x05\x02\x80\x02\x07\x02\xc0\x02\x03\x02\xc4\x02\x07\x02\xc8\x02\x05\x02\xdc\x02\x06\x02\xc8\x02\x06\x02\xc0\x02\x02\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x02\xa0\x02\x03\x02\xf0\x02\x05\x02\xe8\x02\x05\x02\xa8\x02\x05\x02\xe8\x02\x05\x02\xa8\x02\x05\x02\xe0\x02\x03\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x00\x02\x98\x02\x05\x82\x80\x02\x01\x02\x80\x02\x02\x02\xb0\x02\x05\x02\x90\x02\x04\x02\xc0\x02\x04\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x82\xc0\x02\x02\x83\xc3P\x02\x11\x02\x80\x02\x02\x82\x80\x02\x01\x02\xb8\x02\x05\x02\xc8\x02\x05\x02\xc8\x02\x05\x02\x84\x02\x06\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x82\x80\x02\x02\x02\xc0\x02\x02\x02\xe0\x02\x05\x02\x88\x02\x06\x02\xd0\x02\x06\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x02\xa0\x02\x03\x02\xc0\x02\x02\x02\x9e\x02\x07\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x02\xe0\x02\x03\x83\xc3P\x02\x11\x02\xa0\x02\x04\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x82\x80\x02\x02\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x83\xc3P\x02\x11\x02\x03\x02\x01\x02\x11\x02\x11\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x13\x02\x13\x02\x02\x02\x02\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x05\x02\x04\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x13\x02\x02\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x03\x02\x01\x02\x11\x02\x11\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x04\xbc\xf2\xfc\x02\x05\x00\x03\x1f\x02\x03-\x02\x03\r\x06\x03\x1d\x06\x00\x02\x01\x02\x03\x02\x01\x02\x10\x02\x0e\x02\xc0\x02\x05\x02\xa0\x02\x07\x02\xb8\x02\x05\x02\xaa\x02\x07\x02\x9c\x02\x06\x02\xf8\x02\x06\x02\xd0\x02\x05\x02\x90\x02\x06\x02\x90\x02\x05\x02\xf0\x02\x05\x02\xc0\x02\x02\x02\xdc\x02\x06\x02\xd0\x02\x06\x02\xe8\x02\x06\x02\x80\x02\x05\x02\x90\x02\x06\x02\x9c\x02\x07\x02\x82\x02\x07\x02\x90\x02\x06\x02\xcc\x02\x06\x02\xd0\x02\x06\x02\x8a\x02\x07\x02\xe0\x02\x05\x02\x98\x02\x06\x02\xa0\x02\x06\x02\xd0\x02\x04\x82\xa0\x02\x03\x02\xc8\x02\x05\x02\xe0\x02\x05\x02\xc0\x02\x02\x02\xa8\x02\x05\x02\xb4\x02\x06\x02\xd8\x02\x07\x02\x86\x02\x07\x02\xb2\x02\x07\x02\x9c\x02\x06\x02\xf8\x02\x05\x02\xe4\x02\x06\x02\xd8\x02\x06\x02\x8a\x02\x07\x02\xf8\x02\x05\x02\x94\x02\x06\x02\x90\x02\x07\x02\xc8\x02\x05\x02\xf0\x02\x05\x02\xd0\x02\x04\x02\x8c\x02\x07\x02\x80\x02\x07\x02\x80\x02\x03\x02\xd8\x02\x05\x02\xe8\x02\x05\x02\x90\x02\x07\x02\x8c\x02\x07\x02\xe0\x02\x03\x02\x9c\x02\x06\x02\xdc\x02\x06\x02\x94\x02\x06\x02\x90\x02\x04\x02\x98\x02\x06\x02\xb8\x02\x05\x02\xf8\x02\x06\x02\xbc\x02\x06\x02\x80\x02\x04\x02\xc0\x02\x06\x02\xe4\x02\x06\x02\x90\x02\x06\x02\x80\x02\x05\x02\xec\x02\x06\x02\x8a\x02\x07\x02\x94\x02\x07\x02\x80\x02\x05\x02\xe0\x02\x04\x02\xb2\x02\x07\x02\x80\x02\x02\x82\x80\x02\x02\x02\xd0\x02\x04\x02\x80\x02\x04\x02\xd0\x02\x05\x02\xf0\x02\x05\x02\x80\x02\x04\x02\xb2\x02\x07\x02\xb0\x02\x06\x02\xf0\x02\x04\x02\x80\x02\x05\x02\x80\x02\x02\x02\x80\x02\x02\x02\xde\x02\x07\x02\xbc\x02\x06\x02\x8e\x02\x07\x02\xe0\x02\x06\x02\xc0\x02\x04\x02\xf0\x02\x04\x02\xe8\x02\x05\x02\xa0\x02\x03\x02\x8a\x02\x07\x02\xc0\x02\x05\x02\xec\x02\x06\x02\x9c\x02\x06\x02\xd0\x02\x05\x02\xb4\x02\x07\x02\x8e\x02\x07\x02\xca\x02\x07\x02\x86\x02\x07\x02\x80\x02\x02\x02\xa4\x02\x06\x02\x80\x02\x02\x02\xe8\x02\x05\x02\xa6\x02\x07\x02\x80\x02\x06\x02\xd8\x02\x06\x02\x9c\x02\x07\x02\x88\x02\x07\x02\xb8\x02\x05\x02\xf4\x02\x06\x02\xa4\x02\x06\x02\xcc\x02\x06\x02\xd0\x02\x04\x02\x88\x02\x07\x02\xbc\x02\x06\x02\xa0\x02\x06\x02\x84\x02\x06\x02\xcc\x02\x06\x02\xc0\x02\x06\x02\xc6\x02\x07\x02\xd4\x02\x06\x02\xec\x02\x06\x02\xa8\x02\x07\x02\x8a\x02\x08\x02\xf0\x02\x07\x02\x98\x02\x06\x02\x80\x02\x08\x02\xf8\x02\x07\x02\x8b\x02\x08\x02\x94\x02\x06\x02\xae\x02\x07\x02\xa8\x02\x05\x02\xbe\x02\x07\x02\x8a\x02\x08\x02\x91\x02\x08\x02\xfc\x02\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\xa0\x02\x07\x02\xbb\x02\x08\x02\xfe\x02\x07\x02\x81\x02\x08\x02\xa0\x02\x06\x02\x8c\x02\x07\x02\xf0\x02\x06\x02\xfc\x02\x06\x02\xce\x02\x07\x02\x84\x02\x07\x02\xb0\x02\x08\x02\x8a\x02\x08\x02\x8c\x02\x07\x02\x96\x02\x07\x02\x90\x02\x06\x02\xa6\x02\x07\x02\x80\x02\x06\x02\xd0\x02\x06\x82\x80\x02\x01\x02\xd8\x02\x06\x82\x80\x02\x03\x02\xc8\x02\x05\x02\xae\x02\x07\x02\xe0\x02\x06\x02\x82\x02\x07\x02\xfc\x02\x06\x02\xf8\x02\x06\x02\xb4\x02\x06\x02\x98\x02\x06\x02\xb0\x02\x06\x02\xd6\x02\x07\x02\x80\x02\x06\x02\xb8\x02\x05\x02\xde\x02\x07\x02\xae\x02\x07\x02\x90\x02\x06\x02\xb0\x02\x04\x02\xa0\x02\x05\x02\x9c\x02\x06\x02\x94\x02\x06\x02\x80\x02\x05\x02\xa6\x02\x07\x02\x03\x02\x01\x02\x10\x02\x0e\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x04\x02\x04\x02\x04\x02\x04\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x01\x02\x10\x02\x0e\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x04\xb5Eu\x02\x06\x00\x03\x90\x01\x03\xa0\x01\x03\xb6\x05\x03\xc6\x05\x00\x02\x01\x02\x03\x02\x01\x02\x10\x02\x10\x02\x94\x02\x07\x02\xb4\x02\x06\x83\xc3P\x02\x11\x02\xa0\x02\x06\x02\xac\x02\x06\x02\x84\x02\x07\x02\xa2\x02\x07\x02\x94\x02\x06\x02\x9c\x02\x07\x02\xe8\x02\x05\x02\xb8\x02\x05\x02\xd0\x02\x06\x02\x94\x02\x06\x02\xec\x02\x06\x02\xd0\x02\x04\x02\x98\x02\x07\x02\xac\x02\x06\x02\xac\x02\x07\x02\xec\x02\x06\x02\xb0\x02\x06\x02\xa6\x02\x07\x02\xa8\x02\x06\x02\xf0\x02\x04\x02\x80\x02\x06\x02\x80\x02\x03\x02\x94\x02\x06\x02\xdc\x02\x06\x02\xe4\x02\x06\x02\xc0\x02\x05\x02\xa4\x02\x06\x02\xc0\x02\x05\x02\x98\x02\x06\x02\xa0\x02\x04\x02\x9c\x02\x06\x02\x9e\x02\x07\x02\xd8\x02\x06\x02\x85\x02\x08\x02\xa4\x02\x06\x02\xf4\x02\x06\x02\x88\x02\x06\x02\xc0\x02\x03\x02\xe8\x02\x05\x02\xa2\x02\x07\x02\xe8\x02\x05\x02\x88\x02\x07\x02\xa0\x02\x07\x02\xc4\x02\x06\x02\xb8\x02\x06\x02\x94\x02\x06\x02\xc8\x02\x06\x02\xf8\x02\x05\x02\xe0\x02\x07\x02\x80\x02\x03\x02\xc0\x02\x03\x02\x90\x02\x05\x02\xb0\x02\x04\x82\x80\x02\x01\x02\x80\x02\x02\x02\x98\x02\x07\x02\xa0\x02\x07\x02\xec\x02\x06\x02\x80\x02\x04\x02\xd4\x02\x06\x02\xac\x02\x07\x02\xc0\x02\x02\x02\xf0\x02\x06\x02\xc0\x02\x05\x02\xe0\x02\x05\x02\xd8\x02\x05\x02\xe0\x02\x05\x02\xbc\x02\x06\x02\xb8\x02\x05\x02\xf0\x02\x06\x02\x84\x02\x06\x02\xc8\x02\x05\x02\x8e\x02\x07\x02\x8c\x02\x07\x02\x82\x02\x07\x02\xe8\x02\x05\x02\x88\x02\x06\x02\x94\x02\x06\x02\x98\x02\x06\x02\x80\x02\x06\x02\xe0\x02\x03\x02\x90\x02\x05\x02\xb0\x02\x05\x02\x8d\x02\x08\x02\xa4\x02\x06\x02\xc0\x02\x07\x02\x94\x02\x07\x02\xb0\x02\x04\x02\xa8\x02\x07\x02\xb0\x02\x04\x02\xac\x02\x06\x02\x98\x02\x05\x02\xdc\x02\x06\x02\x98\x02\x06\x02\xf0\x02\x06\x02\x98\x02\x06\x02\xcc\x02\x06\x02\xbc\x02\x06\x02\xc8\x02\x07\x02\xc0\x02\x07\x02\x9c\x02\x07\x02\xc0\x02\x02\x02\xc8\x02\x07\x02\x80\x02\x06\x02\xa0\x02\x06\x02\xf0\x02\x05\x02\x98\x02\x05\x82\x80\x02\x01\x02\xd0\x02\x06\x02\x86\x02\x07\x02\x90\x02\x05\x02\xae\x02\x07\x02\xa4\x02\x07\x02\xbc\x02\x07\x02\x94\x02\x07\x02\x82\x02\x07\x02\x80\x02\x01\x02\xfc\x02\x06\x02\xd0\x02\x04\x02\xe0\x02\x05\x02\x84\x02\x08\x02\xd0\x02\x04\x02\x86\x02\x07\x02\x80\x02\x03\x02\xe0\x02\x07\x02\xc0\x02\x07\x02\x80\x02\x02\x02\xf4\x02\x06\x02\xc0\x02\x02\x02\xc0\x02\x05\x02\x82\x02\x08\x02\xd0\x02\x04\x83\xc3P\x02\x11\x02\xd6\x02\x07\x02\x90\x02\x08\x02\xc8\x02\x06\x02\xb4\x02\x07\x02\xf0\x02\x05\x02\xd4\x02\x07\x02\xf8\x02\x05\x02\x80\x02\x03\x02\xe8\x02\x06\x02\xc0\x02\x02\x02\xa0\x02\x05\x02\xf0\x02\x06\x02\xe8\x02\x05\x00\x02\xf0\x02\x04\x02\xd4\x02\x06\x02\xaa\x02\x07\x02\xf8\x02\x05\x02\xc8\x02\x05\x02\x8d\x02\x08\x02\xa4\x02\x06\x02\xf8\x02\x05\x02\xd0\x02\x06\x02\x86\x02\x07\x02\xe0\x02\x04\x02\xb4\x02\x07\x02\x80\x02\x07\x02\x84\x02\x07\x02\xe8\x02\x05\x02\xe0\x02\x04\x02\xdc\x02\x06\x02\xb6\x02\t\x02\xe8\x02\x07\x02\x80\x02\x02\x02\xb4\x02\x06\x02\x9a\x02\x07\x83\xc3P\x02\x11\x02\xb0\x02\x04\x02\x80\x02\x06\x02\xe0\x02\x03\x02\x80\x02\x01\x02\xd0\x02\x05\x02\xb0\x02\x05\x02\xa8\x02\x06\x02\xba\x02\x07\x02\x84\x02\x06\x02\x9c\x02\x06\x02\xb5\x02\x08\x02\xd0\x02\x06\x02\x9c\x02\x06\x02\xa0\x02\x06\x02\xf0\x02\x05\x02\xe0\x02\x05\x02\x80\x02\x03\x02\xb0\x02\x04\x02\xf2\x02\x07\x02\x80\x02\x01\x02\x9c\x02\x06\x02\xe8\x02\x05\x02\x80\x02\x01\x02\x82\x02\x07\x02\xa8\x02\x06\x02\xfe\x02\x07\x02\xd0\x02\x05\x02\xc0\x02\x02\x02\xd0\x02\x04\x02\x90\x02\x05\x02\xd0\x02\x05\x02\xd0\x02\x06\x02\xd8\x02\x06\x02\x80\x02\x03\x02\xd0\x02\x05\x02\xb8\x02\x05\x02\xf0\x02\x05\x02\x8c\x02\x07\x02\xe8\x02\x05\x02\xe6\x02\x07\x02\xf0\x02\x07\x02\xb0\x02\x05\x02\x96\x02\x07\x02\xb0\x02\x04\x02\xc4\x02\x06\x02\xa4\x02\x06\x00\x02\x86\x02\x07\x02\xe0\x02\x06\x02\x94\x02\x06\x02\xe8\x02\x05\x02\x80\x02\x04\x02\xe0\x02\x05\x00\x02\xb8\x02\x05\x02\xc0\x02\x06\x00\x02\x9c\x02\x06\x02\x80\x02\x06\x02\xd6\x02\x07\x02\xa4\x02\x06\x02\xec\x02\x07\x02\x84\x02\x07\x02\x92\x02\x07\x02\xb0\x02\x04\x02\xc8\x02\x06\x02\xa0\x02\x04\x02\xe4\x02\x06\x02\x98\x02\x05\x02\xd4\x02\x06\x02\x80\x02\x06\x02\xe0\x02\x03\x02\x80\x02\x05\x02\xdc\x02\x07\x02\xd8\x02\x05\x02\x84\x02\x07\x02\xba\x02\x07\x02\xd0\x02\x07\x02\xc8\x02\x05\x02\xc0\x02\x06\x02\x86\x02\x07\x02\x90\x02\x04\x02\xc0\x02\x03\x02\x03\x02\x01\x02\x10\x02\x10\x02\x13\x02\x13\x02\x02\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x04\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x02\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x01\x02\x10\x02\x10\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x04\xaf\xfb^\x02\x06\x00\x03\xbb\x01\x03\xcb\x01\x03I\x06\x03Z\x06\x00\x02\x01\x02\x03\x02\x01\x02\x11\x02\x10\x02\xe0\x02\x03\x02\xe8\x02\x05\x02\xb4\x02\x06\x02\xf8\x02\x05\x02\xd8\x02\x05\x02\x80\x02\x05\x02\xf0\x02\x05\x02\x84\x02\x06\x02\xe8\x02\x06\x02\xb0\x02\x05\x02\xa4\x02\x06\x82\x80\x02\x02\x02\x8c\x02\x07\x82\xa0\x02\x03\x02\xa2\x02\x07\x02\xf0\x02\x04\x02\xe8\x02\x05\x02\x80\x02\x04\x02\x80\x02\x02\x02\x84\x02\x06\x02\xd8\x02\x05\x02\x80\x02\x03\x02\x80\x02\x05\x02\xe0\x02\x05\x02\x8c\x02\x07\x02\xa0\x02\x04\x02\xb2\x02\x07\x02\xa8\x02\x05\x02\xe6\x02\x07\x02\xe8\x02\x06\x02\x80\x02\x03\x02\xe8\x02\x05\x02\xf0\x02\x04\x02\x88\x02\x05\x02\xa8\x02\x06\x02\xb4\x02\x06\x02\xb2\x02\x07\x02\x88\x02\x05\x02\xa8\x02\x06\x02\x88\x02\x05\x02\xac\x02\x06\x02\xf0\x02\x06\x02\x94\x02\x06\x02\xb0\x02\x05\x02\x9c\x02\x07\x02\xc6\x02\x07\x02\xb6\x02\x07\x02\x9e\x02\x07\x02\x88\x02\x06\x02\xc8\x02\x05\x02\x88\x02\x06\x02\xe6\x02\x07\x02\xac\x02\x07\x02\xc4\x02\x07\x02\xb8\x02\x06\x02\x8c\x02\x06\x02\xe0\x02\x06\x02\x90\x02\x04\x02\xe0\x02\x06\x02\xf0\x02\x05\x02\x8c\x02\x06\x02\xfc\x02\x06\x02\x80\x02\x01\x02\xd4\x02\x06\x02\x94\x02\x06\x02\xaa\x02\x07\x02\x8c\x02\x06\x02\x88\x02\x05\x02\x8a\x02\x07\x02\xd4\x02\x07\x02\xe0\x02\x04\x02\x88\x02\x06\x02\x8e\x02\x07\x02\xae\x02\x07\x02\x80\x02\x04\x02\x98\x02\x05\x02\xf4\x02\x06\x02\x84\x02\x07\x02\xe0\x02\x03\x02\xc4\x02\x06\x02\xa0\x02\x04\x02\x95\x02\x08\x02\xf8\x02\x05\x02\xa0\x02\x05\x02\x80\x02\x05\x02\x84\x02\x06\x02\xa8\x02\x05\x02\xe0\x02\x03\x02\xc0\x02\x04\x02\xe0\x02\x03\x02\x96\x02\x07\x02\x8f\x02\x08\x02\x90\x02\x05\x02\xe0\x02\x04\x02\xb0\x02\x06\x02\xf8\x02\x05\x02\xa0\x02\x03\x02\xe8\x02\x06\x02\x84\x02\x08\x02\xd0\x02\x06\x02\xc2\x02\x07\x02\xa4\x02\x07\x02\x96\x02\x07\x02\xf4\x02\x06\x02\xb4\x02\x07\x02\xbc\x02\x06\x02\xa0\x02\x03\x02\x98\x02\x07\x02\x98\x02\x05\x02\xc0\x02\x02\x02\xac\x02\x06\x02\xc0\x02\x05\x02\xc0\x02\x05\x02\xf0\x02\x05\x02\xf4\x02\x06\x02\xc8\x02\x05\x02\xd0\x02\x05\x02\x82\x02\x07\x02\xd0\x02\x04\x02\xec\x02\x06\x02\xc0\x02\x05\x02\x90\x02\x07\x02\x90\x02\x05\x02\xa2\x02\x07\x02\xe8\x02\x05\x02\xc0\x02\x03\x02\xd4\x02\x06\x02\x90\x02\x05\x02\x94\x02\x06\x82\xc0\x02\x02\x02\x80\x02\x02\x02\x80\x02\x02\x02\x8c\x02\x07\x02\x98\x02\x06\x02\xa0\x02\x06\x02\xe0\x02\x04\x02\xb4\x02\x06\x02\xf4\x02\x06\x02\x8c\x02\x07\x02\xd4\x02\x06\x02\xec\x02\x06\x02\xe0\x02\x05\x82\x80\x02\x02\x02\xc0\x02\x02\x02\xb8\x02\x05\x02\x80\x02\x04\x02\xd8\x02\x05\x02\xb4\x02\x06\x02\xc0\x02\x05\x02\x90\x02\x05\x02\xa8\x02\x07\x02\x84\x02\x06\x02\xc8\x02\x05\x02\x88\x02\x06\x02\x88\x02\x06\x02\x96\x02\x07\x02\xb8\x02\x06\x00\x02\x80\x02\x03\x02\xe0\x02\x03\x02\x88\x02\x07\x02\xb0\x02\x04\x02\xc0\x02\x04\x02\x80\x02\x07\x02\xbc\x02\x06\x02\xc4\x02\x07\x02\xa0\x02\x03\x02\xe0\x02\x04\x02\x90\x02\x06\x02\x9c\x02\x07\x02\xf8\x02\x05\x02\x98\x02\x07\x02\xc0\x02\x04\x02\x80\x02\x03\x02\xc0\x02\x05\x02\xc8\x02\x05\x02\x94\x02\x07\x02\xf8\x02\x05\x02\xf0\x02\x05\x02\xd4\x02\x06\x02\xc0\x02\x04\x02\xa0\x02\x04\x02\xac\x02\x07\x02\xc0\x02\x04\x02\x80\x02\x02\x02\xa0\x02\x03\x02\xd0\x02\x05\x02\x9c\x02\x07\x02\xd0\x02\x05\x02\xb2\x02\x07\x02\xc0\x02\x05\x02\xf0\x02\x04\x02\xc0\x02\x04\x02\xea\x02\x07\x02\xcc\x02\x06\x02\xac\x02\x06\x02\x90\x02\x04\x02\x88\x02\x06\x02\xa8\x02\x06\x02\xc8\x02\x05\x02\xf0\x02\x05\x02\x80\x02\x01\x02\xf8\x02\x05\x02\xe8\x02\x05\x02\x84\x02\x07\x02\x90\x02\x06\x02\x9c\x02\x07\x02\x94\x02\x06\x02\xf8\x02\x06\x02\xa0\x02\x04\x02\xa8\x02\x05\x02\xc8\x02\x05\x02\x88\x02\x06\x02\xf4\x02\x06\x02\xea\x02\x07\x02\x82\x02\x07\x02\x80\x02\x04\x02\xe4\x02\x06\x02\x94\x02\x06\x02\x80\x02\x02\x02\x80\x02\x01\x02\x84\x02\x06\x02\xc0\x02\x06\x02\xa8\x02\x05\x02\xf8\x02\x05\x02\xe0\x02\x04\x02\x80\x02\x03\x02\x80\x02\x06\x02\xf0\x02\x06\x02\x98\x02\x05\x02\xf8\x02\x06\x02\xf0\x02\x06\x02\xa0\x02\x03\x82\x80\x02\x01\x02\xd0\x02\x05\x02\xb8\x02\x06\x02\xa2\x02\x07\x02\x80\x02\x03\x02\xe8\x02\x05\x02\xe8\x02\x05\x02\x98\x02\x05\x02\xf0\x02\x05\x02\xd0\x02\x05\x02\x80\x02\x07\x02\x88\x02\x05\x02\x82\x02\x07\x02\xa2\x02\x07\x02\xa0\x02\x07\x02\xa8\x02\x07\x02\xd8\x02\x05\x02\xe2\x02\x07\x02\xd4\x02\x06\x02\xc8\x02\x05\x02\xcc\x02\x06\x02\xc0\x02\x04\x02\x98\x02\x07\x02\x84\x02\x06\x02\x8c\x02\x07\x02\x80\x02\x03\x02\x80\x02\x08\x02\xa8\x02\x06\x02\xd8\x02\x05\x02\x80\x02\x04\x02\xf0\x02\x06\x02\x8c\x02\x06\x02\x9a\x02\x07\x02\x8c\x02\x06\x02\xc4\x02\x06\x02\xb0\x02\x06\x02\x84\x02\x06\x02\xc0\x02\x05\x02\xc8\x02\x05\x02\x03\x02\x01\x02\x11\x02\x10\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x01\x02\x11\x02\x10\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x04\x9a\x1a|\x02\x06\x00\x03e\x02\x03t\x02\x03m\x06\x03}\x06\x00\x02\x01\x02\x03\x02\x01\x02\x10\x02\x0f\x02\xdc\x02\x06\x02\xc0\x02\x02\x02\xd8\x02\x05\x02\xac\x02\x06\x02\xc0\x02\x02\x82\x80\x02\x01\x02\xa0\x02\x04\x02\xdc\x02\x06\x02\xf8\x02\x06\x02\xe0\x02\x03\x02\xcc\x02\x06\x02\xe8\x02\x06\x02\xe0\x02\x04\x02\xa6\x02\x07\x02\x90\x02\x06\x02\xb0\x02\x05\x02\x84\x02\x07\x02\x86\x02\x08\x02\xd8\x02\x05\x02\xa0\x02\x06\x02\xe0\x02\x05\x02\x93\x02\x08\x02\xb8\x02\x05\x02\xd4\x02\x06\x02\xc0\x02\x04\x02\x94\x02\x07\x02\xa6\x02\x07\x02\xe4\x02\x06\x02\xd4\x02\x06\x02\xe8\x02\x05\x02\xe8\x02\x05\x02\x80\x02\x03\x02\xd8\x02\x05\x02\xd4\x02\x06\x02\x84\x02\x06\x02\xd6\x02\x07\x02\xf8\x02\x05\x02\xfc\x02\x06\x02\xb4\x02\x06\x02\xb0\x02\x05\x02\xe8\x02\x05\x02\xf0\x02\x06\x02\xe8\x02\x05\x02\x84\x02\x06\x02\xdc\x02\x06\x02\x8c\x02\x06\x02\xa6\x02\x07\x02\xb6\x02\x07\x02\xec\x02\x06\x02\xc4\x02\x07\x02\x8a\x02\x07\x02\x86\x02\x07\x02\xe0\x02\x03\x02\xa0\x02\x03\x02\xa8\x02\x07\x02\xd0\x02\x07\x02\x84\x02\x06\x02\xbc\x02\x06\x02\xb8\x02\x05\x02\x80\x02\x02\x02\xa0\x02\x05\x02\x98\x02\x05\x02\xe0\x02\x05\x02\xf0\x02\x06\x02\xe8\x02\x05\x02\xcc\x02\x06\x02\xc0\x02\x05\x02\xd4\x02\x06\x02\xf8\x02\x06\x02\x8a\x02\x07\x02\xca\x02\x07\x02\x81\x02\x08\x82\x80\x02\x02\x02\x84\x02\x06\x02\xe0\x02\x05\x02\xe0\x02\x06\x02\xf8\x02\x05\x02\x92\x02\x07\x02\x84\x02\x08\x02\x80\x02\x04\x02\x84\x02\x06\x02\x82\x02\x07\x02\xb8\x02\x05\x02\xb8\x02\x05\x02\xa8\x02\x06\x02\xbe\x02\x07\x02\xd8\x02\x05\x02\x9c\x02\x06\x02\xd4\x02\x06\x02\xe0\x02\x05\x02\x90\x02\x04\x02\xb4\x02\x06\x02\x8e\x02\x07\x02\xb8\x02\x05\x02\x88\x02\x06\x02\xd4\x02\x06\x02\xe0\x02\x06\x02\x81\x02\x08\x02\x84\x02\x08\x02\x80\x02\x07\x02\xa0\x02\x06\x02\x86\x02\x07\x02\x86\x02\x07\x02\xb8\x02\x06\x02\x80\x02\x01\x02\x80\x02\x02\x02\xb8\x02\x06\x02\x80\x02\x03\x02\xa4\x02\x06\x02\x80\x02\x03\x02\xa4\x02\x06\x02\xb7\x02\x08\x02\xef\x02\t\x02\xbe\x02\x07\x02\x9a\x02\x07\x02\xb6\x02\x07\x82\x80\x02\x01\x02\xb4\x02\x06\x02\xe8\x02\x05\x02\x80\x02\x01\x02\xb8\x02\x07\x02\x8a\x02\x07\x02\x8c\x02\x07\x02\xb2\x02\x07\x02\x80\x02\x07\x02\x8c\x02\x06\x02\xb1\x02\t\x03\x9b@\x02\n\x02\xbc\x02\x06\x02\xe0\x02\x04\x02\x88\x02\x05\x02\x90\x02\x05\x02\xb2\x02\x07\x02\x9c\x02\x06\x02\xf0\x02\x04\x02\xf0\x02\x06\x02\xe4\x02\x06\x02\x84\x02\x06\x02\x80\x02\x08\x02\x80\x02\x07\x02\xe0\x02\x05\x02\xf0\x02\x07\x02\x84\x02\x07\x02\xf8\x02\x06\x02\xa4\x02\x06\x02\xb0\x02\x04\x02\x90\x02\x06\x02\x9c\x02\x06\x02\xc8\x02\x05\x02\xc0\x02\x06\x02\x94\x02\x06\x02\xe0\x02\x04\x02\xf0\x02\x07\x02\xd6\x02\x07\x02\xa0\x02\x03\x02\xac\x02\x07\x02\xd8\x02\x06\x02\x88\x02\x05\x02\xf0\x02\x05\x02\x9c\x02\x07\x02\xa0\x02\x03\x02\x88\x02\x06\x02\xe8\x02\x06\x02\xa0\x02\x03\x02\xd4\x02\x06\x02\xd8\x02\x06\x02\xda\x02\x07\x02\x9c\x02\x07\x02\xa8\x02\x06\x02\xa0\x02\x04\x02\xf8\x02\x06\x02\x80\x02\x06\x02\xb8\x02\x06\x02\x9c\x02\x06\x02\xd0\x02\x05\x02\xec\x02\x06\x02\x80\x02\x07\x02\xdc\x02\x06\x02\xa8\x02\x06\x02\xca\x02\x07\x02\xc0\x02\x05\x02\xa0\x02\x06\x02\x92\x02\x07\x00\x02\x94\x02\x07\x02\xc0\x02\x05\x02\xa0\x02\x03\x02\xc0\x02\x05\x02\xc8\x02\x05\x02\xae\x02\x07\x02\x9c\x02\x06\x02\x8c\x02\x07\x02\xe4\x02\x06\x02\x86\x02\x07\x02\xd8\x02\x06\x02\xa0\x02\x04\x02\xf4\x02\x06\x02\xf0\x02\x06\x02\xd8\x02\x05\x02\xa8\x02\x05\x02\xc0\x02\x05\x02\x80\x02\x01\x02\xe0\x02\x05\x02\x9e\x02\x07\x02\xc4\x02\x06\x02\xf0\x02\x05\x02\xf4\x02\x06\x02\xc4\x02\x06\x02\x84\x02\x06\x02\xf0\x02\x05\x02\xe0\x02\x05\x02\xa6\x02\x07\x02\xb8\x02\x06\x02\xa4\x02\x06\x02\x86\x02\x08\x02\x80\x02\x07\x02\xd8\x02\x06\x02\x80\x02\x01\x02\x9c\x02\x07\x02\xa0\x02\x04\x02\x80\x02\x03\x02\xc0\x02\x03\x02\xc4\x02\x07\x02\xaa\x02\x07\x82\x80\x02\x01\x02\xf0\x02\x05\x02\xdc\x02\x06\x02\x90\x02\x08\x02\xf8\x02\x05\x02\xd0\x02\x05\x02\xc0\x02\x05\x02\xa4\x02\x07\x02\x80\x02\x05\x02\xb8\x02\x06\x02\x84\x02\x06\x02\x84\x02\x06\x02\x94\x02\x07\x02\xa8\x02\x06\x02\xb0\x02\x04\x02\x80\x02\x03\x02\x03\x02\x01\x02\x10\x02\x0f\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x01\x02\x10\x02\x0f\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x04\xb3\xafJ\x02\x06\x00\x034\x01\x03E\x01\x03\xd4\x05\x03\xe5\x05\x00\x02\x01\x02\x03\x02\x01\x02\x11\x02\x11\x00\x02\xf0\x02\x06\x02\xc0\x02\x05\x82\x80\x02\x02\x02\x8c\x02\x06\x02\x88\x02\x06\x02\x80\x02\x02\x02\xa4\x02\x06\x02\x8c\x02\x06\x02\xf0\x02\x06\x02\xf2\x02\x07\x02\x80\x02\x07\x02\x90\x02\x06\x02\x80\x02\x02\x02\xe8\x02\x05\x02\xc0\x02\x05\x02\x84\x02\x06\x02\xd0\x02\x04\x02\xa8\x02\x05\x02\xaa\x02\x07\x02\x84\x02\x07\x02\xc4\x02\x06\x02\xa4\x02\x07\x02\xf0\x02\x05\x02\xb4\x02\x06\x02\xd0\x02\x05\x02\xb4\x02\x06\x02\x8c\x02\x06\x02\xa4\x02\x07\x02\xd0\x02\x05\x02\xa8\x02\x05\x02\xbc\x02\x06\x02\x88\x02\x05\x02\x8e\x02\x07\x02\xa8\x02\x05\x02\x84\x02\x06\x02\x84\x02\x06\x02\x82\x02\x07\x02\x82\x02\x07\x02\x80\x02\x03\x02\xc8\x02\x05\x02\x80\x02\x01\x02\x82\x02\x07\x02\x92\x02\x07\x02\xd0\x02\x05\x02\x8c\x02\x06\x02\x80\x02\x04\x02\x90\x02\x04\x02\xf4\x02\x06\x02\xc4\x02\x06\x02\xe0\x02\x05\x02\xb0\x02\x04\x02\xf0\x02\x05\x02\x82\x02\x07\x02\x98\x02\x06\x02\xcc\x02\x06\x02\xd0\x02\x05\x02\x80\x02\x03\x02\x98\x02\x06\x02\xb8\x02\x05\x02\xf0\x02\x04\x02\xa0\x02\x03\x02\xc0\x02\x05\x02\x8c\x02\x06\x02\xc0\x02\x02\x02\x8c\x02\x07\x02\xa8\x02\x07\x02\xc0\x02\x02\x02\xd8\x02\x06\x02\xf8\x02\x05\x02\xf8\x02\x06\x02\xe4\x02\x06\x02\x80\x02\x03\x02\xc0\x02\x02\x02\x88\x02\x05\x02\x80\x02\x04\x02\xe0\x02\x03\x02\x80\x02\x03\x02\xa8\x02\x05\x02\xc8\x02\x05\x00\x02\x88\x02\x06\x02\xd0\x02\x07\x02\xb0\x02\x05\x02\xd8\x02\x05\x02\xb4\x02\x06\x02\x98\x02\x05\x02\x80\x02\x03\x82\x80\x02\x01\x02\xb0\x02\x06\x02\xa8\x02\x05\x02\xe0\x02\x03\x02\xe0\x02\x05\x02\xe8\x02\x05\x02\xe0\x02\x06\x02\xc0\x02\x03\x02\x80\x02\x05\x02\x9c\x02\x06\x02\xf0\x02\x04\x02\x92\x02\x08\x02\xe0\x02\x07\x02\xf8\x02\x06\x02\xe4\x02\x06\x02\x8c\x02\x06\x02\x88\x02\x06\x02\xd0\x02\x06\x02\xc0\x02\x05\x02\x84\x02\x06\x02\x80\x02\x02\x02\xc0\x02\x06\x02\x80\x02\x03\x02\xc0\x02\x02\x02\x9e\x02\x07\x02\xb0\x02\x04\x02\xc0\x02\x05\x02\xc0\x02\x06\x02\xa0\x02\x06\x02\x80\x02\x05\x02\xc8\x02\x05\x02\x90\x02\x07\x82\x80\x02\x02\x82\xc0\x02\x02\x82\xc0\x02\x03\x02\xd0\x02\x05\x02\xf0\x02\x06\x02\xd0\x02\x07\x02\xac\x02\x07\x02\xb0\x02\x06\x02\x86\x02\x07\x02\xa4\x02\x07\x02\x8e\x02\x07\x02\xd4\x02\x06\x02\xba\x02\x07\x02\xa0\x02\x05\x02\x88\x02\x06\x02\xb0\x02\x05\x02\xb6\x02\x07\x02\x90\x02\x06\x02\xb8\x02\x05\x02\xf0\x02\x04\x02\xa0\x02\x04\x02\xe4\x02\x06\x02\xc0\x02\x03\x02\x90\x02\x04\x02\xdc\x02\x06\x02\xac\x02\x07\x02\xdc\x02\x06\x02\xc0\x02\x04\x02\xf0\x02\x06\x02\xe0\x02\x05\x02\xdc\x02\x06\x02\xc8\x02\x05\x02\xc0\x02\x04\x02\xb8\x02\x06\x02\xc0\x02\x06\x02\x80\x02\x02\x02\x80\x02\x02\x02\x9c\x02\x06\x02\xf0\x02\x04\x02\xc0\x02\x03\x02\xf0\x02\x05\x02\x80\x02\x04\x02\x80\x02\x02\x02\xb0\x02\x04\x02\xe8\x02\x05\x02\xf8\x02\x05\x02\x90\x02\x05\x02\xf8\x02\x05\x02\xaa\x02\x07\x02\x88\x02\x05\x02\xa8\x02\x06\x02\xd8\x02\x05\x02\xe0\x02\x03\x02\xa4\x02\x06\x02\x80\x02\x06\x02\xf4\x02\x06\x02\xdc\x02\x07\x02\xb6\x02\x07\x02\xe8\x02\x05\x00\x02\x88\x02\x05\x02\x85\x02\x08\x02\x88\x02\x06\x02\xf8\x02\x06\x02\x94\x02\x06\x02\xa0\x02\x05\x02\xa0\x02\x04\x02\xf0\x02\x05\x02\x9a\x02\x07\x02\xc6\x02\x07\x02\xf0\x02\x05\x02\xc0\x02\x06\x02\xcc\x02\x06\x02\xb0\x02\x06\x02\x92\x02\x07\x02\x90\x02\x05\x02\xc0\x02\x04\x02\x9e\x02\x07\x02\x86\x02\x07\x02\xb0\x02\x04\x02\x98\x02\x05\x02\xf8\x02\x05\x02\xd0\x02\x05\x02\xc0\x02\x05\x02\xc0\x02\x02\x02\x9e\x02\x07\x02\x90\x02\x04\x02\xc4\x02\x06\x02\x8c\x02\x06\x02\xc8\x02\x06\x02\xb9\x02\x08\x02\x98\x02\x05\x02\xf0\x02\x06\x02\x84\x02\x06\x02\x80\x02\x06\x02\x94\x02\x06\x02\xbc\x02\x06\x02\x8c\x02\x06\x02\xe0\x02\x05\x02\xd8\x02\x05\x02\xc0\x02\x06\x02\x84\x02\x06\x02\x90\x02\x06\x02\xb0\x02\x04\x02\x84\x02\x06\x02\x84\x02\x07\x02\x98\x02\x07\x02\xee\x02\x07\x02\xc4\x02\x07\x02\xf8\x02\x05\x02\x84\x02\x06\x02\x98\x02\x05\x02\xbc\x02\x06\x02\x98\x02\x06\x02\x80\x02\x04\x02\xf0\x02\x05\x02\xa4\x02\x06\x02\xd8\x02\x05\x02\xa8\x02\x05\x02\x80\x02\x06\x02\xac\x02\x06\x02\xd0\x02\x06\x02\x9d\x02\x08\x02\xdc\x02\x06\x02\x94\x02\x06\x02\x90\x02\x06\x02\xa0\x02\x04\x02\xd8\x02\x05\x02\xb2\x02\x07\x02\x80\x02\x06\x02\x84\x02\x07\x02\x80\x02\x03\x02\xc0\x02\x02\x02\xe0\x02\x07\x02\xdc\x02\x06\x02\xb0\x02\x06\x02\x88\x02\x06\x02\xd8\x02\x07\x02\x84\x02\x06\x02\xc0\x02\x05\x02\xc0\x02\x04\x02\xea\x02\x07\x02\xa0\x02\x03\x82\x80\x02\x01\x02\xe4\x02\x06\x02\xc0\x02\x07\x02\x80\x02\x05\x02\xd8\x02\x06\x02\xa8\x02\x05\x82\x80\x02\x03\x02\xf0\x02\x06\x02\xd0\x02\x06\x02\x8c\x02\x06\x02\xda\x02\x07\x02\xd4\x02\x06\x02\xd4\x02\x06\x02\x84\x02\x06\x02\x88\x02\x06\x02\xe8\x02\x05\x02\x88\x02\x06\x02\xd8\x02\x05\x02\x84\x02\x06\x02\xe0\x02\x05\x02\x84\x02\x08\x02\x84\x02\x06\x02\x80\x02\x02\x02\x90\x02\x05\x02\xa0\x02\x05\x02\xe0\x02\x05\x02\x03\x02\x01\x02\x11\x02\x11\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x01\x02\x11\x02\x11\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x04\x91\xf3\x83\x02\x06\x00\x03\xa4\x02\x03\xb1\x02\x03h\x06\x03w\x06\x00\x02\x01\x02\x03\x02\x01\x02\x0f\x02\r\x02\x88\x02\x06\x02\x90\x02\x05\x02\xa0\x02\x03\x02\xf0\x02\x06\x02\xaa\x02\x07\x02\xe0\x02\x06\x02\xb0\x02\x07\x02\xe0\x02\x04\x02\xac\x02\x06\x02\xb4\x02\x06\x02\xd0\x02\x06\x02\xa8\x02\x06\x02\x8a\x02\x07\x02\xba\x02\x07\x02\xb8\x02\x05\x02\x80\x02\x02\x02\xf8\x02\x05\x02\xf0\x02\x06\x02\xf0\x02\x05\x02\xf8\x02\x06\x02\xa0\x02\x07\x02\x8c\x02\x06\x02\x80\x02\x06\x02\x80\x02\x07\x82\xa0\x02\x03\x02\x80\x02\x01\x02\x80\x02\x05\x02\x98\x02\x07\x02\xf0\x02\x05\x02\xc0\x02\x07\x02\xd4\x02\x06\x02\xe0\x02\x07\x02\x90\x02\x04\x02\x98\x02\x06\x02\xd8\x02\x06\x02\xf4\x02\x06\x02\xe8\x02\x06\x02\xd0\x02\x05\x02\xb0\x02\x06\x02\xa8\x02\x05\x02\x88\x02\x06\x02\xac\x02\x06\x02\xf4\x02\x06\x02\x84\x02\x06\x02\x88\x02\x07\x02\x98\x02\x06\x02\x96\x02\x08\x02\xae\x02\x07\x02\xfc\x02\x06\x02\xa8\x02\x06\x02\xc8\x02\x06\x02\xd8\x02\x06\x02\x84\x02\x07\x02\x96\x02\x07\x02\x80\x02\x06\x02\xd8\x02\x05\x02\xf0\x02\x06\x02\x80\x02\x01\x02\xf8\x02\x05\x02\x80\x02\x03\x02\xe2\x02\x07\x02\xf8\x02\x07\x02\x9c\x02\x06\x02\x9c\x02\x06\x02\x80\x02\x01\x02\x94\x02\x07\x02\xc0\x02\x04\x02\xa0\x02\x07\x02\xdc\x02\x06\x02\xec\x02\x06\x02\x94\x02\x06\x02\x94\x02\x07\x02\x94\x02\x06\x02\xc8\x02\x05\x02\x80\x02\x01\x02\xc0\x02\x03\x02\xa6\x02\x07\x02\x8c\x02\x06\x02\xf0\x02\x05\x02\x88\x02\x07\x02\xa0\x02\x05\x02\xf0\x02\x06\x02\xd8\x02\x06\x02\x89\x02\x08\x03\xba\xc0\x02\n\x02\xd0\x02\x06\x02\x90\x02\x06\x02\xa0\x02\x05\x02\xac\x02\x07\x02\xa0\x02\x03\x00\x02\x84\x02\x07\x02\xe0\x02\x05\x02\xe0\x02\x03\x02\xe8\x02\x05\x02\xe0\x02\x05\x03\xab\x80\x02\t\x02\xe1\x02\n\x02\xec\x02\x06\x02\x80\x02\x02\x02\xe4\x02\x07\x02\x8c\x02\x06\x02\xd4\x02\x06\x00\x02\x90\x02\x07\x02\xd4\x02\x06\x02\x98\x02\x05\x02\x98\x02\x05\x02\x90\x02\x07\x02\xa2\x02\x07\x02\xcf\x02\x08\x02\xf0\x02\x05\x02\x80\x02\x01\x02\xec\x02\x06\x02\x80\x02\x07\x02\x84\x02\x06\x02\xe4\x02\x06\x02\xe0\x02\x03\x02\x88\x02\x07\x02\xa0\x02\x06\x02\xae\x02\x07\x02\xe8\x02\x05\x02\x84\x02\x07\x02\x94\x02\x06\x02\xb0\x02\x06\x02\x80\x02\x03\x02\xf0\x02\x05\x02\xa0\x02\x07\x02\xd4\x02\x07\x02\xe0\x02\x05\x02\xd0\x02\x04\x02\xe0\x02\x06\x02\xb4\x02\x06\x02\xc0\x02\x03\x02\x80\x02\x02\x02\xdc\x02\x06\x02\xa8\x02\x05\x02\xd8\x02\x05\x02\xe8\x02\x05\x02\xb6\x02\x07\x02\x98\x02\x05\x02\xc0\x02\x05\x02\xc8\x02\x06\x02\xc6\x02\x07\x02\xdc\x02\x06\x02\xd0\x02\x06\x02\xd0\x02\x06\x02\x84\x02\x06\x02\xf8\x02\x05\x02\x80\x02\x06\x02\xf0\x02\x05\x02\xe0\x02\x04\x02\x80\x02\x06\x02\xb0\x02\x05\x02\xdc\x02\x06\x02\x84\x02\x07\x02\xc0\x02\x02\x02\xa8\x02\x06\x02\x90\x02\x05\x02\xf0\x02\x05\x02\xac\x02\x06\x02\xbc\x02\x07\x02\xac\x02\x07\x02\xd0\x02\x05\x02\xd4\x02\x07\x02\xaa\x02\x07\x02\xac\x02\x06\x02\x84\x02\x06\x02\xf8\x02\x05\x02\xb0\x02\x04\x02\x88\x02\x06\x02\x84\x02\x06\x02\x88\x02\x07\x02\x9c\x02\x06\x02\xa0\x02\x03\x02\xb4\x02\x07\x02\xd0\x02\x06\x02\xa0\x02\x06\x02\x94\x02\x06\x02\x90\x02\x05\x02\xb0\x02\x06\x02\xf0\x02\x06\x02\xc0\x02\x04\x82\x80\x02\x02\x02\xe0\x02\x03\x02\xc0\x02\x02\x02\xb4\x02\x07\x02\xdc\x02\x06\x02\xc0\x02\x05\x02\xfc\x02\x06\x02\xd4\x02\x06\x02\xb0\x02\x06\x00\x82\x80\x02\x01\x02\x80\x02\x05\x02\x03\x02\x01\x02\x0f\x02\r\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x05\x02\x05\x02\x05\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x13\x02\x03\x02\x01\x02\x0f\x02\r\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06\x04\xaf\x03>\x02\x06' tb."""
5,378.235294
91,236
0.747971
22,307
91,430
3.065092
0.006545
0.204203
0.231407
0.232372
0.99083
0.979202
0.973732
0.838547
0.83005
0.735861
0
0.420099
0.000252
91,430
16
91,237
5,714.375
0.327907
0
0
0
0
0.066667
0.999114
0.998513
0
1
0
0
0
1
0
false
0
0.066667
0
0.066667
0.066667
0
0
0
null
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
1
1
0
0
0
0
0
1
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
16
fe1a8e41b9a6dd96ffc12066b0bee8e9c0b3b6b6
438
py
Python
fontslice/__init__.py
Arahabica/font-subset-css
393b9a452af49c2168c7a9f84983e4170937ea67
[ "MIT" ]
null
null
null
fontslice/__init__.py
Arahabica/font-subset-css
393b9a452af49c2168c7a9f84983e4170937ea67
[ "MIT" ]
null
null
null
fontslice/__init__.py
Arahabica/font-subset-css
393b9a452af49c2168c7a9f84983e4170937ea67
[ "MIT" ]
null
null
null
import sys from .main import ( _chunk_list, _get_unicode_range_hash, convert_unicode_range, get_120_unicode_ranges, get_unicode_ranges_from_text, generate_css, main, ) __all__ = [ "_chunk_list", "_get_unicode_range_hash", "convert_unicode_range", "get_120_unicode_ranges", "get_unicode_ranges_from_text", "generate_css", "main", ] if __name__ == "__main__": sys.exit(main())
17.52
35
0.687215
54
438
4.759259
0.37037
0.155642
0.093385
0.14786
0.817121
0.817121
0.817121
0.817121
0.817121
0.817121
0
0.017391
0.212329
438
24
36
18.25
0.727536
0
0
0
1
0
0.294521
0.214612
0
0
0
0
0
1
0
false
0
0.095238
0
0.095238
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
a3ac4915a74b531c1dc0b8afb60e2d05592076cd
61,910
py
Python
SysPy_ver/funcs/_var_declaration.py
evlog/SysPy
d1ee6e2ca60492d20339c0016a9c24d027170553
[ "CNRI-Python" ]
4
2017-12-28T14:00:16.000Z
2021-01-21T08:53:14.000Z
SysPy_ver/funcs/_var_declaration.py
evlog/SysPy
d1ee6e2ca60492d20339c0016a9c24d027170553
[ "CNRI-Python" ]
1
2018-07-31T16:27:00.000Z
2018-07-31T16:27:37.000Z
SysPy_ver/funcs/_var_declaration.py
evlog/SysPy
d1ee6e2ca60492d20339c0016a9c24d027170553
[ "CNRI-Python" ]
2
2015-10-12T09:13:13.000Z
2020-01-06T12:22:55.000Z
""" ***************************************************************************** * H E A D E R I N F O R M A T I O N * * ***************************************************************************** Project Name: SysPy (System Python) http://cgi.di.uoa.gr/~evlog/syspy.html File Name: _var_declaration.py Created by: Evangelos Logaras ***************************************************************************** * C O P Y R I G H T N O T I C E * * ***************************************************************************** This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; version 2.1 of the License, a copy of which is available from http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***************************************************************************** * D E S C R I P T I O N * * ***************************************************************************** Variable declaration when a variable assignment is tracked. """ from pdb import * def var_declaration(assign_lines_count, token_struct, assign_lines, signals, process_vars): """ FUNCTION: var_declaration(a int, b(), c[], d[], e[]) a: assign lines counter integer b: token's tupple c: list containing the VHDL code d: list containing the signal statements e: list containing Variable declaration when a variable assignment is tracked. """ # Python's variable declerations #---------------------------------------------------------------------------------------------------------------------------------- count0 = 0 count1 = 0 process_vars_d = [] vars0 = [] var0 = '' var1 = '' #---------------------------------------------------------------------------------------------------------------------------------- print("process_vars:", process_vars) # Erasing duplicated registrations in "process_vars[]" #---------------------------------------------------------------------------------------------------------------------------------- for i in range(len(process_vars)): vars0 = [] #flag_process_vars = 0 if ((process_vars[i][0] == "name_left") or (process_vars[i][0] == "name_right")): var0 = process_vars[i][1].replace('=', '') var0 = var0.replace('! ', '') var0 = var0.replace('>', '') var0 = var0.replace('<', '') var0 = var0.replace(' ', '') vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_item"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_item_var"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var2"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var02"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var12"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) flag_process_vars = 0 for n in range(0, len(vars0)): for j in range(len(process_vars_d)): if ((process_vars_d[j][0] == "name_left") or (process_vars_d[j][0] == "name_right")): var1 = process_vars_d[j][1].replace('=', '') var1 = var1.replace('! ', '') var1 = var1.replace('>', '') var1 = var1.replace('<', '') var1 = var1.replace(' ', '') elif (process_vars_d[j][0] == "name_right_binary_slice"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_binary_slice_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_binary_slice_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_binary_slice_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_item"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_item_var"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_array_binary_item_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var2"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var02"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var12"): var1 = process_vars_d[j][1] if (vars0[n] == var1): if (n == 0): flag_process_vars += 1 if (n == 1): flag_process_vars += 2 if (n == 2): flag_process_vars += 4 if ((process_vars[i][0] == "name_left") or (process_vars[i][0] == "name_right")): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_binary_slice"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_binary_slice_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_binary_slice_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][0]]) elif (flag_process_vars == 4): pass elif (process_vars[i][0] == "name_right_binary_slice_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_item"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_item_var"): if (flag_process_vars == 0): process_vars_d.append(["name_right_item_var", process_vars[i][1][0]]) process_vars_d.append(["name_right_item_var", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_item_var", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_item_var", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_array_binary_item_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_array_binary_slice_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var2"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var02"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var12"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass process_vars = process_vars_d #---------------------------------------------------------------------------------------------------------------------------------- j = assign_lines_count for m in range(0, len(process_vars)): if ((process_vars[m][0] == "name_left") or (process_vars[m][0] == "name_right")): t = process_vars[m][1].replace('=', '') t = t.replace(' ', '') elif (process_vars[m][0] == "name_right_binary_slice"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_binary_slice_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_binary_slice_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_binary_slice_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_item"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_item_var"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_array_binary_item_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_array_binary_slice_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var2"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var02"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var12"): t = process_vars[m][1] for i in range (0, len(signals)): if (t == signals[i]['N']): if (signals[i]['D'] == 'v'): L = signals[i]['L'].__doc__ n = signals[i]['N'].__doc__ if (m == 0): sp = '' while 1: if (assign_lines[j][0] == "process_sens_list"): assign_lines[j][0] = assign_lines[j][0] + "_var" for k in range(0, assign_lines[j][4]): sp = sp + ' ' assign_lines[j][1] = assign_lines[j][1].replace("begin", '') assign_lines[j][1] = assign_lines[j][1] + "\n\n" + sp + "-- Variables" assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "-------------------------------------------------------------------" if (signals[i]['T'] == 'b'): if (L.find("int") == 0): if (n.find("list") == 0): for k in range(len(signals_intr[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (L.find("list") == 0): if (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals_intr[i]['L'][0] > signals_intr[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" break elif (signals[i]['T'] == "int"): if (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals_intr[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" break elif (signals[i]['T'] == "arrb"): if (n.find("str") == 0): if (signals[i]['L'][1][0] > signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " downto " + str(signals_intr[i]['L'][1][1]) + ");\n" elif (signals[i]['L'][1][0] < signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " to " + str(signals_intr[i]['L'][1][1]) + ");\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": \"" + signals[i]['V'] + "\";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\"};\n" elif (k != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\", " count0 = count0 + 1 break elif (signals[i]['T'] == "arri"): if (n.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of integer range " + str(signals[i]['L'][1][0]) + " to " + str(signals[i]['L'][1][1]) + ";\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": " + str(signals[i]['V']) + ";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": {" for k in range(0, (signals_intr[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + "};\n" elif (j != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " count0 = count0 + 1 break elif (signals[i]['T'] == 's'): v = signals[i]['V'].__doc__ assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type state_type" + str(count1) + " is (" if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'] + ");\n" elif (v.find("list") == 0): for k in range(len(signals[i]['V'])): if (k == (len(signals[i]['V']) - 1)): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "signal " + args[i]['N'] + ": state_type" + str(count1) + ";\n" count1 = count1 + 1 break elif (j == 0): break j = j - 1 elif (m != 0): if (signals[i]['T'] == 'b'): if (L.find("int") == 0): if (n.find("list") == 0): for k in range(len(signals_intr[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (L.find("list") == 0): if (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals_intr[i]['L'][0] > signals_intr[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (signals[i]['T'] == "int"): if (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals_intr[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (signals[i]['T'] == "arrb"): if (n.find("str") == 0): if (signals[i]['L'][1][0] > signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals[i]['L'][1][0]) + " downto " + str(signals[i]['L'][1][1]) + ");\n" elif (signals[i]['L'][1][0] < signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " to " + str(signals_intr[i]['L'][1][1]) + ");\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": \"" + signals[i]['V'] + "\";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\"};\n" elif (k != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\", " count0 = count0 + 1 elif (signals[i]['T'] == "arri"): if (n.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of integer range " + str(signals[i]['L'][1][0]) + " to " + str(signals[i]['L'][1][1]) + ";\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": " + str(signals[i]['V']) + ";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + str(signals[i]['V'][k]) + "};\n" elif (j != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + str(signals[i]['V'][k]) + ", " count0 = count0 + 1 elif (signals[i]['T'] == 's'): v = signals[i]['V'].__doc__ assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type state_typev" + str(count1) + " is (" if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'] + ");\n" elif (v.find("list") == 0): for k in range(len(signals[i]['V'])): if (k == (len(signals[i]['V']) - 1)): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "signal " + args[i]['N'] + ": state_typev" + str(count1) + ";\n" count1 = count1 + 1 if (len(process_vars) > 0): assign_lines[j][1] = assign_lines[j][1] + sp + "-------------------------------------------------------------------" assign_lines[j][1] = assign_lines[j][1] + "\n\n" + sp + "begin\n\n"
85.866852
356
0.37351
6,064
61,910
3.53628
0.033476
0.223139
0.095691
0.08851
0.931962
0.926273
0.917413
0.910651
0.905055
0.901418
0
0.037814
0.471184
61,910
720
357
85.986111
0.617184
0.049992
0
0.7744
0
0
0.132626
0.084013
0
0
0
0
0
1
0.0016
false
0.0208
0.0016
0
0.0032
0.0016
0
0
0
null
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
a3f5451025cc5163c68a3eea15dfa30712bf9362
17,929
py
Python
benchmark/my_argparser.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
2
2019-03-20T09:05:02.000Z
2019-03-20T15:23:44.000Z
benchmark/my_argparser.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
null
null
null
benchmark/my_argparser.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals import argparse def parse_args_tolerance(): parser = argparse.ArgumentParser(description='just for tolerance') parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") args, _ = parser.parse_known_args() return args.tolerance def GB_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--n-estimators', help='number of estimators', default=100, type=int) parser.add_argument('--max-depth', help='maximum depth of trees', default=3, type=int) parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-1, type=float) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') parser.add_argument('--skip-minuit', help='flag to skip minuit NLL minization', action='store_true') args = parser.parse_args() return args def REG_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-4, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.5, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.9, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=20, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def INFERNO_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--temperature', help='control initial softmax steepness', default=1.0, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.5, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.9, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--n-bins', help='number of output bins', default=10, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=20, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def NET_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.9, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.999, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=1000, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def TP_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--trade-off', help='trade-off between classic loss and adversarial loss', default=1.0, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.9, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.999, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=1000, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def PIVOT_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--trade-off', help='trade-off between classic loss and adversarial loss', default=1.0, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.9, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.999, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=1000, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) parser.add_argument('--n-net-pre-training-steps', help='number of update steps for pretraining the classifier', default=1000, type=int) parser.add_argument('--n-adv-pre-training-steps', help='number of update steps for pretraining the adversarial', default=1000, type=int) parser.add_argument('--n-recovery-steps', help='number of update steps for adversarial recovery', default=1, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def FF_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--feature-id', help='feature index to filter on', default=0, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') parser.add_argument('--skip-minuit', help='flag to skip minuit NLL minization', action='store_true') args = parser.parse_args() return args
46.81201
116
0.593787
2,180
17,929
4.768349
0.077064
0.105628
0.199519
0.039827
0.945936
0.942953
0.942857
0.939875
0.931217
0.931217
0
0.017338
0.269731
17,929
382
117
46.934555
0.776598
0.012048
0
0.88968
0
0
0.329039
0.002938
0
0
0
0
0
1
0.02847
false
0
0.017794
0
0.074733
0.003559
0
0
0
null
0
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
a3fc78d36ccfb5728f04880a3739b99e0d64d7a7
91,209
py
Python
angr/procedures/definitions/win32_wsmsvc.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
angr/procedures/definitions/win32_wsmsvc.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
angr/procedures/definitions/win32_wsmsvc.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
# pylint:disable=line-too-long import logging from ...sim_type import SimTypeFunction, SimTypeShort, SimTypeInt, SimTypeLong, SimTypeLongLong, SimTypeDouble, SimTypeFloat, SimTypePointer, SimTypeChar, SimStruct, SimTypeFixedSizeArray, SimTypeBottom, SimUnion, SimTypeBool from ...calling_conventions import SimCCStdcall, SimCCMicrosoftAMD64 from .. import SIM_PROCEDURES as P from . import SimLibrary _l = logging.getLogger(name=__name__) lib = SimLibrary() lib.set_default_cc('X86', SimCCStdcall) lib.set_default_cc('AMD64', SimCCMicrosoftAMD64) lib.set_library_names("wsmsvc.dll") prototypes = \ { # 'WSManInitialize': SimTypeFunction([SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_API", pack=False, align=None), offset=0), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["flags", "apiHandle"]), # 'WSManDeinitialize': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_API", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32")], SimTypeInt(signed=False, label="UInt32"), arg_names=["apiHandle", "flags"]), # 'WSManGetErrorMessage': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_API", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), label="LPArray", offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["apiHandle", "flags", "languageCode", "errorCode", "messageLength", "message", "messageLengthUsed"]), # 'WSManCreateSession': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_API", pack=False, align=None), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"authenticationMechanism": SimTypeInt(signed=False, label="UInt32"), "Anonymous": SimUnion({"userAccount": SimStruct({"username": SimTypePointer(SimTypeChar(label="Char"), offset=0), "password": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_USERNAME_PASSWORD_CREDS", pack=False, align=None), "certificateThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="<anon>", label="None")}, name="WSMAN_AUTHENTICATION_CREDENTIALS", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"accessType": SimTypeInt(signed=False, label="UInt32"), "authenticationCredentials": SimStruct({"authenticationMechanism": SimTypeInt(signed=False, label="UInt32"), "Anonymous": SimUnion({"userAccount": SimStruct({"username": SimTypePointer(SimTypeChar(label="Char"), offset=0), "password": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_USERNAME_PASSWORD_CREDS", pack=False, align=None), "certificateThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="<anon>", label="None")}, name="WSMAN_AUTHENTICATION_CREDENTIALS", pack=False, align=None)}, name="WSMAN_PROXY_INFO", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["apiHandle", "connection", "flags", "serverAuthenticationCredentials", "proxyInfo", "session"]), # 'WSManCloseSession': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32")], SimTypeInt(signed=False, label="UInt32"), arg_names=["session", "flags"]), # 'WSManSetSessionOption': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="WSManSessionOption"), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["session", "option", "data"]), # 'WSManGetSessionOptionAsDword': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="WSManSessionOption"), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["session", "option", "value"]), # 'WSManGetSessionOptionAsString': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="WSManSessionOption"), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), label="LPArray", offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["session", "option", "stringLength", "string", "stringLengthUsed"]), # 'WSManCloseOperation': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32")], SimTypeInt(signed=False, label="UInt32"), arg_names=["operationHandle", "flags"]), # 'WSManCreateShell': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"__AnonymousBase_wsman_L665_C48": SimStruct({"inputStreamSet": SimTypePointer(SimStruct({"streamIDsCount": SimTypeInt(signed=False, label="UInt32"), "streamIDs": SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0)}, name="WSMAN_STREAM_ID_SET", pack=False, align=None), offset=0), "outputStreamSet": SimTypePointer(SimStruct({"streamIDsCount": SimTypeInt(signed=False, label="UInt32"), "streamIDs": SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0)}, name="WSMAN_STREAM_ID_SET", pack=False, align=None), offset=0), "idleTimeoutMs": SimTypeInt(signed=False, label="UInt32"), "workingDirectory": SimTypePointer(SimTypeChar(label="Char"), offset=0), "variableSet": SimTypePointer(SimStruct({"varsCount": SimTypeInt(signed=False, label="UInt32"), "vars": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ENVIRONMENT_VARIABLE", pack=False, align=None), offset=0)}, name="WSMAN_ENVIRONMENT_VARIABLE_SET", pack=False, align=None), offset=0)}, name="WSMAN_SHELL_STARTUP_INFO_V10", pack=False, align=None), "name": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SHELL_STARTUP_INFO_V11", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["session", "flags", "resourceUri", "startupInfo", "options", "createXml", "async", "shell"]), # 'WSManRunShellCommand': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"argsCount": SimTypeInt(signed=False, label="UInt32"), "args": SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0)}, name="WSMAN_COMMAND_ARG_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "flags", "commandLine", "args", "options", "async", "command"]), # 'WSManSignalShell': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "command", "flags", "code", "async", "signalOperation"]), # 'WSManReceiveShellOutput': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"streamIDsCount": SimTypeInt(signed=False, label="UInt32"), "streamIDs": SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0)}, name="WSMAN_STREAM_ID_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "command", "flags", "desiredStreamSet", "async", "receiveOperation"]), # 'WSManSendShellInput': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0), SimTypeInt(signed=True, label="Int32"), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "command", "flags", "streamId", "streamData", "endOfStream", "async", "sendOperation"]), # 'WSManCloseCommand': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0)], SimTypeBottom(label="Void"), arg_names=["commandHandle", "flags", "async"]), # 'WSManCloseShell': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0)], SimTypeBottom(label="Void"), arg_names=["shellHandle", "flags", "async"]), # 'WSManCreateShellEx': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"__AnonymousBase_wsman_L665_C48": SimStruct({"inputStreamSet": SimTypePointer(SimStruct({"streamIDsCount": SimTypeInt(signed=False, label="UInt32"), "streamIDs": SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0)}, name="WSMAN_STREAM_ID_SET", pack=False, align=None), offset=0), "outputStreamSet": SimTypePointer(SimStruct({"streamIDsCount": SimTypeInt(signed=False, label="UInt32"), "streamIDs": SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0)}, name="WSMAN_STREAM_ID_SET", pack=False, align=None), offset=0), "idleTimeoutMs": SimTypeInt(signed=False, label="UInt32"), "workingDirectory": SimTypePointer(SimTypeChar(label="Char"), offset=0), "variableSet": SimTypePointer(SimStruct({"varsCount": SimTypeInt(signed=False, label="UInt32"), "vars": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ENVIRONMENT_VARIABLE", pack=False, align=None), offset=0)}, name="WSMAN_ENVIRONMENT_VARIABLE_SET", pack=False, align=None), offset=0)}, name="WSMAN_SHELL_STARTUP_INFO_V10", pack=False, align=None), "name": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SHELL_STARTUP_INFO_V11", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["session", "flags", "resourceUri", "shellId", "startupInfo", "options", "createXml", "async", "shell"]), # 'WSManRunShellCommandEx': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"argsCount": SimTypeInt(signed=False, label="UInt32"), "args": SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0)}, name="WSMAN_COMMAND_ARG_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "flags", "commandId", "commandLine", "args", "options", "async", "command"]), # 'WSManDisconnectShell': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"idleTimeoutMs": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_SHELL_DISCONNECT_INFO", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "flags", "disconnectInfo", "async"]), # 'WSManReconnectShell': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "flags", "async"]), # 'WSManReconnectShellCommand': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0)], SimTypeBottom(label="Void"), arg_names=["commandHandle", "flags", "async"]), # 'WSManConnectShell': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SESSION", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["session", "flags", "resourceUri", "shellID", "options", "connectXml", "async", "shell"]), # 'WSManConnectShellCommand': SimTypeFunction([SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0), SimTypePointer(SimStruct({"operationContext": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "completionFunction": SimTypePointer(SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"code": SimTypeInt(signed=False, label="UInt32"), "errorDetail": SimTypePointer(SimTypeChar(label="Char"), offset=0), "language": SimTypePointer(SimTypeChar(label="Char"), offset=0), "machineName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "pluginName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_ERROR", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_SHELL", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), SimTypePointer(SimStruct({}, name="WSMAN_OPERATION", pack=False, align=None), offset=0), SimTypePointer(SimUnion({"receiveData": SimStruct({"streamId": SimTypePointer(SimTypeChar(label="Char"), offset=0), "streamData": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), "commandState": SimTypePointer(SimTypeChar(label="Char"), offset=0), "exitCode": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_RECEIVE_DATA_RESULT", pack=False, align=None), "connectData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CONNECT_DATA", pack=False, align=None), "createData": SimStruct({"data": SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None)}, name="WSMAN_CREATE_SHELL_DATA", pack=False, align=None)}, name="<anon>", label="None"), offset=0)], SimTypeBottom(label="Void"), arg_names=["operationContext", "flags", "error", "shell", "command", "operationHandle", "data"]), offset=0)}, name="WSMAN_SHELL_ASYNC", pack=False, align=None), offset=0), SimTypePointer(SimTypePointer(SimStruct({}, name="WSMAN_COMMAND", pack=False, align=None), offset=0), offset=0)], SimTypeBottom(label="Void"), arg_names=["shell", "flags", "commandID", "options", "connectXml", "async", "command"]), # 'WSManPluginReportContext': SimTypeFunction([SimTypePointer(SimStruct({"senderDetails": SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), "locale": SimTypePointer(SimTypeChar(label="Char"), offset=0), "resourceUri": SimTypePointer(SimTypeChar(label="Char"), offset=0), "operationInfo": SimTypePointer(SimStruct({"fragment": SimStruct({"path": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FRAGMENT", pack=False, align=None), "filter": SimStruct({"filter": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FILTER", pack=False, align=None), "selectorSet": SimStruct({"numberKeys": SimTypeInt(signed=False, label="UInt32"), "keys": SimTypePointer(SimStruct({"key": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_KEY", pack=False, align=None), offset=0)}, name="WSMAN_SELECTOR_SET", pack=False, align=None), "optionSet": SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), "reserved": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "version": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_OPERATION_INFO", pack=False, align=None), offset=0), "shutdownNotification": SimTypeInt(signed=True, label="Int32"), "shutdownNotificationHandle": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "dataLocale": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_PLUGIN_REQUEST", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeBottom(label="Void"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["requestDetails", "flags", "context"]), # 'WSManPluginReceiveResult': SimTypeFunction([SimTypePointer(SimStruct({"senderDetails": SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), "locale": SimTypePointer(SimTypeChar(label="Char"), offset=0), "resourceUri": SimTypePointer(SimTypeChar(label="Char"), offset=0), "operationInfo": SimTypePointer(SimStruct({"fragment": SimStruct({"path": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FRAGMENT", pack=False, align=None), "filter": SimStruct({"filter": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FILTER", pack=False, align=None), "selectorSet": SimStruct({"numberKeys": SimTypeInt(signed=False, label="UInt32"), "keys": SimTypePointer(SimStruct({"key": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_KEY", pack=False, align=None), offset=0)}, name="WSMAN_SELECTOR_SET", pack=False, align=None), "optionSet": SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), "reserved": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "version": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_OPERATION_INFO", pack=False, align=None), offset=0), "shutdownNotification": SimTypeInt(signed=True, label="Int32"), "shutdownNotificationHandle": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "dataLocale": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_PLUGIN_REQUEST", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="UInt32")], SimTypeInt(signed=False, label="UInt32"), arg_names=["requestDetails", "flags", "stream", "streamResult", "commandState", "exitCode"]), # 'WSManPluginOperationComplete': SimTypeFunction([SimTypePointer(SimStruct({"senderDetails": SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), "locale": SimTypePointer(SimTypeChar(label="Char"), offset=0), "resourceUri": SimTypePointer(SimTypeChar(label="Char"), offset=0), "operationInfo": SimTypePointer(SimStruct({"fragment": SimStruct({"path": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FRAGMENT", pack=False, align=None), "filter": SimStruct({"filter": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FILTER", pack=False, align=None), "selectorSet": SimStruct({"numberKeys": SimTypeInt(signed=False, label="UInt32"), "keys": SimTypePointer(SimStruct({"key": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_KEY", pack=False, align=None), offset=0)}, name="WSMAN_SELECTOR_SET", pack=False, align=None), "optionSet": SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), "reserved": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "version": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_OPERATION_INFO", pack=False, align=None), offset=0), "shutdownNotification": SimTypeInt(signed=True, label="Int32"), "shutdownNotificationHandle": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "dataLocale": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_PLUGIN_REQUEST", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["requestDetails", "flags", "errorCode", "extendedInformation"]), # 'WSManPluginGetOperationParameters': SimTypeFunction([SimTypePointer(SimStruct({"senderDetails": SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), "locale": SimTypePointer(SimTypeChar(label="Char"), offset=0), "resourceUri": SimTypePointer(SimTypeChar(label="Char"), offset=0), "operationInfo": SimTypePointer(SimStruct({"fragment": SimStruct({"path": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FRAGMENT", pack=False, align=None), "filter": SimStruct({"filter": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FILTER", pack=False, align=None), "selectorSet": SimStruct({"numberKeys": SimTypeInt(signed=False, label="UInt32"), "keys": SimTypePointer(SimStruct({"key": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_KEY", pack=False, align=None), offset=0)}, name="WSMAN_SELECTOR_SET", pack=False, align=None), "optionSet": SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), "reserved": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "version": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_OPERATION_INFO", pack=False, align=None), offset=0), "shutdownNotification": SimTypeInt(signed=True, label="Int32"), "shutdownNotificationHandle": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "dataLocale": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_PLUGIN_REQUEST", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["requestDetails", "flags", "data"]), # 'WSManPluginGetConfiguration': SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"type": SimTypeInt(signed=False, label="WSManDataType"), "Anonymous": SimUnion({"text": SimStruct({"bufferLength": SimTypeInt(signed=False, label="UInt32"), "buffer": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_DATA_TEXT", pack=False, align=None), "binaryData": SimStruct({"dataLength": SimTypeInt(signed=False, label="UInt32"), "data": SimTypePointer(SimTypeChar(label="Byte"), offset=0)}, name="WSMAN_DATA_BINARY", pack=False, align=None), "number": SimTypeInt(signed=False, label="UInt32")}, name="<anon>", label="None")}, name="WSMAN_DATA", pack=False, align=None), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["pluginContext", "flags", "data"]), # 'WSManPluginReportCompletion': SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32")], SimTypeInt(signed=False, label="UInt32"), arg_names=["pluginContext", "flags"]), # 'WSManPluginFreeRequestDetails': SimTypeFunction([SimTypePointer(SimStruct({"senderDetails": SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), "locale": SimTypePointer(SimTypeChar(label="Char"), offset=0), "resourceUri": SimTypePointer(SimTypeChar(label="Char"), offset=0), "operationInfo": SimTypePointer(SimStruct({"fragment": SimStruct({"path": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FRAGMENT", pack=False, align=None), "filter": SimStruct({"filter": SimTypePointer(SimTypeChar(label="Char"), offset=0), "dialect": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_FILTER", pack=False, align=None), "selectorSet": SimStruct({"numberKeys": SimTypeInt(signed=False, label="UInt32"), "keys": SimTypePointer(SimStruct({"key": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_KEY", pack=False, align=None), offset=0)}, name="WSMAN_SELECTOR_SET", pack=False, align=None), "optionSet": SimStruct({"optionsCount": SimTypeInt(signed=False, label="UInt32"), "options": SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0), "mustComply": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION", pack=False, align=None), offset=0), "optionsMustUnderstand": SimTypeInt(signed=True, label="Int32")}, name="WSMAN_OPTION_SET", pack=False, align=None), "reserved": SimTypePointer(SimTypeBottom(label="Void"), offset=0), "version": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_OPERATION_INFO", pack=False, align=None), offset=0), "shutdownNotification": SimTypeInt(signed=True, label="Int32"), "shutdownNotificationHandle": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "dataLocale": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_PLUGIN_REQUEST", pack=False, align=None), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["requestDetails"]), # 'WSManPluginAuthzUserComplete': SimTypeFunction([SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), SimTypeInt(signed=True, label="Int32"), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["senderDetails", "flags", "userAuthorizationContext", "impersonationToken", "userIsAdministrator", "errorCode", "extendedErrorInformation"]), # 'WSManPluginAuthzOperationComplete': SimTypeFunction([SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["senderDetails", "flags", "userAuthorizationContext", "errorCode", "extendedErrorInformation"]), # 'WSManPluginAuthzQueryQuotaComplete': SimTypeFunction([SimTypePointer(SimStruct({"senderName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "authenticationMechanism": SimTypePointer(SimTypeChar(label="Char"), offset=0), "certificateDetails": SimTypePointer(SimStruct({"subject": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerName": SimTypePointer(SimTypeChar(label="Char"), offset=0), "issuerThumbprint": SimTypePointer(SimTypeChar(label="Char"), offset=0), "subjectName": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_CERTIFICATE_DETAILS", pack=False, align=None), offset=0), "clientToken": SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), "httpURL": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="WSMAN_SENDER_DETAILS", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"maxAllowedConcurrentShells": SimTypeInt(signed=False, label="UInt32"), "maxAllowedConcurrentOperations": SimTypeInt(signed=False, label="UInt32"), "timeslotSize": SimTypeInt(signed=False, label="UInt32"), "maxAllowedOperationsPerTimeslot": SimTypeInt(signed=False, label="UInt32")}, name="WSMAN_AUTHZ_QUOTA", pack=False, align=None), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=False, label="UInt32"), arg_names=["senderDetails", "flags", "quota", "errorCode", "extendedErrorInformation"]), } lib.set_prototypes(prototypes)
1,036.465909
6,433
0.744082
10,350
91,209
6.486377
0.024155
0.065898
0.081538
0.104835
0.96933
0.965085
0.964072
0.962195
0.961525
0.960214
0
0.01516
0.056913
91,209
87
6,434
1,048.37931
0.765305
0.000307
0
0
0
0
0.250601
0.029666
0
0
0
0
0
1
0
false
0.021277
0.106383
0
0.106383
0.191489
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
4307d8063e06e64e479cf930dd3456b183590f95
98
py
Python
test/regression/features/arithmetic/mult.py
ppelleti/berp
30925288376a6464695341445688be64ac6b2600
[ "BSD-3-Clause" ]
137
2015-02-13T21:03:23.000Z
2021-11-24T03:53:55.000Z
test/regression/features/arithmetic/mult.py
ppelleti/berp
30925288376a6464695341445688be64ac6b2600
[ "BSD-3-Clause" ]
4
2015-04-01T13:49:13.000Z
2019-07-09T19:28:56.000Z
test/regression/features/arithmetic/mult.py
bjpop/berp
30925288376a6464695341445688be64ac6b2600
[ "BSD-3-Clause" ]
8
2015-04-25T03:47:52.000Z
2019-07-27T06:33:56.000Z
print(18 * 1234) print(18 * 1234 * 2) print(0 * 1) print(1 * 0) print(0.0 * 1.0) print(1.0 * 0.0)
14
20
0.561224
23
98
2.391304
0.26087
0.109091
0.4
0
0
0
0
0
0
0
0
0.320513
0.204082
98
6
21
16.333333
0.384615
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0
0
0
1
1
0
0
null
0
1
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
7
43233962745ef76d4115b7625720cc7b8baedc4d
178
py
Python
resource/pypi/cffi-1.9.1/testing/cffi0/snippets/distutils_module/setup.py
hipnusleo/Laserjet
f53e0b740f48f2feb0c0bb285ec6728b313b4ccc
[ "Apache-2.0" ]
null
null
null
resource/pypi/cffi-1.9.1/testing/cffi0/snippets/distutils_module/setup.py
hipnusleo/Laserjet
f53e0b740f48f2feb0c0bb285ec6728b313b4ccc
[ "Apache-2.0" ]
null
null
null
resource/pypi/cffi-1.9.1/testing/cffi0/snippets/distutils_module/setup.py
hipnusleo/Laserjet
f53e0b740f48f2feb0c0bb285ec6728b313b4ccc
[ "Apache-2.0" ]
null
null
null
from distutils.core import setup import snip_basic_verify setup( py_modules=['snip_basic_verify'], ext_modules=[snip_basic_verify.ffi.verifier.get_extension()])
22.25
66
0.758427
24
178
5.25
0.625
0.214286
0.357143
0.349206
0
0
0
0
0
0
0
0
0.146067
178
7
67
25.428571
0.828947
0
0
0
0
0
0.1
0
0
0
0
0
0
1
0
true
0
0.4
0
0.4
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
7
4a4e581c499165152bc4c54e7fe90ad3b4939698
48,733
py
Python
src/ralph/deployment/migrations/0005_auto__add_field_archiveddeployment_service__add_field_archiveddeployme.py
vi4m/ralph
2af767ee23d89be9e6cec0a537350a1ce8840bd1
[ "Apache-2.0" ]
1
2018-09-01T14:14:08.000Z
2018-09-01T14:14:08.000Z
src/ralph/deployment/migrations/0005_auto__add_field_archiveddeployment_service__add_field_archiveddeployme.py
srikanth4372/sample
127b5742ae464d42909a14d71e3c10c241ec3a23
[ "Apache-2.0" ]
1
2019-08-14T10:03:45.000Z
2019-08-14T10:03:45.000Z
src/ralph/deployment/migrations/0005_auto__add_field_archiveddeployment_service__add_field_archiveddeployme.py
srikanth4372/sample
127b5742ae464d42909a14d71e3c10c241ec3a23
[ "Apache-2.0" ]
1
2019-08-14T09:59:42.000Z
2019-08-14T09:59:42.000Z
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'ArchivedDeployment.service' db.add_column('deployment_archiveddeployment', 'service', self.gf('django.db.models.fields.related.ForeignKey')(default=None, to=orm['cmdb.CI'], null=True, on_delete=models.SET_NULL), keep_default=False) # Adding field 'ArchivedDeployment.device_environment' db.add_column('deployment_archiveddeployment', 'device_environment', self.gf('django.db.models.fields.related.ForeignKey')(default=None, to=orm['cmdb.CI'], null=True, on_delete=models.SET_NULL), keep_default=False) # Adding field 'Deployment.service' db.add_column('deployment_deployment', 'service', self.gf('django.db.models.fields.related.ForeignKey')(default=None, to=orm['cmdb.CI'], null=True, on_delete=models.SET_NULL), keep_default=False) # Adding field 'Deployment.device_environment' db.add_column('deployment_deployment', 'device_environment', self.gf('django.db.models.fields.related.ForeignKey')(default=None, to=orm['cmdb.CI'], null=True, on_delete=models.SET_NULL), keep_default=False) def backwards(self, orm): # Deleting field 'ArchivedDeployment.service' db.delete_column('deployment_archiveddeployment', 'service_id') # Deleting field 'ArchivedDeployment.device_environment' db.delete_column('deployment_archiveddeployment', 'device_environment_id') # Deleting field 'Deployment.service' db.delete_column('deployment_deployment', 'service_id') # Deleting field 'Deployment.device_environment' db.delete_column('deployment_deployment', 'device_environment_id') models = { 'account.profile': { 'Meta': {'object_name': 'Profile'}, 'activation_token': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '40', 'blank': 'True'}), 'birth_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'city': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'company': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'cost_center': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'country': ('django.db.models.fields.PositiveIntegerField', [], {'default': '153'}), 'department': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'employee_id': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'gender': ('django.db.models.fields.PositiveIntegerField', [], {'default': '2'}), 'home_page': (u'dj.choices.fields.ChoiceField', [], {'unique': 'False', 'primary_key': 'False', 'db_column': 'None', 'blank': 'False', u'default': '1', 'null': 'False', '_in_south': 'True', 'db_index': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_active': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'manager': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'nick': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '30', 'blank': 'True'}), 'profit_center': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'time_zone': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) }, 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'business.businesssegment': { 'Meta': {'object_name': 'BusinessSegment'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'business.department': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'Department'}, 'icon': (u'dj.choices.fields.ChoiceField', [], {'unique': 'False', 'primary_key': 'False', 'db_column': 'None', 'blank': 'True', u'default': 'None', 'null': 'True', '_in_south': 'True', 'db_index': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'business.profitcenter': { 'Meta': {'object_name': 'ProfitCenter'}, 'description': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'business.venture': { 'Meta': {'ordering': "(u'parent__symbol', u'symbol')", 'unique_together': "((u'parent', u'symbol'),)", 'object_name': 'Venture'}, 'business_segment': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['business.BusinessSegment']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'data_center': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['discovery.DataCenter']", 'null': 'True', 'blank': 'True'}), 'department': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['business.Department']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_infrastructure': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'margin_kind': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['discovery.MarginKind']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'related_name': "u'child_set'", 'null': 'True', 'blank': 'True', 'to': "orm['business.Venture']"}), 'path': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'preboot': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['deployment.Preboot']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'profit_center': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['business.ProfitCenter']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'show_in_ralph': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'symbol': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '32', 'blank': 'True'}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'business.venturerole': { 'Meta': {'ordering': "(u'parent__name', u'name')", 'unique_together': "((u'name', u'venture'),)", 'object_name': 'VentureRole'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'related_name': "u'child_set'", 'null': 'True', 'blank': 'True', 'to': "orm['business.VentureRole']"}), 'path': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'preboot': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['deployment.Preboot']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'venture': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['business.Venture']"}) }, 'cmdb.ci': { 'Meta': {'unique_together': "((u'content_type', u'object_id'),)", 'object_name': 'CI'}, 'added_manually': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'barcode': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '255', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'business_service': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'layers': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cmdb.CILayer']", 'symmetrical': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'owners': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cmdb.CIOwner']", 'through': "orm['cmdb.CIOwnership']", 'symmetrical': 'False'}), 'pci_scope': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'relations': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cmdb.CI']", 'through': "orm['cmdb.CIRelation']", 'symmetrical': 'False'}), 'state': ('django.db.models.fields.IntegerField', [], {'default': '2', 'max_length': '11'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '2', 'max_length': '11'}), 'technical_service': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cmdb.CIType']"}), 'uid': ('django.db.models.fields.CharField', [], {'max_length': '100', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'zabbix_id': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}) }, 'cmdb.cilayer': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'CILayer'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'connected_types': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cmdb.CIType']", 'symmetrical': 'False', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'icon': (u'dj.choices.fields.ChoiceField', [], {'unique': 'False', 'primary_key': 'False', 'db_column': 'None', 'blank': 'True', u'default': 'None', 'null': 'True', '_in_south': 'True', 'db_index': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}) }, 'cmdb.ciowner': { 'Meta': {'object_name': 'CIOwner'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'profile': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['account.Profile']", 'unique': 'True'}) }, 'cmdb.ciownership': { 'Meta': {'object_name': 'CIOwnership'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'ci': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cmdb.CI']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cmdb.CIOwner']"}), 'type': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}) }, 'cmdb.cirelation': { 'Meta': {'unique_together': "((u'parent', u'child', u'type'),)", 'object_name': 'CIRelation'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'child': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'child'", 'to': "orm['cmdb.CI']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'parent'", 'to': "orm['cmdb.CI']"}), 'readonly': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'type': ('django.db.models.fields.IntegerField', [], {'max_length': '11'}) }, 'cmdb.citype': { 'Meta': {'object_name': 'CIType'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'icon_class': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.SlugField', [], {'max_length': '50'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'deployment.archiveddeployment': { 'Meta': {'ordering': "(u'-created',)", 'object_name': 'ArchivedDeployment'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'device': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['discovery.Device']"}), 'device_environment': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['cmdb.CI']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'done_plugins': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'hostname': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip': ('django.db.models.fields.IPAddressField', [], {'max_length': '15'}), 'is_running': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mac': (u'lck.django.common.models.MACAddressField', [], {'unique': 'False', 'primary_key': 'False', 'db_column': 'None', 'blank': 'False', 'null': 'False', 'db_index': 'False'}), 'mass_deployment': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['deployment.MassDeployment']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'preboot': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['deployment.Preboot']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'service': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['cmdb.CI']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'status_lastchanged': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['auth.User']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'venture': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['business.Venture']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'venture_role': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['business.VentureRole']", 'null': 'True', 'on_delete': 'models.SET_NULL'}) }, 'deployment.deployment': { 'Meta': {'ordering': "(u'-created',)", 'object_name': 'Deployment'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'device': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['discovery.Device']"}), 'device_environment': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['cmdb.CI']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'done_plugins': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'hostname': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip': ('django.db.models.fields.IPAddressField', [], {'max_length': '15'}), 'is_running': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mac': (u'lck.django.common.models.MACAddressField', [], {'unique': 'False', 'primary_key': 'False', 'db_column': 'None', 'blank': 'False', 'null': 'False', 'db_index': 'False'}), 'mass_deployment': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['deployment.MassDeployment']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'preboot': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['deployment.Preboot']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'service': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['cmdb.CI']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'status_lastchanged': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['auth.User']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'venture': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['business.Venture']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'venture_role': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['business.VentureRole']", 'null': 'True', 'on_delete': 'models.SET_NULL'}) }, 'deployment.deploymentpoll': { 'Meta': {'object_name': 'DeploymentPoll'}, 'checked': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'deployment.massdeployment': { 'Meta': {'ordering': "(u'-created',)", 'object_name': 'MassDeployment'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'+'", 'on_delete': 'models.SET_NULL', 'default': 'None', 'to': "orm['account.Profile']", 'blank': 'True', 'null': 'True'}), 'csv': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'generated_csv': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_done': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'+'", 'on_delete': 'models.SET_NULL', 'default': 'None', 'to': "orm['account.Profile']", 'blank': 'True', 'null': 'True'}) }, 'deployment.preboot': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'Preboot'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'description': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'files': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['deployment.PrebootFile']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'deployment.prebootfile': { 'Meta': {'object_name': 'PrebootFile'}, 'description': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'file': ('django.db.models.fields.files.FileField', [], {'default': 'None', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'ftype': (u'dj.choices.fields.ChoiceField', [], {'unique': 'False', 'primary_key': 'False', 'db_column': 'None', 'blank': 'False', u'default': '101', 'null': 'False', '_in_south': 'True', 'db_index': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}), 'raw_config': ('django.db.models.fields.TextField', [], {'blank': 'True'}) }, 'discovery.connection': { 'Meta': {'object_name': 'Connection'}, 'connection_type': ('django.db.models.fields.PositiveIntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'inbound': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'inbound_connections'", 'on_delete': 'models.PROTECT', 'to': "orm['discovery.Device']"}), 'outbound': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'outbound_connections'", 'on_delete': 'models.PROTECT', 'to': "orm['discovery.Device']"}) }, 'discovery.datacenter': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'DataCenter'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'discovery.deprecationkind': { 'Meta': {'object_name': 'DeprecationKind'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'months': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}), 'remarks': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}) }, 'discovery.device': { 'Meta': {'object_name': 'Device'}, 'barcode': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '255', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'boot_firmware': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'cached_cost': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'cached_price': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'chassis_position': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'connections': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['discovery.Device']", 'through': "orm['discovery.Connection']", 'symmetrical': 'False'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dc': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '32', 'null': 'True', 'blank': 'True'}), 'deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'deprecation_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'deprecation_kind': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['discovery.DeprecationKind']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'device_environment': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['cmdb.CI']", 'null': 'True', 'on_delete': 'models.PROTECT'}), 'diag_firmware': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'hard_firmware': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'logical_parent': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'logicalchild_set'", 'on_delete': 'models.SET_NULL', 'default': 'None', 'to': "orm['discovery.Device']", 'blank': 'True', 'null': 'True'}), 'management': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'managed_set'", 'on_delete': 'models.SET_NULL', 'default': 'None', 'to': "orm['discovery.IPAddress']", 'blank': 'True', 'null': 'True'}), 'margin_kind': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['discovery.MarginKind']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'max_save_priority': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'mgmt_firmware': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'model': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'device_set'", 'on_delete': 'models.SET_NULL', 'default': 'None', 'to': "orm['discovery.DeviceModel']", 'blank': 'True', 'null': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name2': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '255', 'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'child_set'", 'on_delete': 'models.SET_NULL', 'default': 'None', 'to': "orm['discovery.Device']", 'blank': 'True', 'null': 'True'}), 'position': ('django.db.models.fields.CharField', [], {'max_length': '16', 'null': 'True', 'blank': 'True'}), 'price': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'purchase_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'rack': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '32', 'null': 'True', 'blank': 'True'}), 'remarks': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'role': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'save_priorities': ('django.db.models.fields.TextField', [], {'default': "u''"}), 'service': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['cmdb.CI']", 'null': 'True', 'on_delete': 'models.PROTECT'}), 'sn': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '255', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'support_expiration_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'support_kind': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '255', 'null': 'True', 'blank': 'True'}), 'uptime_seconds': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'uptime_timestamp': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'venture': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['business.Venture']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'venture_role': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['business.VentureRole']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'warranty_expiration_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}) }, 'discovery.devicemodel': { 'Meta': {'object_name': 'DeviceModel'}, 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'chassis_size': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_save_priority': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'save_priorities': ('django.db.models.fields.TextField', [], {'default': "u''"}), 'type': ('django.db.models.fields.PositiveIntegerField', [], {'default': '401'}) }, 'discovery.discoveryqueue': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'DiscoveryQueue'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'discovery.environment': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'Environment'}, 'data_center': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['discovery.DataCenter']"}), 'domain': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'hosts_naming_template': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}), 'next_server': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '32', 'blank': 'True'}), 'queue': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['discovery.DiscoveryQueue']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'remarks': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, 'discovery.ipaddress': { 'Meta': {'object_name': 'IPAddress'}, 'address': ('django.db.models.fields.IPAddressField', [], {'default': 'None', 'max_length': '15', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dead_ping_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'device': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['discovery.Device']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'dns_info': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'hostname': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '255', 'null': 'True', 'blank': 'True'}), 'http_family': ('django.db.models.fields.TextField', [], {'default': 'None', 'max_length': '64', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_buried': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_management': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_plugins': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'last_puppet': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'network': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['discovery.Network']", 'null': 'True', 'blank': 'True'}), 'number': ('django.db.models.fields.BigIntegerField', [], {'unique': 'True'}), 'scan_summary': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['scan.ScanSummary']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'snmp_community': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '64', 'null': 'True', 'blank': 'True'}), 'snmp_name': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'snmp_version': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '5', 'null': 'True', 'blank': 'True'}), 'venture': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['business.Venture']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}) }, 'discovery.marginkind': { 'Meta': {'object_name': 'MarginKind'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'margin': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}), 'remarks': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}) }, 'discovery.network': { 'Meta': {'ordering': "(u'vlan',)", 'object_name': 'Network'}, 'address': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '18'}), 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'custom_dns_servers': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['dnsedit.DNSServer']", 'null': 'True', 'blank': 'True'}), 'data_center': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['discovery.DataCenter']", 'null': 'True', 'blank': 'True'}), 'dhcp_broadcast': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'dhcp_config': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'environment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['discovery.Environment']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'gateway': ('django.db.models.fields.IPAddressField', [], {'default': 'None', 'max_length': '15', 'null': 'True', 'blank': 'True'}), 'gateway_as_int': ('django.db.models.fields.PositiveIntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ignore_addresses': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'kind': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['discovery.NetworkKind']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'last_scan': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'max_ip': ('django.db.models.fields.PositiveIntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'min_ip': ('django.db.models.fields.PositiveIntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}), 'racks': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['discovery.Device']", 'symmetrical': 'False'}), 'remarks': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'reserved': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'reserved_top_margin': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'terminators': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['discovery.NetworkTerminator']", 'symmetrical': 'False'}), 'vlan': ('django.db.models.fields.PositiveIntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}) }, 'discovery.networkkind': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'NetworkKind'}, 'icon': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '32', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'discovery.networkterminator': { 'Meta': {'ordering': "(u'name',)", 'object_name': 'NetworkTerminator'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75', 'db_index': 'True'}) }, 'dnsedit.dnsserver': { 'Meta': {'object_name': 'DNSServer'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.IPAddressField', [], {'unique': 'True', 'max_length': '15'}), 'is_default': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}) }, 'scan.scansummary': { 'Meta': {'object_name': 'ScanSummary'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'false_positive_checksum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'job_id': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '36'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'auto_now_add': 'True', 'blank': 'True'}), 'previous_checksum': ('django.db.models.fields.CharField', [], {'max_length': '32'}) }, 'tags.tag': { 'Meta': {'object_name': 'Tag'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['account.Profile']"}), 'cache_version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'tags_tag_tags'", 'to': "orm['contenttypes.ContentType']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.PositiveIntegerField', [], {'default': '39'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'object_id': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}), 'official': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'stem': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'related_tags'", 'null': 'True', 'to': "orm['tags.TagStem']"}) }, 'tags.tagstem': { 'Meta': {'object_name': 'TagStem'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.PositiveIntegerField', [], {'default': '39'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'tag_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) } } complete_apps = ['deployment']
94.996101
239
0.572487
4,936
48,733
5.547812
0.066653
0.101957
0.177914
0.254163
0.859224
0.835561
0.799408
0.761503
0.72546
0.626059
0
0.006246
0.175364
48,733
513
240
94.996101
0.675169
0.007736
0
0.34898
0
0
0.60558
0.337973
0
0
0
0
0
1
0.004082
false
0.002041
0.008163
0
0.018367
0
0
0
0
null
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
4a7c8678af28d04fe1e6fb14eef66f905c9017b0
164
py
Python
__init__.py
m3sserschmitt/basic-http
bc09a888b44a11154e2cc9bfaf46fc9fd3a79b82
[ "MIT" ]
null
null
null
__init__.py
m3sserschmitt/basic-http
bc09a888b44a11154e2cc9bfaf46fc9fd3a79b82
[ "MIT" ]
null
null
null
__init__.py
m3sserschmitt/basic-http
bc09a888b44a11154e2cc9bfaf46fc9fd3a79b82
[ "MIT" ]
null
null
null
import basic_http.session basic_http.session.LIB_VERSION = 'v0.0.4-beta' basic_http.session.DEFAULT_AGENT = 'basic-http version ' + basic_http.session.LIB_VERSION
32.8
89
0.810976
26
164
4.846154
0.461538
0.357143
0.507937
0.301587
0.412698
0
0
0
0
0
0
0.019868
0.079268
164
4
90
41
0.81457
0
0
0
0
0
0.182927
0
0
0
0
0
0
1
0
true
0
0.333333
0
0.333333
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
7
4a9ad45bc6d5f8001c81f4145b812d1bf0d096f9
100
py
Python
HPOBenchExperimentUtils/resource_manager/__init__.py
PhMueller/TrajectoryParser
9c19d37a3ff29a593c9b6d3e7fd3857e8c2d724f
[ "Apache-2.0" ]
null
null
null
HPOBenchExperimentUtils/resource_manager/__init__.py
PhMueller/TrajectoryParser
9c19d37a3ff29a593c9b6d3e7fd3857e8c2d724f
[ "Apache-2.0" ]
1
2021-09-01T16:35:21.000Z
2021-11-05T19:53:25.000Z
HPOBenchExperimentUtils/resource_manager/__init__.py
automl/HPOBenchExperimentUtils
9c19d37a3ff29a593c9b6d3e7fd3857e8c2d724f
[ "Apache-2.0" ]
null
null
null
from HPOBenchExperimentUtils.resource_manager.file_resource_manager import FileBasedResourceManager
50
99
0.94
9
100
10.111111
0.777778
0.32967
0
0
0
0
0
0
0
0
0
0
0.04
100
1
100
100
0.947917
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
435b8874fd825cd72ac9feb3e9f96907066c1541
141
py
Python
src/sunstruck/schemas/__init__.py
la-mar/sunstruck-api
90074a55d3b243f7f0eee6e897a98699d2cebc43
[ "MIT" ]
3
2021-04-04T07:48:48.000Z
2022-02-19T17:42:12.000Z
src/sunstruck/schemas/__init__.py
la-mar/sunstruck-api
90074a55d3b243f7f0eee6e897a98699d2cebc43
[ "MIT" ]
null
null
null
src/sunstruck/schemas/__init__.py
la-mar/sunstruck-api
90074a55d3b243f7f0eee6e897a98699d2cebc43
[ "MIT" ]
null
null
null
# flake8: noqa from schemas.client_credentials import * from schemas.message import * from schemas.token import * from schemas.user import *
23.5
40
0.794326
19
141
5.842105
0.526316
0.396396
0.459459
0
0
0
0
0
0
0
0
0.008197
0.134752
141
5
41
28.2
0.901639
0.085106
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
600132a2e2c79c041002d7861851e7ef109318b7
14,276
py
Python
tests/test_api_network.py
devicehive/devicehive-plugin-python-template
ad532a57ebf9ae52f12afc98eeb867380707d47d
[ "Apache-2.0" ]
null
null
null
tests/test_api_network.py
devicehive/devicehive-plugin-python-template
ad532a57ebf9ae52f12afc98eeb867380707d47d
[ "Apache-2.0" ]
1
2018-03-07T07:36:44.000Z
2018-03-07T07:36:44.000Z
tests/test_api_network.py
devicehive/devicehive-plugin-python-template
ad532a57ebf9ae52f12afc98eeb867380707d47d
[ "Apache-2.0" ]
4
2018-03-10T20:59:37.000Z
2021-10-18T23:25:30.000Z
# Copyright (C) 2018 DataArt # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from six.moves import range def test_subscribe_events(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-e', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-e', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) command_name = '%s-command' % device_id notification_name = '%s-notification' % device_id return {'device': device, 'network': network, 'command_name': command_name, 'notification_name': notification_name} def send_data(device, command_name, notification_name): command = device.send_command(command_name) command.status = 'status' command.save() notification = device.send_notification(notification_name) return command.id, command.id, notification.id def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/insert', command_insert_id), ('command/update', command_update_id), ('notification/insert', notification_id)] def handle_event(handler, event): action_id_pair = (event.action, event.data.id) assert action_id_pair in handler.data['event_ids'] handler.data['event_ids'].remove(action_id_pair) if handler.data['event_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id]) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/insert', command_insert_id), ('command/update', command_update_id)] data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_notifications=False) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/insert', command_insert_id), ('notification/insert', notification_id)] data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_update_commands=False) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/update', command_update_id), ('notification/insert', notification_id)] data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_insert_commands=False) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) def test_subscribe_insert_commands(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-i-c', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-i-c', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] return {'device': device, 'network': network, 'command_names': command_names} def send_data(device, command_names): return [device.send_command(name).id for name in command_names] def handle_connect(handler): handler.data['command_ids'] = send_data(handler.data['device'], handler.data['command_names']) def handle_command_insert(handler, command): assert command.id in handler.data['command_ids'] handler.data['command_ids'].remove(command.id) if handler.data['command_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-i-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_update_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_insert=handle_command_insert, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): handler.data['command_ids'] = send_data( handler.data['device'], handler.data['command_names'])[-1:] data = init_data() name = test.generate_id('n-s-i-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], names=data['command_names'][-1:], subscribe_update_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_insert=handle_command_insert, data=data) plugin_api.remove_plugin(plugin['topicName']) def test_subscribe_update_commands(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-u-c', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-u-c', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] return {'device': device, 'network': network, 'command_names': command_names} def send_data(device, command_names): command_ids = [] for name in command_names: command = device.send_command(name) command.status = 'status' command.save() command_ids.append(command.id) return command_ids def handle_connect(handler): handler.data['command_ids'] = send_data(handler.data['device'], handler.data['command_names']) def handle_command_update(handler, command): assert command.id in handler.data['command_ids'] assert command.status == 'status' handler.data['command_ids'].remove(command.id) if handler.data['command_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-u-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_insert_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_update=handle_command_update, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): handler.data['command_ids'] = send_data( handler.data['device'], handler.data['command_names'])[-1:] data = init_data() name = test.generate_id('n-s-u-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], names=data['command_names'][-1:], subscribe_insert_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_update=handle_command_update, data=data) plugin_api.remove_plugin(plugin['topicName']) def test_subscribe_notifications(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-n', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) notification_names = ['%s-name-%s' % (device_id, i) for i in range(2)] return {'device': device, 'network': network, 'notification_names': notification_names} def send_data(device, notification_names): return [device.send_notification(name).id for name in notification_names] def handle_connect(handler): handler.data['notification_ids'] = send_data( handler.data['device'], handler.data['notification_names']) def handle_notification(handler, notification): assert notification.id in handler.data['notification_ids'] handler.data['notification_ids'].remove(notification.id) if handler.data['notification_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-n', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_insert_commands=False, subscribe_update_commands=False) test.run(plugin, handle_connect, handle_notification=handle_notification, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): handler.data['notification_ids'] = send_data( handler.data['device'], handler.data['notification_names'])[-1:] data = init_data() name = test.generate_id('n-s-n', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], names=data['notification_names'][-1:], subscribe_insert_commands=False, subscribe_update_commands=False) test.run(plugin, handle_connect, handle_notification=handle_notification, data=data) plugin_api.remove_plugin(plugin['topicName'])
44.061728
79
0.591202
1,542
14,276
5.205577
0.079118
0.068519
0.031394
0.033636
0.842158
0.829201
0.820979
0.808521
0.808023
0.799801
0
0.001628
0.268703
14,276
323
80
44.198142
0.767241
0.074951
0
0.791165
0
0
0.105119
0
0
0
0
0
0.02008
1
0.104418
false
0
0.004016
0.008032
0.156627
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
60634a727fe7a278b36493fb58ad20aeb22882f6
2,151
py
Python
tests/webapp/test_webapp_actions.py
proofdock/chaos-azure
85302f8be18153862656c587988eafb5dd37ddf7
[ "Apache-2.0" ]
1
2021-04-24T20:01:54.000Z
2021-04-24T20:01:54.000Z
tests/webapp/test_webapp_actions.py
proofdock/chaos-azure
85302f8be18153862656c587988eafb5dd37ddf7
[ "Apache-2.0" ]
23
2020-05-22T06:43:14.000Z
2021-02-25T21:02:28.000Z
tests/webapp/test_webapp_actions.py
proofdock/chaos-azure
85302f8be18153862656c587988eafb5dd37ddf7
[ "Apache-2.0" ]
null
null
null
from unittest.mock import patch, MagicMock from pdchaosazure.webapp.actions import stop, restart, delete from tests.data import config_provider, secrets_provider, webapp_provider @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_stop_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" stop(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.stop.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_restart_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" restart(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.restart.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_delete_webapp(init, fetch): webapp = webapp_provider.default() config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" delete(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.delete.assert_called_with(webapp['resourceGroup'], webapp['name'])
34.693548
87
0.755927
261
2,151
5.988506
0.164751
0.074856
0.111964
0.115163
0.84453
0.84453
0.84453
0.815739
0.815739
0.815739
0
0
0.132497
2,151
61
88
35.262295
0.837621
0
0
0.733333
0
0
0.170153
0.111576
0
0
0
0
0.133333
1
0.066667
false
0
0.066667
0
0.133333
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
606629e6c71087f04da2a0bec8e5f2d2e0b13de3
3,218
py
Python
tests/test_is_valid_php_version_file_version.py
gerardroche/sublime-phpunit
73e96ec5e4ac573c5d5247cf87c38e8243da906b
[ "BSD-3-Clause" ]
85
2015-02-18T00:05:54.000Z
2022-01-01T12:20:22.000Z
tests/test_is_valid_php_version_file_version.py
gerardroche/sublime-phpunit
73e96ec5e4ac573c5d5247cf87c38e8243da906b
[ "BSD-3-Clause" ]
98
2015-01-07T22:23:48.000Z
2021-06-03T19:37:50.000Z
tests/test_is_valid_php_version_file_version.py
gerardroche/sublime-phpunit
73e96ec5e4ac573c5d5247cf87c38e8243da906b
[ "BSD-3-Clause" ]
21
2015-08-12T01:02:17.000Z
2021-09-12T09:16:39.000Z
from PHPUnitKit.tests import unittest from PHPUnitKit.plugin import is_valid_php_version_file_version class TestIsValidPhpVersionFileVersion(unittest.TestCase): def test_invalid_values(self): self.assertFalse(is_valid_php_version_file_version('')) self.assertFalse(is_valid_php_version_file_version(' ')) self.assertFalse(is_valid_php_version_file_version('foobar')) self.assertFalse(is_valid_php_version_file_version('masterfoo')) self.assertFalse(is_valid_php_version_file_version('.')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('x.x')) self.assertFalse(is_valid_php_version_file_version('x.x.x')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('snapshot')) def test_master_branch_version(self): self.assertTrue(is_valid_php_version_file_version('master')) def test_specific_semver_versions(self): self.assertTrue(is_valid_php_version_file_version('5.0.0')) self.assertTrue(is_valid_php_version_file_version('5.0.1')) self.assertTrue(is_valid_php_version_file_version('5.0.7')) self.assertTrue(is_valid_php_version_file_version('5.0.30')) self.assertTrue(is_valid_php_version_file_version('5.0.32')) self.assertTrue(is_valid_php_version_file_version('5.1.0')) self.assertTrue(is_valid_php_version_file_version('5.1.1')) self.assertTrue(is_valid_php_version_file_version('5.1.3')) self.assertTrue(is_valid_php_version_file_version('5.1.27')) self.assertTrue(is_valid_php_version_file_version('7.0.0')) self.assertTrue(is_valid_php_version_file_version('7.1.19')) def test_minor_versions(self): self.assertTrue(is_valid_php_version_file_version('5.6')) self.assertTrue(is_valid_php_version_file_version('7.1')) self.assertTrue(is_valid_php_version_file_version('7.2')) def test_major_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('5.x')) self.assertTrue(is_valid_php_version_file_version('6.x')) self.assertTrue(is_valid_php_version_file_version('7.x')) self.assertTrue(is_valid_php_version_file_version('8.x')) def test_major_dot_minor_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('7.0.x')) self.assertTrue(is_valid_php_version_file_version('7.1.x')) self.assertTrue(is_valid_php_version_file_version('7.2.x')) def test_snapshot_versions(self): self.assertTrue(is_valid_php_version_file_version('5.4snapshot')) self.assertTrue(is_valid_php_version_file_version('5.5snapshot')) self.assertTrue(is_valid_php_version_file_version('5.6snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.1snapshot'))
52.754098
75
0.757613
468
3,218
4.724359
0.106838
0.129806
0.185436
0.315242
0.850294
0.850294
0.83763
0.83763
0.818182
0.700136
0
0.02576
0.131448
3,218
60
76
53.633333
0.765295
0
0
0.08
0
0
0.071473
0
0
0
0
0
0.8
1
0.14
false
0
0.04
0
0.2
0
0
0
0
null
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
9
609c675a647587e5e1ba2913f0c1ade0647fff7d
17,264
py
Python
src/oci/service_catalog/service_catalog_client_composite_operations.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/service_catalog/service_catalog_client_composite_operations.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/service_catalog/service_catalog_client_composite_operations.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. import oci # noqa: F401 from oci.util import WAIT_RESOURCE_NOT_FOUND # noqa: F401 class ServiceCatalogClientCompositeOperations(object): """ This class provides a wrapper around :py:class:`~oci.service_catalog.ServiceCatalogClient` and offers convenience methods for operations that would otherwise need to be chained together. For example, instead of performing an action on a resource (e.g. launching an instance, creating a load balancer) and then using a waiter to wait for the resource to enter a given state, you can call a single method in this class to accomplish the same functionality """ def __init__(self, client, **kwargs): """ Creates a new ServiceCatalogClientCompositeOperations object :param ServiceCatalogClient client: The service client which will be wrapped by this object """ self.client = client def change_private_application_compartment_and_wait_for_state(self, private_application_id, change_private_application_compartment_details, wait_for_states=[], operation_kwargs={}, waiter_kwargs={}): """ Calls :py:func:`~oci.service_catalog.ServiceCatalogClient.change_private_application_compartment` and waits for the :py:class:`~oci.service_catalog.models.WorkRequest` to enter the given state(s). :param str private_application_id: (required) The unique identifier for the private application. :param oci.service_catalog.models.ChangePrivateApplicationCompartmentDetails change_private_application_compartment_details: (required) The details of the request to change the compartment of a given private application. :param list[str] wait_for_states: An array of states to wait on. These should be valid values for :py:attr:`~oci.service_catalog.models.WorkRequest.status` :param dict operation_kwargs: A dictionary of keyword arguments to pass to :py:func:`~oci.service_catalog.ServiceCatalogClient.change_private_application_compartment` :param dict waiter_kwargs: A dictionary of keyword arguments to pass to the :py:func:`oci.wait_until` function. For example, you could pass ``max_interval_seconds`` or ``max_interval_seconds`` as dictionary keys to modify how long the waiter function will wait between retries and the maximum amount of time it will wait """ operation_result = self.client.change_private_application_compartment(private_application_id, change_private_application_compartment_details, **operation_kwargs) if not wait_for_states: return operation_result lowered_wait_for_states = [w.lower() for w in wait_for_states] wait_for_resource_id = operation_result.headers['opc-work-request-id'] try: waiter_result = oci.wait_until( self.client, self.client.get_work_request(wait_for_resource_id), evaluate_response=lambda r: getattr(r.data, 'status') and getattr(r.data, 'status').lower() in lowered_wait_for_states, **waiter_kwargs ) result_to_return = waiter_result return result_to_return except Exception as e: raise oci.exceptions.CompositeOperationError(partial_results=[operation_result], cause=e) def create_private_application_and_wait_for_state(self, create_private_application_details, wait_for_states=[], operation_kwargs={}, waiter_kwargs={}): """ Calls :py:func:`~oci.service_catalog.ServiceCatalogClient.create_private_application` and waits for the :py:class:`~oci.service_catalog.models.WorkRequest` to enter the given state(s). :param oci.service_catalog.models.CreatePrivateApplicationDetails create_private_application_details: (required) Private application creation details. :param list[str] wait_for_states: An array of states to wait on. These should be valid values for :py:attr:`~oci.service_catalog.models.WorkRequest.status` :param dict operation_kwargs: A dictionary of keyword arguments to pass to :py:func:`~oci.service_catalog.ServiceCatalogClient.create_private_application` :param dict waiter_kwargs: A dictionary of keyword arguments to pass to the :py:func:`oci.wait_until` function. For example, you could pass ``max_interval_seconds`` or ``max_interval_seconds`` as dictionary keys to modify how long the waiter function will wait between retries and the maximum amount of time it will wait """ operation_result = self.client.create_private_application(create_private_application_details, **operation_kwargs) if not wait_for_states: return operation_result lowered_wait_for_states = [w.lower() for w in wait_for_states] wait_for_resource_id = operation_result.headers['opc-work-request-id'] try: waiter_result = oci.wait_until( self.client, self.client.get_work_request(wait_for_resource_id), evaluate_response=lambda r: getattr(r.data, 'status') and getattr(r.data, 'status').lower() in lowered_wait_for_states, **waiter_kwargs ) result_to_return = waiter_result return result_to_return except Exception as e: raise oci.exceptions.CompositeOperationError(partial_results=[operation_result], cause=e) def create_service_catalog_and_wait_for_state(self, create_service_catalog_details, wait_for_states=[], operation_kwargs={}, waiter_kwargs={}): """ Calls :py:func:`~oci.service_catalog.ServiceCatalogClient.create_service_catalog` and waits for the :py:class:`~oci.service_catalog.models.ServiceCatalog` acted upon to enter the given state(s). :param oci.service_catalog.models.CreateServiceCatalogDetails create_service_catalog_details: (required) The details for creating a service catalog. :param list[str] wait_for_states: An array of states to wait on. These should be valid values for :py:attr:`~oci.service_catalog.models.ServiceCatalog.lifecycle_state` :param dict operation_kwargs: A dictionary of keyword arguments to pass to :py:func:`~oci.service_catalog.ServiceCatalogClient.create_service_catalog` :param dict waiter_kwargs: A dictionary of keyword arguments to pass to the :py:func:`oci.wait_until` function. For example, you could pass ``max_interval_seconds`` or ``max_interval_seconds`` as dictionary keys to modify how long the waiter function will wait between retries and the maximum amount of time it will wait """ operation_result = self.client.create_service_catalog(create_service_catalog_details, **operation_kwargs) if not wait_for_states: return operation_result lowered_wait_for_states = [w.lower() for w in wait_for_states] wait_for_resource_id = operation_result.data.id try: waiter_result = oci.wait_until( self.client, self.client.get_service_catalog(wait_for_resource_id), evaluate_response=lambda r: getattr(r.data, 'lifecycle_state') and getattr(r.data, 'lifecycle_state').lower() in lowered_wait_for_states, **waiter_kwargs ) result_to_return = waiter_result return result_to_return except Exception as e: raise oci.exceptions.CompositeOperationError(partial_results=[operation_result], cause=e) def delete_private_application_and_wait_for_state(self, private_application_id, wait_for_states=[], operation_kwargs={}, waiter_kwargs={}): """ Calls :py:func:`~oci.service_catalog.ServiceCatalogClient.delete_private_application` and waits for the :py:class:`~oci.service_catalog.models.WorkRequest` to enter the given state(s). :param str private_application_id: (required) The unique identifier for the private application. :param list[str] wait_for_states: An array of states to wait on. These should be valid values for :py:attr:`~oci.service_catalog.models.WorkRequest.status` :param dict operation_kwargs: A dictionary of keyword arguments to pass to :py:func:`~oci.service_catalog.ServiceCatalogClient.delete_private_application` :param dict waiter_kwargs: A dictionary of keyword arguments to pass to the :py:func:`oci.wait_until` function. For example, you could pass ``max_interval_seconds`` or ``max_interval_seconds`` as dictionary keys to modify how long the waiter function will wait between retries and the maximum amount of time it will wait """ operation_result = None try: operation_result = self.client.delete_private_application(private_application_id, **operation_kwargs) except oci.exceptions.ServiceError as e: if e.status == 404: return WAIT_RESOURCE_NOT_FOUND else: raise e if not wait_for_states: return operation_result lowered_wait_for_states = [w.lower() for w in wait_for_states] wait_for_resource_id = operation_result.headers['opc-work-request-id'] try: waiter_result = oci.wait_until( self.client, self.client.get_work_request(wait_for_resource_id), evaluate_response=lambda r: getattr(r.data, 'status') and getattr(r.data, 'status').lower() in lowered_wait_for_states, **waiter_kwargs ) result_to_return = waiter_result return result_to_return except Exception as e: raise oci.exceptions.CompositeOperationError(partial_results=[operation_result], cause=e) def delete_service_catalog_and_wait_for_state(self, service_catalog_id, wait_for_states=[], operation_kwargs={}, waiter_kwargs={}): """ Calls :py:func:`~oci.service_catalog.ServiceCatalogClient.delete_service_catalog` and waits for the :py:class:`~oci.service_catalog.models.ServiceCatalog` acted upon to enter the given state(s). :param str service_catalog_id: (required) The unique identifier for the service catalog. :param list[str] wait_for_states: An array of states to wait on. These should be valid values for :py:attr:`~oci.service_catalog.models.ServiceCatalog.lifecycle_state` :param dict operation_kwargs: A dictionary of keyword arguments to pass to :py:func:`~oci.service_catalog.ServiceCatalogClient.delete_service_catalog` :param dict waiter_kwargs: A dictionary of keyword arguments to pass to the :py:func:`oci.wait_until` function. For example, you could pass ``max_interval_seconds`` or ``max_interval_seconds`` as dictionary keys to modify how long the waiter function will wait between retries and the maximum amount of time it will wait """ initial_get_result = self.client.get_service_catalog(service_catalog_id) operation_result = None try: operation_result = self.client.delete_service_catalog(service_catalog_id, **operation_kwargs) except oci.exceptions.ServiceError as e: if e.status == 404: return WAIT_RESOURCE_NOT_FOUND else: raise e if not wait_for_states: return operation_result lowered_wait_for_states = [w.lower() for w in wait_for_states] try: waiter_result = oci.wait_until( self.client, initial_get_result, evaluate_response=lambda r: getattr(r.data, 'lifecycle_state') and getattr(r.data, 'lifecycle_state').lower() in lowered_wait_for_states, succeed_on_not_found=True, **waiter_kwargs ) result_to_return = waiter_result return result_to_return except Exception as e: raise oci.exceptions.CompositeOperationError(partial_results=[operation_result], cause=e) def update_private_application_and_wait_for_state(self, private_application_id, update_private_application_details, wait_for_states=[], operation_kwargs={}, waiter_kwargs={}): """ Calls :py:func:`~oci.service_catalog.ServiceCatalogClient.update_private_application` and waits for the :py:class:`~oci.service_catalog.models.WorkRequest` to enter the given state(s). :param str private_application_id: (required) The unique identifier for the private application. :param oci.service_catalog.models.UpdatePrivateApplicationDetails update_private_application_details: (required) The details for updating the private application. :param list[str] wait_for_states: An array of states to wait on. These should be valid values for :py:attr:`~oci.service_catalog.models.WorkRequest.status` :param dict operation_kwargs: A dictionary of keyword arguments to pass to :py:func:`~oci.service_catalog.ServiceCatalogClient.update_private_application` :param dict waiter_kwargs: A dictionary of keyword arguments to pass to the :py:func:`oci.wait_until` function. For example, you could pass ``max_interval_seconds`` or ``max_interval_seconds`` as dictionary keys to modify how long the waiter function will wait between retries and the maximum amount of time it will wait """ operation_result = self.client.update_private_application(private_application_id, update_private_application_details, **operation_kwargs) if not wait_for_states: return operation_result lowered_wait_for_states = [w.lower() for w in wait_for_states] wait_for_resource_id = operation_result.headers['opc-work-request-id'] try: waiter_result = oci.wait_until( self.client, self.client.get_work_request(wait_for_resource_id), evaluate_response=lambda r: getattr(r.data, 'status') and getattr(r.data, 'status').lower() in lowered_wait_for_states, **waiter_kwargs ) result_to_return = waiter_result return result_to_return except Exception as e: raise oci.exceptions.CompositeOperationError(partial_results=[operation_result], cause=e) def update_service_catalog_and_wait_for_state(self, service_catalog_id, update_service_catalog_details, wait_for_states=[], operation_kwargs={}, waiter_kwargs={}): """ Calls :py:func:`~oci.service_catalog.ServiceCatalogClient.update_service_catalog` and waits for the :py:class:`~oci.service_catalog.models.ServiceCatalog` acted upon to enter the given state(s). :param str service_catalog_id: (required) The unique identifier for the service catalog. :param oci.service_catalog.models.UpdateServiceCatalogDetails update_service_catalog_details: (required) Details to update for a service catalog. :param list[str] wait_for_states: An array of states to wait on. These should be valid values for :py:attr:`~oci.service_catalog.models.ServiceCatalog.lifecycle_state` :param dict operation_kwargs: A dictionary of keyword arguments to pass to :py:func:`~oci.service_catalog.ServiceCatalogClient.update_service_catalog` :param dict waiter_kwargs: A dictionary of keyword arguments to pass to the :py:func:`oci.wait_until` function. For example, you could pass ``max_interval_seconds`` or ``max_interval_seconds`` as dictionary keys to modify how long the waiter function will wait between retries and the maximum amount of time it will wait """ operation_result = self.client.update_service_catalog(service_catalog_id, update_service_catalog_details, **operation_kwargs) if not wait_for_states: return operation_result lowered_wait_for_states = [w.lower() for w in wait_for_states] wait_for_resource_id = operation_result.data.id try: waiter_result = oci.wait_until( self.client, self.client.get_service_catalog(wait_for_resource_id), evaluate_response=lambda r: getattr(r.data, 'lifecycle_state') and getattr(r.data, 'lifecycle_state').lower() in lowered_wait_for_states, **waiter_kwargs ) result_to_return = waiter_result return result_to_return except Exception as e: raise oci.exceptions.CompositeOperationError(partial_results=[operation_result], cause=e)
54.460568
245
0.703313
2,187
17,264
5.301326
0.096936
0.079696
0.047093
0.037692
0.876919
0.854407
0.84837
0.837157
0.822839
0.814991
0
0.002019
0.225266
17,264
316
246
54.632911
0.864822
0.477815
0
0.791367
0
0
0.026177
0
0
0
0
0
0
1
0.057554
false
0
0.014388
0
0.194245
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
60e8913b47be138bc8536280cabcc4db4221cdf3
1,179
py
Python
challenges/binary_search/test_binary_search.py
asakatida/data-structures-and-algorithms.py
587d1a66a6c15a3c7d7786275608f065687e1810
[ "MIT" ]
null
null
null
challenges/binary_search/test_binary_search.py
asakatida/data-structures-and-algorithms.py
587d1a66a6c15a3c7d7786275608f065687e1810
[ "MIT" ]
2
2020-09-24T13:13:49.000Z
2021-06-25T15:15:35.000Z
challenges/binary_search/test_binary_search.py
grandquista/data-structures-and-algorithms.py
587d1a66a6c15a3c7d7786275608f065687e1810
[ "MIT" ]
null
null
null
from .binary_search import binary_search def test_binary_search_empty_array(): assert binary_search([], 0) == -1 def test_binary_search_find_single_array(): assert binary_search([3], 3) == 0 def test_binary_search_not_found_single_array(): assert binary_search([1], 0) == -1 def test_binary_search_not_found_in_short_array(): assert binary_search([1, 2, 3], 0) == -1 def test_binary_search_found_at_begining(): assert binary_search([0, 1, 2, 3, 4, 5], 0) == 0 def test_binary_search_found_at_end(): assert binary_search([0, 1, 3, 4, 5], 5) == 4 def test_binary_search_found_at_middle_even(): assert binary_search([0, 1, 3, 5], 3) == 2 def test_binary_search_found_at_middle_odd(): assert binary_search([1, 3, 5], 3) == 1 def test_binary_search_high_value(): assert binary_search([1, 3, 5], 3) == 1 def test_binary_search_large_array_low(): assert binary_search(list(range(0xFFFFFF)), 0xFF) == 0xFF def test_binary_search_large_array_high(): assert binary_search(list(range(0xFFFFFF)), 0xFFFFF) == 0xFFFFF def test_binary_search_large_array_not_found(): assert binary_search(list(range(0xFFFFFF)), -4) == -1
23.58
67
0.721798
189
1,179
4.089947
0.190476
0.403622
0.201811
0.294955
0.798189
0.639069
0.191462
0.108668
0.108668
0.108668
0
0.052947
0.150975
1,179
49
68
24.061224
0.719281
0
0
0.08
0
0
0
0
0
0
0.039016
0
0.48
1
0.48
true
0
0.04
0
0.52
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
1
1
0
0
0
1
0
0
7
60f7e54acc60354d75596811ff04f18911fc24eb
6,362
py
Python
tests/integration/insights/v1/call/test_metric.py
pazzy-stack/twilio
d3b9b9f1b17b9de89b2528e8d2ffd33edf9676e0
[ "MIT" ]
null
null
null
tests/integration/insights/v1/call/test_metric.py
pazzy-stack/twilio
d3b9b9f1b17b9de89b2528e8d2ffd33edf9676e0
[ "MIT" ]
null
null
null
tests/integration/insights/v1/call/test_metric.py
pazzy-stack/twilio
d3b9b9f1b17b9de89b2528e8d2ffd33edf9676e0
[ "MIT" ]
null
null
null
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from tests import IntegrationTestCase from tests.holodeck import Request from twilio.base.exceptions import TwilioException from twilio.http.response import Response class MetricTestCase(IntegrationTestCase): def test_list_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.insights.v1.calls(sid="CAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .metrics.list() self.holodeck.assert_has_request(Request( 'get', 'https://insights.twilio.com/v1/Voice/CAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Metrics', )) def test_read_response(self): self.holodeck.mock(Response( 200, ''' { "meta": { "page": 0, "page_size": 50, "first_page_url": "https://insights.twilio.com/v1/Voice/CAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Metrics?PageSize=50&Page=0", "previous_page_url": null, "next_page_url": null, "key": "metrics", "url": "https://insights.twilio.com/v1/Voice/CAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Metrics?PageSize=50&Page=0" }, "metrics": [ { "timestamp": "2019-10-07T22:32:06Z", "call_sid": "CA7569efe0253644fa4a88aa97beca3310", "account_sid": "AC998c10b68cbfda9f67277f7d8f4439c9", "edge": "sdk_edge", "direction": "both", "sdk_edge": { "interval": { "packets_received": 50, "packets_lost": 0, "audio_in": { "value": 81.0 }, "audio_out": { "value": 5237.0 }, "jitter": { "value": 9 }, "mos": { "value": 4.39 }, "rtt": { "value": 81 } }, "cumulative": { "bytes_received": 547788, "bytes_sent": 329425, "packets_received": 3900, "packets_lost": 0, "packets_sent": 3934 } }, "client_edge": null, "carrier_edge": null, "sip_edge": null, "gateway": null, "client": null } ] } ''' )) actual = self.client.insights.v1.calls(sid="CAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .metrics.list() self.assertIsNotNone(actual) def test_read_full_response(self): self.holodeck.mock(Response( 200, ''' { "meta": { "page": 10, "page_size": 5, "first_page_url": "https://insights.twilio.com/v1/Voice/CAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Metrics?Direction=both&Edge=sdk_edge&PageSize=5&Page=0", "previous_page_url": "https://insights.twilio.com/v1/Voice/CAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Metrics?Direction=both&Edge=sdk_edge&PageSize=5&Page=9&PageToken=DP10", "next_page_url": null, "key": "metrics", "url": "https://insights.twilio.com/v1/Voice/CAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Metrics?Direction=both&Edge=sdk_edge&PageSize=5&Page=10" }, "metrics": [ { "timestamp": "2019-10-07T22:32:06Z", "call_sid": "CA7569efe0253644fa4a88aa97beca3310", "account_sid": "AC998c10b68cbfda9f67277f7d8f4439c9", "edge": "sdk_edge", "direction": "both", "sdk_edge": { "interval": { "packets_received": 50, "packets_lost": 0, "audio_in": { "value": 81.0 }, "audio_out": { "value": 5237.0 }, "jitter": { "value": 9 }, "mos": { "value": 4.39 }, "rtt": { "value": 81 } }, "cumulative": { "bytes_received": 547788, "bytes_sent": 329425, "packets_received": 3900, "packets_lost": 0, "packets_sent": 3934 } }, "client_edge": null, "carrier_edge": null, "sip_edge": null, "gateway": null, "client": null } ] } ''' )) actual = self.client.insights.v1.calls(sid="CAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .metrics.list() self.assertIsNotNone(actual)
40.265823
185
0.365923
389
6,362
5.812339
0.269923
0.021672
0.05042
0.058381
0.814684
0.791685
0.778859
0.778859
0.778859
0.737284
0
0.076923
0.536152
6,362
157
186
40.522293
0.689258
0.017133
0
0.482759
1
0
0.145916
0.080888
0
0
0
0
0.137931
1
0.103448
false
0
0.137931
0
0.275862
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
716fc75d575164c084b19d0f3c008a98785ed3a6
20,287
py
Python
OSAnalysisHelper.py
nassermarafi/SRCSWArchetypes
105a5e40ef0ba1951108dc52b382ae0c5457057a
[ "MIT" ]
7
2020-04-29T08:44:12.000Z
2022-03-05T04:00:11.000Z
OSAnalysisHelper.py
nassermarafi/SRCSWArchetypes
105a5e40ef0ba1951108dc52b382ae0c5457057a
[ "MIT" ]
null
null
null
OSAnalysisHelper.py
nassermarafi/SRCSWArchetypes
105a5e40ef0ba1951108dc52b382ae0c5457057a
[ "MIT" ]
4
2019-12-20T04:38:11.000Z
2021-11-21T18:25:34.000Z
from __future__ import absolute_import __author__ = 'marafi' def SolutionAlgorithim(OData, Dt, Tol, Steps): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Lower Dt: %f and Tol: %f ... "'%(Dt,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton with Initial Tangent ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Newton(Initial=True)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Broyden ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Broyden(8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def SolutionAlgorithimV2(OData, Dt, Tol, Steps): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Lower Dt: %f and Tol: %f ... "'%(Dt,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Krylov... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton(MaxDim = 6)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch Bisection... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch RegulaFalsi... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def SolutionAlgorithimKrylovOnly(OData, Dt, Tol, Steps, MaxDim = 6): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Lower Dt: %e and Tol: %e ... "'%(Dt,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Krylov... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol, 1000, 2)) # OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton(MaxDim = MaxDim)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %e ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def SenSolutionAlgorithim(OData, Dt, Steps, Tol = 1e-12, KrylovMaxDim = 12, MinDt = 1e-12, NoOfIterations=3000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('set conv_tol %e'%Tol)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set max_iter %d;'%NoOfIterations)) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol, 3000, 0)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('test EnergyIncr $conv_tol $max_iter;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('algorithm Newton;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('integrator Newmark 0.5 0.25;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('analysis Transient;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set dt %e;'%Dt)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set min_dt %e;'%MinDt)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set n_steps %d;'%Steps)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set cur_step 1;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set div 10.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set tol 1.0e-12;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('set eigenvalue [eigen 9];')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('modalDamping 0.02;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('while {$cur_step < $n_steps} {')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol, NoOfIterations, 0)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript(' test EnergyIncr $conv_tol $max_iter;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' algorithm Newton;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set ok [analyze 1 $dt];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set dt_temp [expr $dt];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "> analysis failed to converge at step $cur_step";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "> trying KrylovNewton";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' algorithm KrylovNewton -maxDim %d;'%KrylovMaxDim)) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set ok [analyze 1 $dt];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set t 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_t 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set dt_temp [expr round($dt/$div/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_dt_temp 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' while {$t < $dt} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$dt_temp < $min_dt} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "<< model did not converge (reason: time step less than $min_dt)";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "<< exiting safely";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' wipe;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' exit;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$dt_temp < [expr $dt/pow($div, 2)]} {')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol*10, NoOfIterations, 0)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript(' test EnergyIncr [expr $conv_tol*10.0] $max_iter;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set ok [analyze 1 $dt_temp];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$ok == 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set t [expr round(($t + $dt_temp)/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_t [expr round(($mini_t + $dt_temp)/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$mini_t >= $mini_dt_temp} {set dt_temp [expr round($dt_temp*$div/$tol)*$tol]};')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' } else {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_t 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_dt_temp [expr round($dt_temp/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set dt_temp [expr round($dt_temp/$div/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$cur_step % 1 == 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "Running Tim History Step: $cur_step out of %d (Sen Algo.)";'%Steps)) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' incr cur_step;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('};')) def PushOverSolutionAlgorithim(OData, StepSize, Tol, ControlNode): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton with Initial Tangent ... "')) # OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) # OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Newton(Initial=True)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) # # OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Broyden ... "')) # OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) # OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Broyden(8)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search BiSection ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search RegulaFalsi ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimDispIncr(OData, StepSize, Tol, ControlNode): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search BiSection ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search RegulaFalsi ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimConstantAlgorithm(OData, StepSize, Tol, ControlNode, Iter=1000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimConstantAlgorithmDispIncr(OData, StepSize, Tol, ControlNode, NoOfIterations=1000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,NoOfIterations,2)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimConstantTol(OData, Tol, Iter=1000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search BiSection ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search RegulaFalsi ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}'))
63.199377
137
0.724257
2,353
20,287
6.222694
0.056524
0.242863
0.433684
0.359514
0.938328
0.928152
0.907663
0.8757
0.856645
0.843259
0
0.014839
0.113077
20,287
321
138
63.199377
0.798922
0.087642
0
0.762846
0
0.003953
0.202727
0.008819
0
0
0
0
0
1
0.035573
false
0
0.039526
0
0.075099
0
0
0
0
null
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
10
71a38554040095f344a4dbd4dbed0540a3d29b06
505
py
Python
terrascript/dns/r.py
hugovk/python-terrascript
08fe185904a70246822f5cfbdc9e64e9769ec494
[ "BSD-2-Clause" ]
4
2022-02-07T21:08:14.000Z
2022-03-03T04:41:28.000Z
terrascript/dns/r.py
hugovk/python-terrascript
08fe185904a70246822f5cfbdc9e64e9769ec494
[ "BSD-2-Clause" ]
null
null
null
terrascript/dns/r.py
hugovk/python-terrascript
08fe185904a70246822f5cfbdc9e64e9769ec494
[ "BSD-2-Clause" ]
2
2022-02-06T01:49:42.000Z
2022-02-08T14:15:00.000Z
# terrascript/dns/r.py import terrascript class dns_a_record_set(terrascript.Resource): pass class dns_aaaa_record_set(terrascript.Resource): pass class dns_cname_record(terrascript.Resource): pass class dns_mx_record_set(terrascript.Resource): pass class dns_ns_record_set(terrascript.Resource): pass class dns_ptr_record(terrascript.Resource): pass class dns_srv_record_set(terrascript.Resource): pass class dns_txt_record_set(terrascript.Resource): pass
14.428571
48
0.778218
68
505
5.455882
0.264706
0.172507
0.495957
0.528302
0.824798
0.738544
0.539084
0
0
0
0
0
0.150495
505
34
49
14.852941
0.864802
0.039604
0
0.470588
0
0
0
0
0
0
0
0
0
1
0
true
0.470588
0.058824
0
0.529412
0
0
0
0
null
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
1
0
0
7
e0c1de96552a87c4acd6be415b90d60425c9c9cb
64,469
py
Python
nuage_tempest_plugin/tests/api/test_nuage_ports.py
nuagenetworks/nuage-tempest-plugin
ac1bfb0709c7bbaf04017af3050fb3ed1ad1324a
[ "Apache-1.1" ]
1
2021-01-03T01:47:51.000Z
2021-01-03T01:47:51.000Z
nuage_tempest_plugin/tests/api/test_nuage_ports.py
nuagenetworks/nuage-tempest-plugin
ac1bfb0709c7bbaf04017af3050fb3ed1ad1324a
[ "Apache-1.1" ]
null
null
null
nuage_tempest_plugin/tests/api/test_nuage_ports.py
nuagenetworks/nuage-tempest-plugin
ac1bfb0709c7bbaf04017af3050fb3ed1ad1324a
[ "Apache-1.1" ]
1
2020-10-16T12:04:39.000Z
2020-10-16T12:04:39.000Z
# Copyright 2017 NOKIA # All Rights Reserved. from netaddr import IPNetwork import testtools from tempest.common import waiters from tempest.lib import exceptions from tempest.scenario import manager from tempest.test import decorators from nuage_tempest_plugin.lib.test.nuage_test import NuageAdminNetworksTest from nuage_tempest_plugin.lib.test.nuage_test import NuageBaseTest from nuage_tempest_plugin.lib.topology import Topology from nuage_tempest_plugin.lib.utils import constants from nuage_tempest_plugin.services.nuage_client import NuageRestClient CONF = Topology.get_conf() LOG = Topology.get_logger(__name__) class PortsTest(NuageBaseTest, NuageAdminNetworksTest, manager.NetworkScenarioTest): @classmethod def setup_clients(cls): super(PortsTest, cls).setup_clients() cls.vsd_client = NuageRestClient() def show_port(self, port_id): """Wrapper utility that shows a given port.""" body = self.ports_client.show_port(port_id) return body['port'] def _create_server(self, name, network, port_id=None): keypair = self.create_keypair() network = {'uuid': network['id']} if port_id is not None: network['port'] = port_id return self.create_server( name=name, networks=[network], key_name=keypair['name'], wait_until='ACTIVE') def _delete_server(self, server_id, clients=None): if clients is None: clients = self.os_primary clients.servers_client.delete_server(server_id) waiters.wait_for_server_termination(clients.servers_client, server_id) @decorators.attr(type='smoke') def test_nuage_dhcp_port_create_check_status(self): network = self.create_network() self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=24) filters = { 'device_owner': 'network:dhcp:nuage', 'network_id': network['id'] } dhcp_port = self.ports_client.list_ports(**filters)['ports'][0] self.assertEqual('ACTIVE', dhcp_port['status']) @decorators.attr(type='smoke') def test_nuage_dhcp_port_with_router_detach_check_status(self): network = self.create_network() subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=24) router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"], cleanup=False) self.routers_client.remove_router_interface(router_id=router["id"], subnet_id=subnet["id"]) filters = { 'device_owner': 'network:dhcp:nuage', 'network_id': network['id'] } dhcp_port = self.ports_client.list_ports(**filters)['ports'][0] self.assertEqual('ACTIVE', dhcp_port['status']) @decorators.attr(type='smoke') def test_nuage_port_create_show_check_status(self): network = self.create_network() self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=24) port = self.create_port(network) self.assertEqual('DOWN', port['status']) port = self.show_port(port['id']) # state has to remain DOWN as long as port is not bound self.assertEqual('DOWN', port['status']) @decorators.attr(type='smoke') def test_nuage_port_create_server_create_delete_check_status(self): network = self.create_network() self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=24) port = self.create_port(network) server = self._create_server('s1', network, port['id']) port = self.show_port(port['id']) self.assertEqual('ACTIVE', port['status']) self._delete_server(server['id']) port = self.show_port(port['id']) self.assertEqual('DOWN', port['status']) @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_negative(self): # Set up resources # Base resources if self.is_dhcp_agent_present(): raise self.skipException( 'Cannot run this test case when DHCP agent is enabled') network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") subnet2 = self.create_subnet(network, cidr=IPNetwork("20.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet2, "Unable to create second subnet") fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "20.0.0.4", "subnet_id": subnet2["id"] } ] # Fail msg = "Port can't have multiple IPv4 IPs of different subnets" self.assertRaisesRegex(exceptions.BadRequest, msg, self.create_port, network=network, fixed_ips=fixed_ips) @testtools.skipIf(Topology.before_nuage('5.4'), 'Unsupported pre-5.4') def test_nuage_os_managed_subnet_port_create_with_nuage_policy_negative( self): network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") msg = ("Cannot use VSP policy groups on OS managed subnets," " use neutron security groups instead.") self.assertRaisesRegex(exceptions.BadRequest, msg, self.create_port, network=network, nuage_policy_groups=['Random_value']) @testtools.skipIf(Topology.before_nuage('5.4'), 'Unsupported pre-5.4') def test_nuage_os_managed_subnet_port_update_with_nuage_policy_negative( self): network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") port = self.create_port(network=network) self.assertIsNotNone(port, "Unable to create port") msg = ("Cannot use VSP policy groups on OS managed subnets," " use neutron security groups instead.") self.assertRaisesRegex(exceptions.BadRequest, msg, self.update_port, port=port, nuage_policy_groups=['Random_value']) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_negative(self): if self.is_dhcp_agent_present(): raise self.skipException( 'Multiple subnets in a network not supported when DHCP agent ' 'is enabled.') # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") subnet2 = self.create_subnet(network, cidr=IPNetwork("20.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet2, "Unable to create second subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) self.create_router_interface(router_id=router["id"], subnet_id=subnet2["id"]) # Create port fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] port = self.update_port(port=port, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to update port") self.assertEqual(port["fixed_ips"][0]["ip_address"], "10.0.0.5", message="The port did not update properly.") # Update to subnet2 should fail fixed_ips = [ { "ip_address": "20.0.0.4", "subnet_id": subnet2["id"] } ] try: self.update_port(port=port, fixed_ips=fixed_ips) self.fail("Exception expected when updating to" " a different subnet!") except exceptions.BadRequest as e: if "Updating fixed ip of port" in e._error_string: pass else: # Differentiate between VSD failure and update failure LOG.debug(e._error_string) self.fail("A different NuageBadRequest exception" " was expected for this operation.") @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_same_subnet_l2(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.L2_DOMAIN, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_same_subnet_l2(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.L2_DOMAIN, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] port = self.update_port(port=port, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_same_subnet_l3(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4'] vip_mismatch = False mac_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True if nuage_vport_vip['MAC'] != port['mac_address']: mac_mismatch = True self.assertEqual(vip_mismatch, False) self.assertEqual(mac_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_same_subnet_l3_no_security(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips, port_security_enabled=False) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4'] vip_mismatch = False mac_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True if nuage_vport_vip['MAC'] != port['mac_address']: mac_mismatch = True self.assertEqual(vip_mismatch, False) self.assertEqual(mac_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_same_subnet_l3_no_security(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.5', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] port = self.update_port(port=port, fixed_ips=fixed_ips, allowed_address_pairs=[], security_groups=[], port_security_enabled=False) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4'] vip_mismatch = False mac_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True if nuage_vport_vip['MAC'] != port['mac_address']: mac_mismatch = True self.assertEqual(vip_mismatch, False) self.assertEqual(mac_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_same_subnet_l3(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] port = self.update_port(port=port, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4'] vip_mismatch = False mac_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True if nuage_vport_vip['MAC'] != port['mac_address']: mac_mismatch = True self.assertEqual(vip_mismatch, False) self.assertEqual(mac_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_same_subnet_l2_with_aap(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.50', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.L2_DOMAIN, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_same_subnet_l2_with_aap(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.L2_DOMAIN, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.50', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.update_port(port=port, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_same_subnet_l3_with_aap(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4', allowed_address_pairs[0]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_same_subnet_l3_with_aap_outside_cidr( self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '1.1.1.5', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4'] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_same_subnet_l3_with_aap(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.update_port(port=port, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4', allowed_address_pairs[0]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_same_subnet_l3_with_aap_with_vm(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.10', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) self._create_server(name='vm-' + network['name'], network=network, port_id=port['id']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.6", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.7', 'mac_address': 'fe:a0:36:4b:c8:70'}, {'ip_address': '10.0.0.10', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.update_port(port=port, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address'], allowed_address_pairs[1]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_update_app_to_fixed_ips_l3_with_vm(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) self._create_server(name='vm-' + network['name'], network=network, port_id=port['id']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.6", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.7', 'mac_address': 'fe:a0:36:4b:c8:70'}, {'ip_address': '10.0.0.10', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.update_port(port=port, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address'], allowed_address_pairs[1]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ip_with_vm_and_conflict_with_aap_neg( self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.10', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) self._create_server(name='vm-' + network['name'], network=network, port_id=port['id']) fixed_ips = [ { "ip_address": "10.0.0.8", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.6", "subnet_id": subnet["id"] } ] # below update will fail with proper roll back try: self.update_port(port=port, fixed_ips=fixed_ips) self.fail("Exception expected when updating to" " a different subnet!") except exceptions.BadRequest as e: if ('Bad request: The IP Address 10.0.0.6 is' ' currently in use by subnet' in e._error_string): vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) pass else: # Differentiate between VSD failure and update failure LOG.debug(e._error_string) self.fail("A different NuageBadRequest exception" " was expected for this operation.") @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ip_same_as_aap(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.6", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address']] vip_mismatch = False mac_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True if nuage_vport_vip['MAC'] != port['mac_address']: mac_mismatch = True self.assertEqual(vip_mismatch, False) self.assertEqual(mac_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_update_fixed_ips_same_as_aap(self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) fixed_ips = [ { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.6", "subnet_id": subnet["id"] } ] port = self.update_port(port=port, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = [fixed_ips[0]["ip_address"], allowed_address_pairs[0]['ip_address']] vip_mismatch = False mac_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) if nuage_vport_vip['MAC'] != port['mac_address']: mac_mismatch = True self.assertEqual(vip_mismatch, False) self.assertEqual(mac_mismatch, False) @decorators.attr(type='smoke') def test_nuage_port_create_fixed_ips_same_subnet_with_aap_router_attach( self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.create_port(network=network, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.L2_DOMAIN, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED, nuage_vport[0]['addressSpoofing']) # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"]) vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) valid_vips = ['10.0.0.4', allowed_address_pairs[0]['ip_address']] vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) @decorators.attr(type='smoke') @testtools.skipIf(Topology.before_nuage('5.4'), 'Unsupported pre-5.4') def test_nuage_port_update_fixed_ips_same_subnet_with_aap_router_detach( self): # Set up resources # Base resources network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") router = self.create_router( admin_state_up=True, external_network_id=CONF.network.public_network_id) self.assertIsNotNone(router, "Unable to create router") # Attach subnet self.create_router_interface(router_id=router["id"], subnet_id=subnet["id"], cleanup=False) fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] } ] port = self.create_port(network=network, fixed_ips=fixed_ips) self.assertIsNotNone(port, "Unable to create port on network") vsd_vport_parent = self.vsd_client.get_global_resource( constants.SUBNETWORK, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) # update within subnet should succeed fixed_ips = [ { "ip_address": "10.0.0.4", "subnet_id": subnet["id"] }, { "ip_address": "10.0.0.5", "subnet_id": subnet["id"] } ] allowed_address_pairs = [{'ip_address': '10.0.0.6', 'mac_address': 'fe:a0:36:4b:c8:70'}] port = self.update_port(port=port, fixed_ips=fixed_ips, allowed_address_pairs=allowed_address_pairs) self.assertIsNotNone(port, "Unable to update port") nuage_vport = self.vsd_client.get_vport( constants.SUBNETWORK, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.INHERITED, nuage_vport[0]['addressSpoofing']) valid_vips = ['10.0.0.4', allowed_address_pairs[0]['ip_address']] nuage_vport_vips = self.vsd_client.get_virtual_ip( constants.VPORT, nuage_vport[0]['ID']) vip_mismatch = False if valid_vips and not nuage_vport_vips: vip_mismatch = True for nuage_vport_vip in nuage_vport_vips: if nuage_vport_vip['virtualIP'] not in valid_vips: vip_mismatch = True self.assertEqual(vip_mismatch, False) self.admin_routers_client.remove_router_interface( router['id'], subnet_id=subnet['id']) vsd_vport_parent = self.vsd_client.get_global_resource( constants.L2_DOMAIN, filters='externalID', filter_value=subnet['id'])[0] nuage_vport = self.vsd_client.get_vport( constants.L2_DOMAIN, vsd_vport_parent['ID'], filters='externalID', filter_value=port['id']) self.assertEqual(constants.ENABLED if Topology.from_nuage('5.4') else constants.INHERITED, nuage_vport[0]['addressSpoofing']) @decorators.attr(type='smoke') @testtools.skipIf(Topology.before_nuage('5.4'), 'Unsupported pre-5.4') def test_delete_unbound_port_with_hanging_vminterface(self): # OPENSTACK-2797 network = self.create_network() self.assertIsNotNone(network, "Unable to create network") subnet = self.create_subnet(network, cidr=IPNetwork("10.0.0.0/24"), mask_bits=28) self.assertIsNotNone(subnet, "Unable to create subnet") port = self.create_port(network=network, cleanup=False) self.addCleanup(self._try_delete, self.manager.ports_client.delete_port, port['id']) # Find vport l2domain = self.vsd.get_l2domain(by_subnet_id=subnet['id']) vport = self.vsd.get_vport(l2domain=l2domain, by_port_id=port['id']) # Create "Fake" VM interface to simulate following behavior: # -> Port is being bound -> VM created -> port deleted -> # Port not bound but leftover VM on VSD vminterface = self.vsd.vspk.NUVMInterface( name='test-fip-vm', vport_id=vport.id, external_id=self.vsd.external_id(port['id']), mac='E6:04:AA:7A:AA:86', ip_address='10.0.0.10') vm = self.vsd.vspk.NUVM(name='test-port-delete-vm', uuid='1339f7f4-f7a0-445f-b257-8dbfaf0d6fc8', external_id=self.vsd.external_id( '1339f7f4-f7a0-445f-b257-8dbfaf0d6fc8'), interfaces=[vminterface]) # Impersonate tenant user for appropriate permissions on VM self.vsd.session().impersonate(port['tenant_id'], self.default_netpartition_name) self.vsd.session().user.create_child(vm) self.vsd.session().stop_impersonate() # Delete port, VM should be deleted in this request self.delete_port(port) # Verify that vport is deleted vport = self.vsd.get_vport(l2domain=l2domain, by_port_id=port['id']) self.assertIsNone(vport, 'Vport not deleted by Port delete statement')
41.220588
79
0.560114
7,069
64,469
4.845664
0.041732
0.050797
0.012845
0.025924
0.92941
0.921527
0.917148
0.912886
0.912273
0.901004
0
0.024036
0.33658
64,469
1,563
80
41.246961
0.776853
0.028867
0
0.805535
0
0
0.13242
0.001152
0
0
0
0
0.115805
1
0.022578
false
0.001457
0.008012
0
0.032775
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
e0f8ef5b2d2b11ceb48d819c7022ba608e70f8fd
17,241
py
Python
komodo2_rl/src/environments/Spawner.py
osheraz/komodo
d53759100ced7439dd501620f955f347087e4f63
[ "MIT" ]
5
2020-08-11T08:47:25.000Z
2022-02-15T06:19:18.000Z
komodo2_rl/src/environments/Spawner.py
osheraz/komodo
d53759100ced7439dd501620f955f347087e4f63
[ "MIT" ]
null
null
null
komodo2_rl/src/environments/Spawner.py
osheraz/komodo
d53759100ced7439dd501620f955f347087e4f63
[ "MIT" ]
1
2021-05-06T14:25:17.000Z
2021-05-06T14:25:17.000Z
# !/usr/bin/env python import rospy import numpy as np from gazebo_msgs.srv import SpawnModel, SpawnModelRequest, SpawnModelResponse from copy import deepcopy from tf.transformations import quaternion_from_euler sdf_cube = """<?xml version="1.0" ?> <sdf version="1.4"> <model name="MODELNAME"> <static>0</static> <link name="link"> <inertial> <mass>1.0</mass> <inertia> <ixx>0.01</ixx> <ixy>0.0</ixy> <ixz>0.0</ixz> <iyy>0.01</iyy> <iyz>0.0</iyz> <izz>0.01</izz> </inertia> </inertial> <collision name="stairs_collision0"> <pose>0 0 0 0 0 0</pose> <geometry> <box> <size>SIZEXYZ</size> </box> </geometry> <surface> <bounce /> <friction> <ode> <mu>1.0</mu> <mu2>1.0</mu2> </ode> </friction> <contact> <ode> <kp>10000000.0</kp> <kd>1.0</kd> <min_depth>0.0</min_depth> <max_vel>0.0</max_vel> </ode> </contact> </surface> </collision> <visual name="stairs_visual0"> <pose>0 0 0 0 0 0</pose> <geometry> <box> <size>SIZEXYZ</size> </box> </geometry> <material> <script> <uri>file://media/materials/scripts/gazebo.material</uri> <name>Gazebo/Wood</name> </script> </material> </visual> <velocity_decay> <linear>0.000000</linear> <angular>0.000000</angular> </velocity_decay> <self_collide>0</self_collide> <kinematic>0</kinematic> <gravity>1</gravity> </link> </model> </sdf> """ sdf_sand = """<?xml version='1.0'?> <sdf version='1.6'> <model name="MODELNAME"> <link name='link'> <pose frame=''>0 0 0.01 0 0 0 </pose> <inertial> <mass>1</mass> <inertia> <ixx>0.1</ixx> <ixy>0</ixy> <ixz>0</ixz> <iyy>0.1</iyy> <iyz>0</iyz> <izz>0.1</izz> </inertia> </inertial> <visual name='visual'> <pose frame=''>0 0 0 0 -0 0</pose> <geometry> <mesh> <scale>SIZEXYZ</scale> <uri>model://sand/sand_particle.stl</uri> </mesh> </geometry> <material> <lighting>1</lighting> <script> <uri>file://media/materials/scripts/gazebo.material</uri> <name>Gazebo/Yellow</name> </script> <ambient>0.3 0.25 0.1 1</ambient> <diffuse>0.7 0.6 0.4 1</diffuse> <specular>0.01 0.005 0.001 1</specular> <emissive>0 0 0 1</emissive> </material> <transparency>0</transparency> <cast_shadows>1</cast_shadows> </visual> <collision name='collision'> <laser_retro>0</laser_retro> <max_contacts>10</max_contacts> <pose frame=''>0 0 0 0 -0 0</pose> <geometry> <mesh> <scale>SIZEXYZ</scale> <uri>model://sand/sand_particle.stl</uri> </mesh> </geometry> <surface> <friction> <ode> <mu>1</mu> <mu2>1</mu2> <fdir1>0 0 0</fdir1> <slip1>0</slip1> <slip2>0</slip2> </ode> <torsional> <coefficient>1</coefficient> <patch_radius>0</patch_radius> <surface_radius>0</surface_radius> <use_patch_radius>1</use_patch_radius> <ode> <slip>0</slip> </ode> </torsional> </friction> <bounce> <restitution_coefficient>0.2</restitution_coefficient> <threshold>1.01</threshold> </bounce> <contact> <collide_without_contact>0</collide_without_contact> <collide_without_contact_bitmask>1</collide_without_contact_bitmask> <collide_bitmask>1</collide_bitmask> <ode> <soft_cfm>0</soft_cfm> <soft_erp>0.2</soft_erp> <kp>1e+13</kp> <kd>1</kd> <max_vel>0.01</max_vel> <min_depth>0</min_depth> </ode> <bullet> <split_impulse>1</split_impulse> <split_impulse_penetration_threshold>-0.01</split_impulse_penetration_threshold> <soft_cfm>0</soft_cfm> <soft_erp>0.2</soft_erp> <kp>1e+13</kp> <kd>1</kd> </bullet> </contact> </surface> </collision> </link> <static>0</static> <allow_auto_disable>1</allow_auto_disable> </model> </sdf> """ sdf_sand_box = """<sdf version='1.6'> <model name='sand_box_osher'> <link name='sand_box_osher'> <pose frame=''>0 0 0 0 -0 0</pose> <inertial> <pose frame=''>-0.35285 -0.305 0.11027 0 -0 0</pose> <mass>2000.892</mass> <inertia> <ixx>130.2204</ixx> <ixy>-220.5538e-15</ixy> <ixz>-4.85191</ixz> <iyy>276.363</iyy> <iyz>-77.9029e-15</iyz> <izz>135.62</izz> </inertia> </inertial> <collision name='sand_box_osher_collision'> <pose frame=''>0 0 0 1.5708 -0 0</pose> <geometry> <mesh> <scale>1 0.8 1</scale> <uri>model://sand_box_osher/meshes/sand_box_osher.STL</uri> </mesh> </geometry> </collision> <visual name='sand_box_osher_visual'> <pose frame=''>0 0 0 1.5708 -0 0</pose> <geometry> <mesh> <scale>1 0.8 1</scale> <uri>model://sand_box_osher/meshes/sand_box_osher.STL</uri> </mesh> </geometry> <material> <ambient>0.3 0.25 0.1 1</ambient> <diffuse>0.7 0.6 0.4 1</diffuse> <specular>0.01 0.005 0.001 1</specular> <emissive>0 0 0 1</emissive> </material> <transparency>0.5</transparency> </visual> </link> </model> </sdf> """ sdf_unit_sphere = """<?xml version='1.0'?> <sdf version='1.6'> <model name="MODELNAME"> <link name='link'> <pose frame=''>0 0 0 0 -0 0</pose> <inertial> <mass>0.1</mass> <inertia> <ixx>0.0000490147</ixx> <ixy>0</ixy> <ixz>0</ixz> <iyy>0.000049147</iyy> <iyz>0</iyz> <izz>0.000049147</izz> </inertia> <pose frame=''>0 0 0 0 -0 0</pose> </inertial> <self_collide>0</self_collide> <kinematic>0</kinematic> <visual name='visual'> <geometry> <sphere> <radius>RADIUS</radius> </sphere> </geometry> <material> <lighting>1</lighting> <script> <uri>file://media/materials/scripts/gazebo.material</uri> <name>Gazebo/Yellow</name> </script> <ambient>0.3 0.25 0.1 1</ambient> <diffuse>0.7 0.6 0.4 1</diffuse> <specular>0.01 0.005 0.001 1</specular> <emissive>0 0 0 1</emissive> </material> <pose frame=''>0 0 0 0 -0 0</pose> <transparency>0</transparency> <cast_shadows>1</cast_shadows> </visual> <collision name='collision'> <laser_retro>0</laser_retro> <max_contacts>10</max_contacts> <pose frame=''>0 0 0 0 -0 0</pose> <geometry> <sphere> <radius>RADIUS</radius> </sphere> </geometry> <surface> <friction> <ode> <mu>1</mu> <mu2>1</mu2> <fdir1>0 0 0</fdir1> <slip1>0</slip1> <slip2>0</slip2> </ode> <torsional> <coefficient>1</coefficient> <patch_radius>0</patch_radius> <surface_radius>0</surface_radius> <use_patch_radius>1</use_patch_radius> <ode> <slip>0</slip> </ode> </torsional> </friction> <bounce> <restitution_coefficient>0</restitution_coefficient> <threshold>1e+06</threshold> </bounce> <contact> <collide_without_contact>0</collide_without_contact> <collide_without_contact_bitmask>1</collide_without_contact_bitmask> <collide_bitmask>1</collide_bitmask> <ode> <soft_cfm>0</soft_cfm> <soft_erp>0.2</soft_erp> <kp>1e+13</kp> <kd>1</kd> <max_vel>0.01</max_vel> <min_depth>0</min_depth> </ode> <bullet> <split_impulse>1</split_impulse> <split_impulse_penetration_threshold>-0.01</split_impulse_penetration_threshold> <soft_cfm>0</soft_cfm> <soft_erp>0.2</soft_erp> <kp>1e+13</kp> <kd>1</kd> </bullet> </contact> </surface> </collision> </link> <static>0</static> <allow_auto_disable>1</allow_auto_disable> </model> </sdf> """ sdf_sand2 = """<?xml version='1.0'?> <sdf version='1.6'> <model name="MODELNAME"> <link name='link'> <pose frame=''>0 0 0.01 0 0 0 </pose> <inertial> <mass>1</mass> <inertia> <ixx>0.1</ixx> <ixy>0</ixy> <ixz>0</ixz> <iyy>0.1</iyy> <iyz>0</iyz> <izz>0.1</izz> </inertia> </inertial> <visual name='visual'> <pose frame=''>0 0 0 0 -0 0</pose> <geometry> <mesh> <scale>SIZEXYZ</scale> <uri>model://sand/sand_particle.stl</uri> </mesh> </geometry> <material> <lighting>1</lighting> <script> <uri>file://media/materials/scripts/gazebo.material</uri> <name>Gazebo/Yellow</name> </script> <ambient>0.3 0.25 0.1 1</ambient> <diffuse>0.7 0.6 0.4 1</diffuse> <specular>0.01 0.005 0.001 1</specular> <emissive>0 0 0 1</emissive> </material> <transparency>0</transparency> <cast_shadows>1</cast_shadows> </visual> <collision name='collision'> <laser_retro>0</laser_retro> <max_contacts>10</max_contacts> <pose frame=''>0 0 0 0 -0 0</pose> <geometry> <mesh> <scale>SIZEXYZ</scale> <uri>model://sand/sand_particle.stl</uri> </mesh> </geometry> <surface> <friction> <ode> <mu>1</mu> <mu2>1</mu2> <fdir1>0 0 0</fdir1> <slip1>0</slip1> <slip2>0</slip2> </ode> <torsional> <coefficient>1</coefficient> <patch_radius>0</patch_radius> <surface_radius>0</surface_radius> <use_patch_radius>1</use_patch_radius> <ode> <slip>0</slip> </ode> </torsional> </friction> <bounce> <restitution_coefficient>0</restitution_coefficient> <threshold>1e+06</threshold> </bounce> <contact> <collide_without_contact>0</collide_without_contact> <collide_without_contact_bitmask>1</collide_without_contact_bitmask> <collide_bitmask>1</collide_bitmask> <ode> <soft_cfm>0</soft_cfm> <soft_erp>0.2</soft_erp> <kp>1e+13</kp> <kd>1</kd> <max_vel>0.01</max_vel> <min_depth>0</min_depth> </ode> <bullet> <split_impulse>1</split_impulse> <split_impulse_penetration_threshold>-0.01</split_impulse_penetration_threshold> <soft_cfm>0</soft_cfm> <soft_erp>0.2</soft_erp> <kp>1e+13</kp> <kd>1</kd> </bullet> </contact> </surface> </collision> </link> <static>0</static> <allow_auto_disable>1</allow_auto_disable> </model> </sdf> """ class Spawner: def __init__(self): self.px = 0 self.py = 0 self.pz = 0 self.rr = 0 self.rp = 0 self.rz = 0 self.sx = 0 self.sy = 0 self.sz = 0 def create_cube_request(self,modelname, px, py, pz, rr, rp, ry, sx, sy, sz): """Create a SpawnModelRequest with the parameters of the cube given. modelname: name of the model for gazebo px py pz: position of the cube (and it's collision cube) rr rp ry: rotation (roll, pitch, yaw) of the model sx sy sz: size of the cube""" cube = deepcopy(sdf_sand2) # Replace size of model size_str = str(round(sx, 3)) + " " + \ str(round(sy, 3)) + " " + str(round(sz, 3)) cube = cube.replace('SIZEXYZ', size_str) # Replace modelname cube = cube.replace('MODELNAME', str(modelname)) req = SpawnModelRequest() req.model_name = modelname req.model_xml = cube req.initial_pose.position.x = px req.initial_pose.position.y = py req.initial_pose.position.z = pz q = quaternion_from_euler(rr, rp, ry) req.initial_pose.orientation.x = q[0] req.initial_pose.orientation.y = q[1] req.initial_pose.orientation.z = q[2] req.initial_pose.orientation.w = q[3] return req def create_sphere_request(self,modelname, px, py, pz, rr, rp, ry, r): """Create a SpawnModelRequest with the parameters of the cube given. modelname: name of the model for gazebo px py pz: position of the cube (and it's collision cube) rr rp ry: rotation (roll, pitch, yaw) of the model sx sy sz: size of the cube""" cube = deepcopy(sdf_unit_sphere) # Replace size of model cube = cube.replace('RADIUS', str(r)) # Replace modelname cube = cube.replace('MODELNAME', str(modelname)) req = SpawnModelRequest() req.model_name = modelname req.model_xml = cube req.initial_pose.position.x = px req.initial_pose.position.y = py req.initial_pose.position.z = pz q = quaternion_from_euler(rr, rp, ry) req.initial_pose.orientation.x = q[0] req.initial_pose.orientation.y = q[1] req.initial_pose.orientation.z = q[2] req.initial_pose.orientation.w = q[3] return req def create_box_request(self,modelname, px, py, pz, rr, rp, ry): """Create a SpawnModelRequest with the parameters of the cube given. modelname: name of the model for gazebo px py pz: position of the cube (and it's collision cube) rr rp ry: rotation (roll, pitch, yaw) of the model""" cube = deepcopy(sdf_sand_box) req = SpawnModelRequest() req.model_name = modelname req.model_xml = cube req.initial_pose.position.x = px req.initial_pose.position.y = py req.initial_pose.position.z = pz q = quaternion_from_euler(rr, rp, ry) req.initial_pose.orientation.x = q[0] req.initial_pose.orientation.y = q[1] req.initial_pose.orientation.z = q[2] req.initial_pose.orientation.w = q[3] return req
33.283784
108
0.463198
1,881
17,241
4.112706
0.110579
0.023268
0.022492
0.017063
0.837901
0.826784
0.820967
0.809204
0.798345
0.780765
0
0.062115
0.407053
17,241
517
109
33.348162
0.69461
0.046227
0
0.844538
0
0.002101
0.839334
0.224957
0
0
0
0
0
1
0.008403
false
0
0.010504
0
0.027311
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
1cdc98744b311e2367992861b764dff14f24294c
201
py
Python
agatecharts/charts/__init__.py
onyxfish/fever
8aef0cd4adff7fdde1f5950ffb1d01db9137e3b7
[ "MIT" ]
4
2015-09-05T04:47:27.000Z
2015-09-16T15:14:43.000Z
agatecharts/charts/__init__.py
onyxfish/fever
8aef0cd4adff7fdde1f5950ffb1d01db9137e3b7
[ "MIT" ]
18
2015-09-05T01:17:30.000Z
2015-09-23T13:08:27.000Z
agatecharts/charts/__init__.py
onyxfish/way
8aef0cd4adff7fdde1f5950ffb1d01db9137e3b7
[ "MIT" ]
null
null
null
#!/usr/bin/env python from agatecharts.charts.bars import Bars from agatecharts.charts.columns import Columns from agatecharts.charts.lines import Lines from agatecharts.charts.scatter import Scatter
28.714286
46
0.840796
28
201
6.035714
0.428571
0.35503
0.497041
0
0
0
0
0
0
0
0
0
0.094527
201
6
47
33.5
0.928571
0.099502
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
1ceb3eafc161d9fd9d9f5411f96898dcc0d87036
8,111
py
Python
src/compas_rhino/objects/_select.py
jf---/compas
cd878ece933013b8ac34e9d42cf6d5c62a5396ee
[ "MIT" ]
2
2021-03-17T18:14:22.000Z
2021-09-19T13:50:02.000Z
src/compas_rhino/objects/_select.py
jf---/compas
cd878ece933013b8ac34e9d42cf6d5c62a5396ee
[ "MIT" ]
null
null
null
src/compas_rhino/objects/_select.py
jf---/compas
cd878ece933013b8ac34e9d42cf6d5c62a5396ee
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import absolute_import from __future__ import division import ast import rhinoscriptsyntax as rs __all__ = [ 'mesh_select_vertex', 'mesh_select_vertices', 'mesh_select_face', 'mesh_select_faces', 'mesh_select_edge', 'mesh_select_edges', 'network_select_node', 'network_select_nodes', 'network_select_edge', 'network_select_edges', ] def mesh_select_vertex(mesh, message="Select a vertex."): """Select a single vertex of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def mesh_select_vertices(mesh, message="Select vertices."): """Select multiple vertices of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_face(mesh, message="Select a face."): """Select a single face of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] key = ast.literal_eval(key) return key return None def mesh_select_faces(mesh, message="Select faces."): """Select multiple faces of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_edge(mesh, message="Select an edge."): """Select a single edge of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- tuple of int, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def mesh_select_edges(mesh, message="Select edges."): """Select multiple edges of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of tuple of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys def network_select_node(network, message="Select a node."): """Select a single node of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- hashable or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def network_select_nodes(network, message="Select nodes."): """Select multiple nodes of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def network_select_edge(network, message="Select an edge."): """Select a single edge of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- tuple of hashable, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def network_select_edges(network, message="Select edges."): """Select multiple edges of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of tuple of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass
27.494915
94
0.53298
915
8,111
4.637158
0.08306
0.037709
0.046194
0.058921
0.848456
0.827009
0.815225
0.815225
0.795428
0.795428
0
0.001826
0.324867
8,111
294
95
27.588435
0.77301
0.216619
0
0.793548
0
0
0.072015
0
0
0
0
0
0
1
0.064516
false
0.006452
0.032258
0
0.193548
0.006452
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
1c35f69ad59be07090db7f3539f86ff7d6d0b4e8
4,203
py
Python
server/forestgame/game/test_world.py
Nick-Pearson/forestgame
8a37225adbe6da9df7851eba34ad06806da0ce48
[ "0BSD" ]
null
null
null
server/forestgame/game/test_world.py
Nick-Pearson/forestgame
8a37225adbe6da9df7851eba34ad06806da0ce48
[ "0BSD" ]
5
2021-03-10T14:18:45.000Z
2022-03-12T00:28:29.000Z
server/forestgame/game/test_world.py
Nick-Pearson/forestgame
8a37225adbe6da9df7851eba34ad06806da0ce48
[ "0BSD" ]
null
null
null
import unittest from forestgame.game.world import World class WorldTest(unittest.TestCase): def test_world_inits_to_empty_data(self): world = World(None, "1", "0", 0, 0, [], []) self.assertEqual(0, world.get_size_x()) self.assertEqual(0, world.get_size_y()) self.assertEqual([], world.get_tile_data()) def test_world_with_tiles_inits__with_tiles_to_empty_data(self): world = World(None, "1", "0", 3, 3, [(1, 1, 0)], []) expected_tile_data = [ [1, 1, 1], [1, 0, 1], [1, 1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(3, world.get_size_x()) self.assertEqual(3, world.get_size_y()) def test_set_size_from_zero_initialsies_from_forest(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(3, 3) expected_tile_data = [ [1, 1, 1], [1, 1, 1], [1, 1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(3, world.get_size_x()) self.assertEqual(3, world.get_size_y()) def test_set_size_with_larger_x_y_pads_with_forest(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(2, 2) world.set_size(3, 3) expected_tile_data = [ [1, 1, 1], [1, 1, 1], [1, 1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(3, world.get_size_x()) self.assertEqual(3, world.get_size_y()) def test_set_size_with_larger_x_pads_with_forest(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(2, 3) world.set_size(3, 3) expected_tile_data = [ [1, 1, 1], [1, 1, 1], [1, 1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(3, world.get_size_x()) self.assertEqual(3, world.get_size_y()) def test_set_size_with_larger_y_pads_with_forest(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(3, 2) world.set_size(3, 3) expected_tile_data = [ [1, 1, 1], [1, 1, 1], [1, 1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(3, world.get_size_x()) self.assertEqual(3, world.get_size_y()) def test_set_size_with_smaller_x_y_removes_data(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(3, 3) world.set_size(2, 2) expected_tile_data = [ [1, 1], [1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(2, world.get_size_x()) self.assertEqual(2, world.get_size_y()) def test_set_size_with_smaller_x_removes_data(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(3, 3) world.set_size(2, 3) expected_tile_data = [ [1, 1], [1, 1], [1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(2, world.get_size_x()) self.assertEqual(3, world.get_size_y()) def test_set_size_with_smaller_y_removes_data(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(3, 3) world.set_size(3, 2) expected_tile_data = [ [1, 1, 1], [1, 1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(3, world.get_size_x()) self.assertEqual(2, world.get_size_y()) def test_set_size_with_same_x_y_does_nothing(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(3, 3) world.set_size(3, 3) expected_tile_data = [ [1, 1, 1], [1, 1, 1], [1, 1, 1], ] self.assertEqual(expected_tile_data, world.get_tile_data()) self.assertEqual(3, world.get_size_x()) self.assertEqual(3, world.get_size_y()) # set tile range checks def test_set_tile_changes_tile_data(self): world = World(None, "1", "0", 0, 0, [], []) world.set_size(5, 5) world.set_tile_at(2, 3, 0) self.assertEqual(0, world.get_tile_at(2, 3)) expected_tile_data = [ [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 1, 1] ] self.assertEqual(expected_tile_data, world.get_tile_data())
26.601266
66
0.610278
667
4,203
3.53973
0.068966
0.069462
0.087675
0.096569
0.883947
0.883947
0.849216
0.84244
0.834816
0.805167
0
0.06105
0.220557
4,203
157
67
26.770701
0.659646
0.004996
0
0.725806
0
0
0.005263
0
0
0
0
0
0.258065
1
0.08871
false
0
0.016129
0
0.112903
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
1c43093fa85de4f6e1de23a0ecc3b43530f42260
126
py
Python
sourcecode/GAN/FID/__init__.py
toufeeqahamedns/GeneratingHumanFaces
93048bf5f6ae99424f918b0d0fea46d21abee0cb
[ "MIT" ]
null
null
null
sourcecode/GAN/FID/__init__.py
toufeeqahamedns/GeneratingHumanFaces
93048bf5f6ae99424f918b0d0fea46d21abee0cb
[ "MIT" ]
null
null
null
sourcecode/GAN/FID/__init__.py
toufeeqahamedns/GeneratingHumanFaces
93048bf5f6ae99424f918b0d0fea46d21abee0cb
[ "MIT" ]
null
null
null
""" Package has implementation for the FID score calculation """ from GAN.FID import fid_score from GAN.FID import inception
21
60
0.785714
19
126
5.157895
0.631579
0.163265
0.204082
0.326531
0
0
0
0
0
0
0
0
0.150794
126
5
61
25.2
0.915888
0.444444
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
1c71ba0a22523d640266f7845ef799a8f73cbe39
243
py
Python
pawpyseed/compiler.py
akashkumarsingh612/pawpyseed
6f5aa0b8ca8c28a0221e5256afeb939c3344560b
[ "BSD-3-Clause" ]
null
null
null
pawpyseed/compiler.py
akashkumarsingh612/pawpyseed
6f5aa0b8ca8c28a0221e5256afeb939c3344560b
[ "BSD-3-Clause" ]
null
null
null
pawpyseed/compiler.py
akashkumarsingh612/pawpyseed
6f5aa0b8ca8c28a0221e5256afeb939c3344560b
[ "BSD-3-Clause" ]
null
null
null
import os, subprocess def compile_core(comp, scilib): """ ATTENTION, NOT FINISHED """ subprocess.call(("make pawpy_%s"%comp).split()) def compile_core(comp, scilib): """ ATTENTION, NOT FINISHED """ subprocess.call("make hfc".split())
18.692308
48
0.691358
31
243
5.322581
0.548387
0.121212
0.169697
0.218182
0.751515
0.751515
0.751515
0.751515
0.751515
0.751515
0
0
0.131687
243
13
49
18.692308
0.781991
0.193416
0
0.4
0
0
0.117978
0
0
0
0
0
0
1
0.4
false
0
0.2
0
0.6
0
0
0
0
null
0
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
1
0
0
8
1c7b1135efb3bd7f94a1f1a7d47294ebfd74cbde
10,416
py
Python
tests/test_nanoevents_vector.py
danbarto/coffea
2b28e28f602f8b81a1449ee85578187a7f52b602
[ "BSD-3-Clause" ]
null
null
null
tests/test_nanoevents_vector.py
danbarto/coffea
2b28e28f602f8b81a1449ee85578187a7f52b602
[ "BSD-3-Clause" ]
null
null
null
tests/test_nanoevents_vector.py
danbarto/coffea
2b28e28f602f8b81a1449ee85578187a7f52b602
[ "BSD-3-Clause" ]
null
null
null
import awkward as ak from coffea.nanoevents.methods import vector import pytest ATOL = 1e-8 def record_arrays_equal(a, b): return (ak.fields(a) == ak.fields(b)) and all(ak.all(a[f] == b[f]) for f in ak.fields(a)) def test_two_vector(): a = ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]] }, with_name="TwoVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) b = ak.zip( { "x": [[11, 12], [], [13], [14]], "y": [[15, 16], [], [17], [18]] }, with_name="TwoVector", highlevel=False ) b = ak.Array(b, behavior=vector.behavior) assert record_arrays_equal(- a, ak.zip( { "x": [[-1, -2], [], [-3], [-4]], "y": [[-5, -6], [], [-7], [-8]] } )) assert record_arrays_equal(a + b, ak.zip( { "x": [[12, 14], [], [16], [18]], "y": [[20, 22], [], [24], [26]] } )) assert record_arrays_equal(a - b, ak.zip( { "x": [[-10, -10], [], [-10], [-10]], "y": [[-10, -10], [], [-10], [-10]] } )) assert record_arrays_equal(a * 2, ak.zip( { "x": [[2, 4], [], [6], [8]], "y": [[10, 12], [], [14], [16]] } )) assert record_arrays_equal(a / 2, ak.zip( { "x": [[0.5, 1], [], [1.5], [2]], "y": [[2.5, 3], [], [3.5], [4]] } )) assert record_arrays_equal(a.dot(b), ak.Array([[86, 120], [], [158], [200]])) assert record_arrays_equal(b.dot(a), ak.Array([[86, 120], [], [158], [200]])) assert ak.all(abs(a.unit.r - 1) < ATOL) assert ak.all(abs(a.unit.phi - a.phi) < ATOL) def test_polar_two_vector(): a = ak.zip( { "r": [[1, 2], [], [3], [4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], }, with_name="PolarTwoVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert record_arrays_equal(a * 2, ak.zip( { "r": [[2, 4], [], [6], [8]], "phi": [[0.3, 0.4], [], [0.5], [0.6]] } )) assert ak.all((a * (-2)).r == [[2, 4], [], [6], [8]]) assert ak.all((a * (-2)).phi - ak.Array([ [-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535] ]) < ATOL) assert record_arrays_equal(a / 2, ak.zip( { "r": [[0.5, 1], [], [1.5], [2]], "phi": [[0.3, 0.4], [], [0.5], [0.6]] } )) assert ak.all(abs((-a).x + a.x) < ATOL) assert ak.all(abs((-a).y + a.y) < ATOL) assert record_arrays_equal(a * (-1), -a) assert ak.all(a.unit.phi == a.phi) def test_three_vector(): a = ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]], "z": [[9, 10], [], [11], [12]] }, with_name="ThreeVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) b = ak.zip( { "x": [[4, 1], [], [10], [11]], "y": [[17, 7], [], [11], [6]], "z": [[9, 11], [], [5], [16]] }, with_name="ThreeVector", highlevel=False ) b = ak.Array(b, behavior=vector.behavior) assert record_arrays_equal(- a, ak.zip( { "x": [[-1, -2], [], [-3], [-4]], "y": [[-5, -6], [], [-7], [-8]], "z": [[-9, -10], [], [-11], [-12]] } )) assert record_arrays_equal(a + b, ak.zip( { "x": [[5, 3], [], [13], [15]], "y": [[22, 13], [], [18], [14]], "z": [[18, 21], [], [16], [28]] } )) assert record_arrays_equal(a - b, ak.zip( { "x": [[-3, 1], [], [-7], [-7]], "y": [[-12, -1], [], [-4], [2]], "z": [[0, -1], [], [6], [-4]] } )) assert record_arrays_equal(a * 2, ak.zip( { "x": [[2, 4], [], [6], [8]], "y": [[10, 12], [], [14], [16]], "z": [[18, 20], [], [22], [24]] } )) assert record_arrays_equal(a / 2, ak.zip( { "x": [[0.5, 1], [], [1.5], [2]], "y": [[2.5, 3], [], [3.5], [4]], "z": [[4.5, 5], [], [5.5], [6]] } )) assert ak.all(a.dot(b) == ak.Array([[170, 154], [], [162], [284]])) assert ak.all(b.dot(a) == ak.Array([[170, 154], [], [162], [284]])) assert record_arrays_equal(a.cross(b), ak.zip( { "x": [[-108, -4], [], [-86], [56]], "y": [[27, -12], [], [95], [68]], "z": [[-3, 8], [], [-37], [-64]] } )) assert record_arrays_equal(b.cross(a), ak.zip( { "x": [[108, 4], [], [86], [-56]], "y": [[-27, 12], [], [-95], [-68]], "z": [[3, -8], [], [37], [64]] } )) assert ak.all(abs(a.unit.rho - 1) < ATOL) assert ak.all(abs(a.unit.phi - a.phi) < ATOL) def test_spherical_three_vector(): a = ak.zip( { "rho": [[1.0, 2.0], [], [3.0], [4.0]], "theta": [[1.2, 0.7], [], [1.8], [1.9]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], }, with_name="SphericalThreeVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert ak.all(abs((-a).x + a.x) < ATOL) assert ak.all(abs((-a).y + a.y) < ATOL) assert ak.all(abs((-a).z + a.z) < ATOL) assert record_arrays_equal(a * (-1), -a) def test_lorentz_vector(): a = ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]], "z": [[9, 10], [], [11], [12]], "t": [[50, 51], [], [52], [53]] }, with_name="LorentzVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) b = ak.zip( { "x": [[4, 1], [], [10], [11]], "y": [[17, 7], [], [11], [6]], "z": [[9, 11], [], [5], [16]], "t": [[60, 61], [], [62], [63]] }, with_name="LorentzVector", highlevel=False ) b = ak.Array(b, behavior=vector.behavior) assert record_arrays_equal(- a, ak.zip( { "x": [[-1, -2], [], [-3], [-4]], "y": [[-5, -6], [], [-7], [-8]], "z": [[-9, -10], [], [-11], [-12]], "t": [[-50, -51], [], [-52], [-53]] } )) assert record_arrays_equal(a + b, ak.zip( { "x": [[5, 3], [], [13], [15]], "y": [[22, 13], [], [18], [14]], "z": [[18, 21], [], [16], [28]], "t": [[110, 112], [], [114], [116]] } )) assert record_arrays_equal(a - b, ak.zip( { "x": [[-3, 1], [], [-7], [-7]], "y": [[-12, -1], [], [-4], [2]], "z": [[0, -1], [], [6], [-4]], "t": [[-10, -10], [], [-10], [-10]] } )) assert record_arrays_equal(a * 2, ak.zip( { "x": [[2, 4], [], [6], [8]], "y": [[10, 12], [], [14], [16]], "z": [[18, 20], [], [22], [24]], "t": [[100, 102], [], [104], [106]] } )) assert record_arrays_equal(a / 2, ak.zip( { "x": [[0.5, 1], [], [1.5], [2]], "y": [[2.5, 3], [], [3.5], [4]], "z": [[4.5, 5], [], [5.5], [6]], "t": [[25, 25.5], [], [26], [26.5]] } )) assert record_arrays_equal(a.pvec, ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]], "z": [[9, 10], [], [11], [12]], } )) boosted = a.boost(-a.boostvec) assert ak.all(abs(boosted.x) < ATOL) assert ak.all(abs(boosted.y) < ATOL) assert ak.all(abs(boosted.z) < ATOL) def test_pt_eta_phi_m_lorentz_vector(): a = ak.zip( { "pt": [[1, 2], [], [3], [4]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "mass": [[0.5, 0.9], [], [1.3], [4.5]] }, with_name="PtEtaPhiMLorentzVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert ak.all((a * (-2)).pt == ak.Array([[2, 4], [], [6], [8]])) assert ak.all((a * (-2)).theta - ak.Array([ [2.556488570968, 2.65804615357], [], [2.74315571762], [3.07487087733] ]) < ATOL) assert ak.all((a * (-2)).phi - ak.Array([ [-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535] ]) < ATOL) assert record_arrays_equal(a / 2, ak.zip( { "pt": [[0.5, 1], [], [1.5], [2]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "mass": [[0.25, 0.45], [], [0.65], [2.25]] } )) assert record_arrays_equal(a * (-1), -a) boosted = a.boost(-a.boostvec) assert ak.all(abs(boosted.x) < ATOL) assert ak.all(abs(boosted.y) < ATOL) assert ak.all(abs(boosted.z) < ATOL) def test_pt_eta_phi_e_lorentz_vector(): a = ak.zip( { "pt": [[1, 2], [], [3], [4]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "energy": [[50, 51], [], [52], [60]] }, with_name="PtEtaPhiELorentzVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert ak.all((a * (-2)).pt == ak.Array([[2, 4], [], [6], [8]])) assert ak.all((a * (-2)).theta - ak.Array([ [2.556488570968, 2.65804615357], [], [2.74315571762], [3.07487087733] ]) < ATOL) assert ak.all((a * (-2)).phi - ak.Array([ [-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535] ]) < ATOL) assert record_arrays_equal(a / 2, ak.zip( { "pt": [[0.5, 1], [], [1.5], [2]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "energy": [[25, 25.5], [], [26], [30]] } )) assert record_arrays_equal(a * (-1), -a) boosted = a.boost(-a.boostvec) assert ak.all(abs(boosted.x) < ATOL) assert ak.all(abs(boosted.y) < ATOL) assert ak.all(abs(boosted.z) < ATOL)
28.075472
93
0.368856
1,345
10,416
2.788104
0.101115
0.042667
0.131467
0.171733
0.880267
0.797333
0.78
0.753867
0.740533
0.716
0
0.141142
0.352439
10,416
370
94
28.151351
0.414826
0
0
0.55287
0
0
0.027938
0.004224
0
0
0
0
0.172205
1
0.024169
false
0
0.009063
0.003021
0.036254
0
0
0
0
null
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
c70bc413822aaad70486fa31ce67b5a7d9e44d76
49,568
py
Python
cave/com.raytheon.viz.gfe/python/autotest/VTEC_GHG_FFA_TestScript.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
cave/com.raytheon.viz.gfe/python/autotest/VTEC_GHG_FFA_TestScript.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
cave/com.raytheon.viz.gfe/python/autotest/VTEC_GHG_FFA_TestScript.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
1
2021-10-30T00:03:05.000Z
2021-10-30T00:03:05.000Z
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## # ---------------------------------------------------------------------------- # This software is in the public domain, furnished "as is", without technical # support, and with no warranty, express or implied, as to its usefulness for # any purpose. # # Headlines Timing # # Author: # ---------------------------------------------------------------------------- #set up to test area names and part of states # without locationName defined areaT1 = """ AreaDictionary['FLZ050']['fullStateName'] = 'Florida' AreaDictionary['FLZ050']['partOfState'] = 'western' AreaDictionary['FLZ057']['fullStateName'] = 'Florida' AreaDictionary['FLZ057']['partOfState'] = 'western' AreaDictionary['FLZ160']['fullStateName'] = 'Florida' AreaDictionary['FLZ160']['partOfState'] = 'central' AreaDictionary['FLZ151']['fullStateName'] = 'Florida' AreaDictionary['FLZ151']['partOfState'] = 'central' AreaDictionary['FLZ043']['fullStateName'] = 'Florida' AreaDictionary['FLZ043']['partOfState'] = 'central' AreaDictionary['FLZ162']['fullStateName'] = 'Florida' AreaDictionary['FLZ162']['partOfState'] = 'central' AreaDictionary['FLZ165']['fullStateName'] = 'Florida' AreaDictionary['FLZ165']['partOfState'] = 'central' AreaDictionary['FLZ056']['fullStateName'] = 'Florida' AreaDictionary['FLZ056']['partOfState'] = 'southern' AreaDictionary['FLZ052']['fullStateName'] = 'Georgia' AreaDictionary['FLZ052']['partOfState'] = 'western' AreaDictionary['FLZ155']['fullStateName'] = 'Georgia' AreaDictionary['FLZ155']['partOfState'] = 'western' AreaDictionary['FLZ061']['fullStateName'] = 'Georgia' AreaDictionary['FLZ061']['partOfState'] = 'southern' AreaDictionary['FLZ148']['fullStateName'] = 'Georgia' AreaDictionary['FLZ148']['partOfState'] = 'southern' AreaDictionary['FLZ142']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ142']['partOfState'] = 'western' AreaDictionary['FLZ043']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ043']['partOfState'] = 'western' """ #with location name defined areaT2= """ AreaDictionary['FLZ050']['fullStateName'] = 'Florida' AreaDictionary['FLZ050']['partOfState'] = 'western' AreaDictionary['FLZ050']['locationName'] = 'Clearfield' AreaDictionary['FLZ057']['fullStateName'] = 'Florida' AreaDictionary['FLZ057']['partOfState'] = 'western' AreaDictionary['FLZ057']['locationName'] = 'Clearfield' AreaDictionary['FLZ160']['fullStateName'] = 'Florida' AreaDictionary['FLZ160']['partOfState'] = 'central' AreaDictionary['FLZ160']['locationName'] = 'Aunt Ruby' AreaDictionary['FLZ151']['fullStateName'] = 'Florida' AreaDictionary['FLZ151']['partOfState'] = 'central' AreaDictionary['FLZ151']['locationName'] = 'Aunt Ruby' AreaDictionary['FLZ043']['fullStateName'] = 'Florida' AreaDictionary['FLZ043']['partOfState'] = 'central' AreaDictionary['FLZ043']['locationName'] = 'Adams' AreaDictionary['FLZ162']['fullStateName'] = 'Florida' AreaDictionary['FLZ162']['partOfState'] = 'central' AreaDictionary['FLZ162']['locationName'] = 'Adams' AreaDictionary['FLZ165']['fullStateName'] = 'Florida' AreaDictionary['FLZ165']['partOfState'] = 'central' #AreaDictionary['FLZ165']['locationName'] = 'western' AreaDictionary['FLZ056']['fullStateName'] = 'Florida' AreaDictionary['FLZ056']['partOfState'] = 'southern' AreaDictionary['FLZ056']['locationName'] = 'Tampa' AreaDictionary['FLZ052']['fullStateName'] = 'Georgia' AreaDictionary['FLZ052']['partOfState'] = 'western' AreaDictionary['FLZ052']['locationName'] = 'Tampa' AreaDictionary['FLZ155']['fullStateName'] = 'Georgia' AreaDictionary['FLZ155']['partOfState'] = 'western' AreaDictionary['FLZ155']['locationName'] = 'Atlanta' AreaDictionary['FLZ061']['fullStateName'] = 'Georgia' AreaDictionary['FLZ061']['partOfState'] = 'southern' AreaDictionary['FLZ061']['locationName'] = 'Beach' AreaDictionary['FLZ148']['fullStateName'] = 'Georgia' AreaDictionary['FLZ148']['partOfState'] = 'southern' AreaDictionary['FLZ148']['locationName'] = 'Beach' AreaDictionary['FLZ142']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ142']['partOfState'] = 'western' AreaDictionary['FLZ142']['locationName'] = 'South Park' AreaDictionary['FLZ043']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ043']['partOfState'] = 'western' AreaDictionary['FLZ043']['locationName'] = 'South Park' """ #for testing of parishes, counties, and areas areaT3 = """ AreaDictionary['FLC017']['fullStateName'] = 'Louisiana' AreaDictionary['FLC017']['partOfState'] = 'western' AreaDictionary['FLC017']['independentCity'] = 1 AreaDictionary['FLC105']['fullStateName'] = 'Louisiana' AreaDictionary['FLC105']['partOfState'] = 'western' AreaDictionary['FLC027']['fullStateName'] = 'Louisiana' AreaDictionary['FLC027']['partOfState'] = 'western' AreaDictionary['FLC053']['fullStateName'] = 'Florida' AreaDictionary['FLC053']['partOfState'] = 'western' """ areaT3FIPS0= '#Definition["areaType"] = "FIPS"' areaT3FIPS1= 'Definition["areaType"] = "FIPS"' scripts = [ { "commentary": "Clear out all Hazards Table and Grids.", "name": "Hazard_FFA_0", "productType": None, "clearHazardsTable": 1, "checkStrings": [], }, { "commentary": "NEW FFA", "name": "Hazard_FFA_1", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Coastal Pasco-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "CON FFA", "name": "Hazard_FFA_2", "drtTime": "20100101_0530", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'SM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.CON.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "EXA FFA", "name": "Hazard_FFA_3", "drtTime": "20100101_0700", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'DM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149","FLZ057"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXA.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.DM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has expanded the", "* Flood Watch to include a portion of south central Florida, including the following area, Highlands.", "* Until 3 AM EST early this morning", "FLZ149-", "/X.CON.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.DM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "CAN FFA, NEW FFA", "name": "Hazard_FFA_4", "drtTime": "20100101_0720", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'IJ '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 8, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CAN.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/X.NEW.KTBW.FF.A.0001.100101T0720Z-100101T1300Z/", "/X.NEW.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/00000.0.IJ.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH IN EFFECT UNTIL 8 AM EST THIS MORNING...", "...FLASH FLOOD WATCH IN EFFECT FROM LATE TONIGHT THROUGH SATURDAY MORNING...", "...FLOOD WATCH IS CANCELLED...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST this morning", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* From late tonight through Saturday morning", "The Flood Watch for a portion of south central Florida has been cancelled.", "FLZ149-", "/X.CAN.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.IJ.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IS CANCELLED...", "The Flood Watch for a portion of west central Florida has been cancelled." ], }, { "commentary": "EXP FFA, 2 NEW FFA", "name": "Hazard_FFA_5", "drtTime": "20100101_1300", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'FS '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXP.KTBW.FF.A.0001.000000T0000Z-100101T1300Z/", "/X.NEW.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/X.CON.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/00000.0.FS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM LATE TONIGHT THROUGH SATURDAY MORNING...", "...FLASH FLOOD WATCH IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY AFTERNOON...", "...FLASH FLOOD WATCH HAS EXPIRED...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From late tonight through Saturday morning", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* From Saturday evening through Sunday afternoon", "The Flash Flood Watch for a portion of south central Florida has expired.", "FLZ149-", "/X.NEW.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.FS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY EVENING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of west central Florida, including the following area, Coastal Pasco.", "* From Saturday evening through Sunday evening", ], }, { "commentary": "CON test of multiple events", "name": "Hazard_FFA_6", "drtTime": "20100102_0300", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'RS '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/X.CON.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/00000.0.RS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 8 AM EST SATURDAY...", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST Saturday", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From Saturday evening through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.RS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From Saturday evening through Sunday evening", ], }, { "commentary": "middle of 1st event", "name": "Hazard_FFA_7", "drtTime": "20100102_0700", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0002.000000T0000Z-100102T1300Z/", "/X.CON.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 8 AM EST THIS MORNING...", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST this morning", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From this evening through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From this evening through Sunday evening", ], }, { "commentary": "joining two events", "name": "Hazard_FFA_8", "drtTime": "20100102_1200", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'IC '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CAN.KTBW.FF.A.0002.000000T0000Z-100102T1300Z/", "/X.EXT.KTBW.FF.A.0003.100102T1200Z-100103T1900Z/", "/00000.0.IC.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH NOW IN EFFECT THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch is now in effect for", "* A portion of south central Florida, including the following area, Highlands.", "* Through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.IC.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From this evening through Sunday evening", ], }, { "commentary": "into the tail end of the events", "name": "Hazard_FFA_9", "drtTime": "20100103_1100", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'SM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0003.000000T0000Z-100103T1900Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 2 PM EST THIS AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 2 PM EST this afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT THROUGH THIS EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Through this evening", ], }, { "commentary": "exp 1st event, continue 2nd event", "name": "Hazard_FFA_10", "drtTime": "20100103_1855", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'DR '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXP.KTBW.FF.A.0003.000000T0000Z-100103T1900Z/", "/00000.0.DR.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH WILL EXPIRE AT 2 PM EST THIS AFTERNOON...", "The Flash Flood Watch for a portion of south central Florida will expire at 2 PM EST this afternoon.", "FLZ149-", "/X.CON.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.DR.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 8 PM EST THIS EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 8 PM EST this evening", ], }, { "commentary": "cancel 2nd event", "name": "Hazard_FFA_11", "drtTime": "20100104_0000", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'GO '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.CAN.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.GO.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IS CANCELLED...", "The Flood Watch for a portion of west central Florida has been cancelled.", ], }, { "commentary": "Deleting hazard grids.", "name": "Hazard_FFA_12", "productType": None, "checkStrings": [], "clearHazardsTable": 1, }, # Begin detailed phrasing of location tests { "commentary": "one state, single area, w/o location", "name": "Hazard_FFA_13a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of western Florida, including the following area, Pinellas.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, single area, w location", "name": "Hazard_FFA_13b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of western Florida, including the following area, Clearfield.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area, w/o location", "name": "Hazard_FFA_14a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ052","FLZ155"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-Coastal Manatee-", # "Including the cities of St. Petersburg, Clearwater, Largo, ", # "Lakeland, Winter Haven, Bradenton, Bayshore Gardens, ", # "Palmetto, Sebring, Avon Park, Placid Lakes", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Georgia, including the following areas, in western Florida, Highlands and Pinellas. In western Georgia, Coastal Manatee and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area, w location", "name": "Hazard_FFA_14b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ052","FLZ155"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Georgia, including the following areas, in western Florida, Clearfield. In western Georgia, Atlanta and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, multiple areas, w/o location", "name": "Hazard_FFA_15a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ160", "FLZ057","FLZ151","FLZ056"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-056-057-151-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Hardee-Highlands-Coastal Hillsborough-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of central Florida, southern Florida, and western Florida, including the following areas, in central Florida, Coastal Hillsborough and Coastal Sarasota. In southern Florida, Hardee. In western Florida, Highlands and Pinellas.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, multiple areas, w location", "name": "Hazard_FFA_15b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ160", "FLZ057","FLZ151","FLZ056"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-056-057-151-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Hardee-Highlands-Coastal Hillsborough-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of central Florida, southern Florida, and western Florida, including the following areas, in central Florida, Aunt Ruby. In southern Florida, Tampa. In western Florida, Clearfield.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area 1st, mulitple area 2nd, w/o location", "name": "Hazard_FFA_16a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ052", "FLZ155","FLZ061"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-061-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-DeSoto-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and Georgia, including the following areas, in western Florida, Pinellas. In Georgia, Coastal Manatee, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area 1st, mulitple area 2nd, w location", "name": "Hazard_FFA_16b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ052", "FLZ155","FLZ061"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-061-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-DeSoto-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and Georgia, including the following areas, in western Florida, Clearfield. In Georgia, Atlanta, Beach, and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, multiple areas, w/o location", "name": "Hazard_FFA_17a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ160","FLZ151","FLZ052","FLZ155","FLZ061","FLZ148"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-061-148-151-155-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-DeSoto-Coastal Hernando-", "Coastal Hillsborough-Coastal Manatee-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of Florida and Georgia, including the following areas, in Florida, Coastal Hillsborough, Coastal Sarasota, Highlands, and Pinellas. In Georgia, Coastal Hernando, Coastal Manatee, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, multiple areas, w location", "name": "Hazard_FFA_17b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ160","FLZ151","FLZ052","FLZ155","FLZ061","FLZ148"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-061-148-151-155-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-DeSoto-Coastal Hernando-", "Coastal Hillsborough-Coastal Manatee-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of Florida and Georgia, including the following areas, in Florida, Aunt Ruby and Clearfield. In Georgia, Atlanta, Beach, and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "parishes 1, independent 1, counties 1", "name": "Hazard_FFA_18a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [ ("AreaDictionary", "TextUtility", "add", areaT3, "delete"), ("Hazard_FFA_Local", "TextProduct", "replace", (areaT3FIPS0, areaT3FIPS1), "delete"), ], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLC017","FLC027", "FLC053"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLC017-027-053-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Citrus-DeSoto-Hernando-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Louisiana, including the following county, independent city, and parish, in western Florida, Hernando. In western Louisiana, Citrus and DeSoto.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "parishes 2, independent 1, counties 1", "name": "Hazard_FFA_18b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [ ("AreaDictionary", "TextUtility", "add", areaT3, "delete"), ("Hazard_FFA_Local", "TextProduct", "replace", (areaT3FIPS0, areaT3FIPS1), "delete"), ], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLC017","FLC027", "FLC053","FLC105"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLC017-027-053-105-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Citrus-DeSoto-Hernando-Polk-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Louisiana, including the following county, independent city, and parishes, in western Florida, Hernando. In western Louisiana, Citrus, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, ] import TestScript def testScript(self, dataMgr): defaults = { "database": "<site>_GRID__Fcst_00000000_0000", "publishGrids": 0, "decodeVTEC": 1, "gridsStartTime": "20100101_0500", "orderStrings": 1, "vtecMode": "X", "deleteGrids": [("Fcst", "Hazards", "SFC", "all", "all")], } return TestScript.generalTestScript(self, dataMgr, scripts, defaults)
47.342884
261
0.588162
5,218
49,568
5.562476
0.08394
0.037554
0.043859
0.012127
0.891301
0.885065
0.877864
0.861637
0.824117
0.741671
0
0.105066
0.255366
49,568
1,046
262
47.388145
0.681306
0.028829
0
0.764458
0
0.023134
0.699565
0.159232
0
0
0
0
0
1
0.001052
false
0
0.001052
0
0.003155
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
c71c00b730b4e3cf508cdefb7968765436ad7ce3
68,625
py
Python
benchmarks/SimResults/combinations_spec_mylocality/oldstuff/cmp_soplexmcfcalculixgcc/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
benchmarks/SimResults/combinations_spec_mylocality/oldstuff/cmp_soplexmcfcalculixgcc/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
benchmarks/SimResults/combinations_spec_mylocality/oldstuff/cmp_soplexmcfcalculixgcc/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
power = {'BUSES': {'Area': 1.33155, 'Bus/Area': 1.33155, 'Bus/Gate Leakage': 0.00662954, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0691322, 'Bus/Subthreshold Leakage with power gating': 0.0259246, 'Gate Leakage': 0.00662954, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0691322, 'Subthreshold Leakage with power gating': 0.0259246}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.181181, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.344996, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.977935, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.486054, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.841669, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.482721, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.81044, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.330514, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 7.28395, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.184753, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0176198, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.195265, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.130309, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.380018, 'Execution Unit/Register Files/Runtime Dynamic': 0.147929, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.521478, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 1.08927, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.79801, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00272158, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00272158, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.0023766, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000923356, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00187191, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00969166, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0258763, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.12527, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 6.43323, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.372767, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.425473, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.96874, 'Instruction Fetch Unit/Runtime Dynamic': 0.959077, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.090727, 'L2/Runtime Dynamic': 0.0127692, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 4.08122, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.38167, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0920133, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0920133, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.51749, 'Load Store Unit/Runtime Dynamic': 1.92746, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.226889, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.453778, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0805237, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0817258, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.399995, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.061585, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.697703, 'Memory Management Unit/Runtime Dynamic': 0.143311, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 26.1203, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.644561, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0326103, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.237087, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.914258, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 7.75489, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.11996, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.29691, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.64733, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.234954, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.378972, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.191292, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.805218, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.169475, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 5.2954, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.122295, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00985502, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.116195, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0728839, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.23849, 'Execution Unit/Register Files/Runtime Dynamic': 0.0827389, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.274787, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.565173, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 2.15542, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00133282, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00133282, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00118494, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000471861, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00104698, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00489756, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0119197, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0700652, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 4.45674, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.197355, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.237973, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 6.89155, 'Instruction Fetch Unit/Runtime Dynamic': 0.522211, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0504299, 'L2/Runtime Dynamic': 0.0069462, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.70196, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.713329, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0473909, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0473909, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.92575, 'Load Store Unit/Runtime Dynamic': 0.994436, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.116858, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.233716, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0414733, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0421754, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.277104, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0325171, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.504457, 'Memory Management Unit/Runtime Dynamic': 0.0746925, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 19.2571, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.321701, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0145155, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.111753, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.44797, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 4.20167, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0065108, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.207803, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0335685, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.102536, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.165386, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.0834813, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.351403, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.112125, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.10223, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.00634181, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0043008, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0336025, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0318071, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0399443, 'Execution Unit/Register Files/Runtime Dynamic': 0.0361079, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.0724192, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.179703, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.18039, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00112696, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00112696, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000995662, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000393137, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000456911, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.0037065, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0103022, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0305769, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 1.94496, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0958958, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.103853, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 4.25787, 'Instruction Fetch Unit/Runtime Dynamic': 0.244335, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0538499, 'L2/Runtime Dynamic': 0.0148173, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.02873, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.40237, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0256105, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0256104, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.14967, 'Load Store Unit/Runtime Dynamic': 0.554282, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.063151, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.126302, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0224125, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0232096, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.12093, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0157552, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.31554, 'Memory Management Unit/Runtime Dynamic': 0.0389648, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 14.4686, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0166828, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.00482915, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0520126, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0735245, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.10632, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.00682822, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.208052, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0364806, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.106185, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.171272, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.0864526, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.36391, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.115853, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.11398, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.00689197, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00445387, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0347798, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0329391, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0416718, 'Execution Unit/Register Files/Runtime Dynamic': 0.037393, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.0749788, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.202833, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.21756, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000625326, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000625326, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000550159, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000215984, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000473173, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00227399, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.00579905, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0316652, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 2.01418, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0689457, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.107549, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 4.33045, 'Instruction Fetch Unit/Runtime Dynamic': 0.216233, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0418086, 'L2/Runtime Dynamic': 0.00989266, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.36015, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.554162, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0363327, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0363327, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.53172, 'Load Store Unit/Runtime Dynamic': 0.769675, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0895903, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.17918, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0317959, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0324228, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.125234, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0113054, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.335963, 'Memory Management Unit/Runtime Dynamic': 0.0437282, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 14.9434, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0181291, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0050114, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0551057, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0782462, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.33534, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 3.868411224021876, 'Runtime Dynamic': 3.868411224021876, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.371973, 'Runtime Dynamic': 0.183113, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 191.908, 'Gate Leakage': 1.53485, 'Peak Dynamic': 75.1614, 'Peak Power': 108.274, 'Runtime Dynamic': 16.5813, 'Subthreshold Leakage': 31.5774, 'Subthreshold Leakage with power gating': 13.9484, 'Total Cores/Area': 128.669, 'Total Cores/Gate Leakage': 1.4798, 'Total Cores/Peak Dynamic': 74.7894, 'Total Cores/Runtime Dynamic': 16.3982, 'Total Cores/Subthreshold Leakage': 24.7074, 'Total Cores/Subthreshold Leakage with power gating': 10.2429, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.371973, 'Total L3s/Runtime Dynamic': 0.183113, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 33.1122, 'Total NoCs/Area': 1.33155, 'Total NoCs/Gate Leakage': 0.00662954, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0691322, 'Total NoCs/Subthreshold Leakage with power gating': 0.0259246}}
75.082057
124
0.682157
8,082
68,625
5.786315
0.067681
0.123511
0.112905
0.093403
0.939185
0.931316
0.91793
0.885833
0.862611
0.842019
0
0.132209
0.224277
68,625
914
125
75.082057
0.746271
0
0
0.642232
0
0
0.657258
0.048087
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
c7226ff1219f925df17003fe42d233729469035d
4,187
py
Python
tests/test_models/test_backbones/test_sr_backbones/test_edvr_net.py
wangruohui/mmediting
6577d307caf9edfb34c6e46547994e6314fffc37
[ "Apache-2.0" ]
45
2022-03-05T06:54:34.000Z
2022-03-30T02:15:42.000Z
tests/test_models/test_backbones/test_sr_backbones/test_edvr_net.py
wangruohui/mmediting
6577d307caf9edfb34c6e46547994e6314fffc37
[ "Apache-2.0" ]
1
2022-03-25T14:04:39.000Z
2022-03-31T04:48:38.000Z
tests/test_models/test_backbones/test_sr_backbones/test_edvr_net.py
wangruohui/mmediting
6577d307caf9edfb34c6e46547994e6314fffc37
[ "Apache-2.0" ]
1
2022-03-10T01:00:24.000Z
2022-03-10T01:00:24.000Z
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmedit.models.backbones.sr_backbones.edvr_net import (EDVRNet, PCDAlignment, TSAFusion) def test_pcd_alignment(): """Test PCDAlignment.""" # cpu pcd_alignment = PCDAlignment(mid_channels=4, deform_groups=2) input_list = [] for i in range(3, 0, -1): input_list.append(torch.rand(1, 4, 2**i, 2**i)) pcd_alignment = pcd_alignment input_list = [v for v in input_list] output = pcd_alignment(input_list, input_list) assert output.shape == (1, 4, 8, 8) with pytest.raises(AssertionError): pcd_alignment(input_list[0:2], input_list) # gpu if torch.cuda.is_available(): pcd_alignment = PCDAlignment(mid_channels=4, deform_groups=2) input_list = [] for i in range(3, 0, -1): input_list.append(torch.rand(1, 4, 2**i, 2**i)) pcd_alignment = pcd_alignment.cuda() input_list = [v.cuda() for v in input_list] output = pcd_alignment(input_list, input_list) assert output.shape == (1, 4, 8, 8) with pytest.raises(AssertionError): pcd_alignment(input_list[0:2], input_list) def test_tsa_fusion(): """Test TSAFusion.""" # cpu tsa_fusion = TSAFusion(mid_channels=4, num_frames=5, center_frame_idx=2) input_tensor = torch.rand(1, 5, 4, 8, 8) output = tsa_fusion(input_tensor) assert output.shape == (1, 4, 8, 8) # gpu if torch.cuda.is_available(): tsa_fusion = tsa_fusion.cuda() input_tensor = input_tensor.cuda() output = tsa_fusion(input_tensor) assert output.shape == (1, 4, 8, 8) def test_edvrnet(): """Test EDVRNet.""" # cpu # with tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=True) input_tensor = torch.rand(1, 5, 3, 8, 8) edvrnet.init_weights(pretrained=None) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) # without tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=False) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) with pytest.raises(AssertionError): # The height and width of inputs should be a multiple of 4 input_tensor = torch.rand(1, 5, 3, 3, 3) edvrnet(input_tensor) with pytest.raises(TypeError): # pretrained should be str or None edvrnet.init_weights(pretrained=[1]) # gpu if torch.cuda.is_available(): # with tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=True).cuda() input_tensor = torch.rand(1, 5, 3, 8, 8).cuda() edvrnet.init_weights(pretrained=None) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) # without tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=False).cuda() output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) with pytest.raises(AssertionError): # The height and width of inputs should be a multiple of 4 input_tensor = torch.rand(1, 5, 3, 3, 3).cuda() edvrnet(input_tensor) with pytest.raises(TypeError): # pretrained should be str or None edvrnet.init_weights(pretrained=[1])
28.482993
76
0.578696
534
4,187
4.335206
0.162921
0.062203
0.058747
0.062203
0.834125
0.834125
0.792225
0.792225
0.792225
0.770626
0
0.044133
0.318128
4,187
146
77
28.678082
0.766725
0.081443
0
0.762376
0
0
0
0
0
0
0
0
0.118812
1
0.029703
false
0
0.029703
0
0.059406
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
c7235d9e02846d039085054a4375d4bc687a9231
12,229
py
Python
enjoliver-api/tests/test_generate_groups.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
11
2017-11-06T08:42:55.000Z
2021-01-08T11:01:02.000Z
enjoliver-api/tests/test_generate_groups.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
7
2017-12-28T12:05:50.000Z
2021-04-02T15:04:46.000Z
enjoliver-api/tests/test_generate_groups.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
4
2017-11-08T10:03:31.000Z
2018-06-03T17:59:43.000Z
import os from shutil import rmtree from tempfile import mkdtemp from unittest import TestCase from enjoliver import generator class GenerateGroupTestCase(TestCase): api_uri = None test_matchbox_path = None test_resources_path = None tests_path = None @classmethod def setUpClass(cls): cls.tests_path = mkdtemp(dir='/tmp') cls.test_matchbox_path = os.path.join(cls.tests_path, 'test_matchbox') cls.test_resources_path = os.path.join(cls.tests_path, 'test_resources') os.mkdir(cls.test_matchbox_path) os.mkdir(cls.test_resources_path) os.mkdir(os.path.join(cls.test_matchbox_path, 'groups')) cls.api_uri = "http://127.0.0.1:5000" @classmethod def tearDownClass(cls): rmtree(cls.tests_path) class TestGenerateGroups(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", matchbox_path=cls.test_matchbox_path ) cls.gen.profiles_path = cls.test_resources_path def test_instantiate_generate_group_with_incorrect_parameters(self): with self.assertRaises(TypeError): generator.GenerateGroup() def test_instantiate_generate_group_with_non_existing_matchbox_path(self): with self.assertRaises(OSError): generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path='/foo/bar' ) def test_instantiate_generate_group(self): sandbox = mkdtemp(dir='/tmp') os.mkdir(os.path.join(sandbox, 'groups')) generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path=sandbox ) rmtree(sandbox) def test_00_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': '', 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': []} self.gen._metadata() self.assertEqual(expect['api_uri'], self.gen._target_data["metadata"]["api_uri"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy' } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", matchbox_path=self.test_matchbox_path ) result = new.generate() self.assertEqual(expect["profile"], result["profile"]) self.assertEqual(expect["id"], result["id"]) self.assertEqual(expect["name"], result["name"]) self.assertEqual(expect["metadata"]["api_uri"], result["metadata"]["api_uri"]) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) self.assertFalse(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"one": "selector"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorLower(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorUpper(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, matchbox_path=cls.test_matchbox_path ) def test_00_ip_address(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) new.dump() self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsExtraMetadata(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, metadata={"etcd_initial_cluster": "static0=http://192.168.1.1:2379", "api_seed": "http://192.168.1.2:5000"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': 'static0=http://192.168.1.1:2379', 'api_uri': "%s" % self.gen.api_uri, 'api_seed': 'http://192.168.1.2:5000', 'ssh_authorized_keys': []} self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]["ssh_authorized_keys"] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) self.assertTrue(new.dump()) for i in range(10): self.assertFalse(new.dump()) new.api_uri = "http://google.com" self.assertTrue(new.dump()) self.assertFalse(new.dump())
35.446377
93
0.568485
1,435
12,229
4.618118
0.08223
0.054323
0.065188
0.057341
0.846084
0.814848
0.799608
0.787536
0.768975
0.75796
0
0.043057
0.282116
12,229
344
94
35.549419
0.711812
0
0
0.735974
1
0
0.188568
0
0
0
0
0
0.115512
1
0.092409
false
0
0.016502
0
0.138614
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
c7551a216f55773fcf2668fcef4ad367660f3169
21,599
py
Python
aispace/layers/callbacks/qa_evaluators.py
SmileGoat/AiSpace
35fc120667e4263c99b300815e0bf018f5064a40
[ "Apache-2.0" ]
32
2020-01-16T07:59:03.000Z
2022-03-31T09:24:00.000Z
aispace/layers/callbacks/qa_evaluators.py
SmileGoat/AiSpace
35fc120667e4263c99b300815e0bf018f5064a40
[ "Apache-2.0" ]
9
2020-06-05T03:27:06.000Z
2022-03-12T01:00:17.000Z
aispace/layers/callbacks/qa_evaluators.py
SmileGoat/AiSpace
35fc120667e4263c99b300815e0bf018f5064a40
[ "Apache-2.0" ]
3
2020-06-09T02:22:50.000Z
2021-07-19T06:07:07.000Z
# -*- coding: utf-8 -*- # @Time : 2020-07-30 15:06 # @Author : yingyuankai # @Email : [email protected] # @File : qa_evaluators.py import os import logging import numpy as np import tensorflow as tf import json from pprint import pprint from collections import defaultdict from aispace.utils.eval_utils import calc_em_score, calc_f1_score from aispace.utils.io_utils import save_json from aispace.utils.print_utils import print_boxed from aispace.utils.metrics_utils import ConfusionMatrix __all__ = [ 'EvaluatorForQaSimple', 'EvaluatorForQaWithImpossible' ] logger = logging.getLogger(__name__) class EvaluatorForQaSimple(tf.keras.callbacks.Callback): """ start_top_log_prob and end_top_log_prob's shape is [batch, k] ref: https://keras.io/examples/nlp/text_extraction_with_bert/ """ def __init__(self, validation_dataset, validation_steps, test_dataset, test_steps, report_dir, max_answer_length=64, n_best_size=5): self.validation_dataset = validation_dataset self.validation_steps = validation_steps self.test_dataset = test_dataset self.test_steps = test_steps self.max_answer_length = max_answer_length self.n_best_size = n_best_size self.report_dir = report_dir def on_epoch_end(self, epoch, logs=None): new_logs = self.eval_process(self.validation_dataset, self.validation_steps) logs = logs or {} logs.update(new_logs) print(f"Epoch: {epoch + 1}, val_f1_score: {logs['val_f1_score']:.4f}, val_em_score: {logs['val_em_score']:.4f}, " f"val_f1_em_avg_score: {logs['val_f1_em_avg_score']:.4f}") def on_train_end(self, logs=None): logger.info("Start Evaluate.") if not os.path.exists(self.report_dir): os.makedirs(self.report_dir) new_logs = self.eval_process(self.test_dataset, self.test_steps) save_json(os.path.join(self.report_dir, 'performance.json'), new_logs) print_boxed(f"Question Answer Evaluation") pprint(new_logs) logger.info(f"Save question answer reports in {self.report_dir}") def eval_process(self, dataset, n_steps=None): f1 = 0 em = 0 total_count = 0 skip_count = 0 start_top_res, end_top_res, unique_id_res = self.model.predict(dataset, steps=n_steps) start_top_log_prob, start_top_index = start_top_res[:, :, 0], start_top_res[:, :, 1].astype(np.int) # [b, k] end_top_log_prob, end_top_index = end_top_res[:, :, 0], end_top_res[:, :, 1].astype(np.int) # [b, k] unique_id_res = unique_id_res.astype(np.int) # predict results results = {} for i in range(end_top_index.shape[0]): unique_id = unique_id_res[i][0] itm = { 'unique_id': unique_id, 'start_top_log_prob': start_top_log_prob[i], 'start_top_index': start_top_index[i], 'end_top_log_prob': end_top_log_prob[i], 'end_top_index': end_top_index[i], } results[unique_id] = itm # raw inputs start_n_top, end_n_top = start_top_index.shape[-1], end_top_index.shape[-1] qas_id_to_examples = defaultdict(list) unique_id_to_examples = {} for idx, (inputs, outputs) in enumerate(dataset): if n_steps is not None and idx >= n_steps: break unique_ids = inputs['unique_id'].numpy().astype(np.int).tolist() offsets = inputs['offset'].numpy().astype(np.int).tolist() qas_ids = inputs['qas_id'].numpy().astype(str).tolist() doc_token2char_raw_start_indexs = inputs['doc_token2char_raw_start_index'].numpy().astype(str).tolist() doc_token2char_raw_end_indexs = inputs['doc_token2char_raw_end_index'].numpy().astype(str).tolist() doc_token2doc_indexs = inputs['doc_token2doc_index'].numpy().astype(str).tolist() all_answers = inputs['all_answers'].numpy().astype(str).tolist() answer_texts = inputs['answer_text'].numpy().tolist() context_texts = inputs['context_text'].numpy().tolist() question_texts = inputs['question_text'].numpy().tolist() is_impossibles = inputs['is_impossible'].numpy().tolist() p_masks = inputs['p_mask'].numpy().astype(np.int).tolist() for t in range(len(unique_ids)): itm = { 'unique_id': unique_ids[t], 'qas_id': qas_ids[t], 'question_text': question_texts[t].decode("utf8"), 'context_text': context_texts[t].decode("utf8"), 'answer_text': answer_texts[t].decode("utf8"), 'all_answers': json.loads(all_answers[t]), 'doc_token2char_raw_start_index': json.loads(doc_token2char_raw_start_indexs[t]), 'doc_token2char_raw_end_index': json.loads(doc_token2char_raw_end_indexs[t]), 'doc_token2doc_index': json.loads(doc_token2doc_indexs[t]), 'is_impossible': is_impossibles[t], 'p_mask': p_masks[t], 'offset': offsets[t] } unique_id_to_examples[unique_ids[t]] = itm qas_id_to_examples[qas_ids[t]].append(itm) for qas_id, examples in qas_id_to_examples.items(): example_all_predicts = [] answers = set() for example in examples: cur_unique_id = example['unique_id'] if cur_unique_id not in results: continue if example['is_impossible'] == 1: continue # if example['answer_text'] not in answers: # answers.append(example['answer_text']) answers |= set(example['all_answers']) cur_result = results.get(cur_unique_id) cur_start_top_log_prob = cur_result['start_top_log_prob'] cur_start_top_index = cur_result['start_top_index'] cur_end_top_log_prob = cur_result['end_top_log_prob'] cur_end_top_index = cur_result['end_top_index'] cur_p_mask = example['p_mask'] for i in range(start_n_top): start_prob = cur_start_top_log_prob[i] start_index = cur_start_top_index[i] if not cur_p_mask[start_index]: continue for j in range(end_n_top): end_prob = cur_end_top_log_prob[j] end_index = cur_end_top_index[j] if not cur_p_mask[end_index]: continue answer_length = end_index - start_index + 1 if end_index < start_index or answer_length > self.max_answer_length: continue itm = { 'unique_id': cur_unique_id, 'start_prob': start_prob, 'start_index': start_index, 'end_prob': end_prob, 'end_index': end_index, 'predict_score': np.log(start_prob) + np.log(end_prob) } example_all_predicts.append(itm) if len(answers) != 0: total_count += 1 else: skip_count += 1 continue example_all_predicts.sort(key=lambda s: s['predict_score'], reverse=True) example_top_predicts = [] is_visited = set() for example_predict in example_all_predicts: if len(example_top_predicts) >= self.n_best_size: break example_feature = unique_id_to_examples[example_predict['unique_id']] if example_predict['start_index'] - example_feature['offset'] < 0 or example_predict['end_index'] - example_feature['offset'] < 0: predict_text = "" else: predict_start = example_feature['doc_token2char_raw_start_index'][ example_predict['start_index'] - example_feature['offset']] predict_end = example_feature['doc_token2char_raw_end_index'][ example_predict['end_index'] - example_feature['offset']] predict_text = example_feature['context_text'][predict_start: predict_end + 1].strip() if predict_text in is_visited: continue is_visited.add(predict_text) itm = { 'predict_text': predict_text, 'start_prob': example_predict['start_prob'], 'end_prob': example_predict['end_prob'], 'predict_score': example_predict['predict_score'] } example_top_predicts.append(itm) if len(example_top_predicts) == 0: example_top_predicts.append( { 'predict_text': "", 'start_prob': 0., 'end_prob': 0., 'predict_score': 0. } ) example_best_predict = example_top_predicts[0] cur_f1 = calc_f1_score(list(answers), example_best_predict['predict_text']) cur_em = calc_em_score(list(answers), example_best_predict['predict_text']) f1 += cur_f1 em += cur_em # debug if cur_f1 == 0 or cur_em == 0: example_output = {} example_output.update(example_best_predict) example_output['question'] = examples[0]['question_text'] example_output['answer'] = answers example_output['f1'] = cur_f1 example_output['em'] = cur_em print(example_output) # total_count = len(qas_id_to_examples) f1_score = f1 / total_count em_score = em / total_count logs = {} logs['skip_count'] = skip_count logs['total'] = total_count logs['val_f1_score'] = f1_score logs['val_em_score'] = em_score logs['val_f1_em_avg_score'] = (em_score + f1_score) / 2. return logs class EvaluatorForQaWithImpossible(tf.keras.callbacks.Callback): """ start_top_log_prob and end_top_log_prob's shape is [batch, k, k] ref: https://keras.io/examples/nlp/text_extraction_with_bert/ """ def __init__(self, validation_dataset, validation_steps, test_dataset, test_steps, report_dir, max_answer_length=64, n_best_size=5, is_impossible_threshold=0.5, weights=[1., 1., 1.]): self.validation_dataset = validation_dataset self.validation_steps = validation_steps self.test_dataset = test_dataset self.test_steps = test_steps self.max_answer_length = max_answer_length self.n_best_size = n_best_size self.report_dir = report_dir self.is_impossible_threshold = is_impossible_threshold self.weights = weights def on_epoch_end(self, epoch, logs=None): new_logs = self.eval_process(self.validation_dataset, self.validation_steps) logs = logs or {} logs.update(new_logs) print(f"\nEpoch: {epoch + 1}, val_f1_score: {logs['val_f1_score']:.4f}, " f"val_em_score: {logs['val_em_score']:.4f}, " f"val_f1_em_avg_score: {logs['val_f1_em_avg_score']:.4f}," f" val_f1_for_impossible: {logs['val_f1_for_impossible']:.4f}," f" val_f1_avg_score: {logs['val_f1_avg_score']:.4f},") def on_train_end(self, logs=None): logger.info("Start Evaluate.") if not os.path.exists(self.report_dir): os.makedirs(self.report_dir) new_logs = self.eval_process(self.test_dataset, self.test_steps) save_json(os.path.join(self.report_dir, 'performance.json'), new_logs) print_boxed(f"Question Answer Evaluation") pprint(new_logs) logger.info(f"Save question answer reports in {self.report_dir}") def eval_process(self, dataset, n_steps=None): f1 = 0 em = 0 total_count = 0 skip_count = 0 start_top_res, end_top_res, answer_prob, unique_id_res = self.model.predict(dataset, steps=n_steps) start_top_log_prob, start_top_index = start_top_res[:, :, 0], start_top_res[:, :, 1].astype(np.int) # [b, k] end_top_log_prob, end_top_index = end_top_res[:, :, :, 0], end_top_res[:, :, :, 1].astype(np.int) # [b, k, k] unique_id_res = unique_id_res.astype(np.int) # predict results results = {} for i in range(end_top_index.shape[0]): unique_id = unique_id_res[i][0] itm = { 'unique_id': unique_id, 'start_top_log_prob': start_top_log_prob[i], 'start_top_index': start_top_index[i], 'end_top_log_prob': end_top_log_prob[i], 'end_top_index': end_top_index[i], 'is_impossible_prob': answer_prob[i][0] } results[unique_id] = itm # raw inputs start_n_top, end_n_top = end_top_index.shape[1:] qas_id_to_examples = defaultdict(list) unique_id_to_examples = {} for idx, (inputs, outputs) in enumerate(dataset): if n_steps is not None and idx >= n_steps: break unique_ids = inputs['unique_id'].numpy().astype(np.int).tolist() offsets = inputs['offset'].numpy().astype(np.int).tolist() qas_ids = inputs['qas_id'].numpy().astype(str).tolist() doc_token2char_raw_start_indexs = inputs['doc_token2char_raw_start_index'].numpy().astype(str).tolist() doc_token2char_raw_end_indexs = inputs['doc_token2char_raw_end_index'].numpy().astype(str).tolist() doc_token2doc_indexs = inputs['doc_token2doc_index'].numpy().astype(str).tolist() all_answers = inputs['all_answers'].numpy().astype(str).tolist() answer_texts = inputs['answer_text'].numpy().tolist() context_texts = inputs['context_text'].numpy().tolist() question_texts = inputs['question_text'].numpy().tolist() is_impossibles = inputs['is_impossible'].numpy().tolist() p_masks = inputs['p_mask'].numpy().astype(np.int).tolist() for t in range(len(unique_ids)): itm = { 'unique_id': unique_ids[t], 'qas_id': qas_ids[t], 'question_text': question_texts[t].decode("utf8"), 'context_text': context_texts[t].decode("utf8"), 'answer_text': answer_texts[t].decode("utf8"), 'all_answers': json.loads(all_answers[t]), 'doc_token2char_raw_start_index': json.loads(doc_token2char_raw_start_indexs[t]), 'doc_token2char_raw_end_index': json.loads(doc_token2char_raw_end_indexs[t]), 'doc_token2doc_index': json.loads(doc_token2doc_indexs[t]), 'is_impossible': is_impossibles[t], 'p_mask': p_masks[t], 'offset': offsets[t] } unique_id_to_examples[unique_ids[t]] = itm qas_id_to_examples[qas_ids[t]].append(itm) ground_truth_for_impossible, predictions_for_impossible = [], [] for qas_id, examples in qas_id_to_examples.items(): example_all_predicts = [] answers = set() for example in examples: cur_unique_id = example['unique_id'] if cur_unique_id not in results: continue # if example['answer_text'] not in answers: # answers.append(example['answer_text']) answers |= set(example['all_answers']) cur_result = results.get(cur_unique_id) cur_start_top_log_prob = cur_result['start_top_log_prob'] cur_start_top_index = cur_result['start_top_index'] cur_end_top_log_prob = cur_result['end_top_log_prob'] cur_end_top_index = cur_result['end_top_index'] ground_truth_for_impossible.append(example['is_impossible']) predictions_for_impossible.append(int(cur_result['is_impossible_prob'] >= self.is_impossible_threshold)) if example['is_impossible'] == 1: continue cur_p_mask = example['p_mask'] for i in range(start_n_top): start_prob = cur_start_top_log_prob[i] start_index = cur_start_top_index[i] if not cur_p_mask[start_index]: continue for j in range(end_n_top): end_prob = cur_end_top_log_prob[i, j] end_index = cur_end_top_index[i, j] if not cur_p_mask[end_index]: continue answer_length = end_index - start_index + 1 if end_index < start_index or answer_length > self.max_answer_length: continue itm = { 'unique_id': cur_unique_id, 'start_prob': start_prob, 'start_index': start_index, 'end_prob': end_prob, 'end_index': end_index, 'predict_score': np.log(end_prob) } example_all_predicts.append(itm) if len(answers) != 0 and "" not in answers: total_count += 1 else: skip_count += 1 continue example_all_predicts.sort(key=lambda s: s['predict_score'], reverse=True) example_top_predicts = [] is_visited = set() for example_predict in example_all_predicts: if len(example_top_predicts) >= self.n_best_size: break example_feature = unique_id_to_examples[example_predict['unique_id']] if example_predict['start_index'] - example_feature['offset'] < 0 or example_predict['end_index'] - example_feature['offset'] < 0: predict_text = "" else: predict_start = example_feature['doc_token2char_raw_start_index'][ example_predict['start_index'] - example_feature['offset']] predict_end = example_feature['doc_token2char_raw_end_index'][ example_predict['end_index'] - example_feature['offset']] predict_text = example_feature['context_text'][predict_start: predict_end + 1].strip() if predict_text in is_visited: continue is_visited.add(predict_text) itm = { 'predict_text': predict_text, 'start_prob': example_predict['start_prob'], 'end_prob': example_predict['end_prob'], 'predict_score': example_predict['predict_score'] } example_top_predicts.append(itm) if len(example_top_predicts) == 0: example_top_predicts.append( { 'predict_text': "", 'start_prob': 0., 'end_prob': 0., 'predict_score': 0. } ) example_best_predict = example_top_predicts[0] cur_f1 = calc_f1_score(list(answers), example_best_predict['predict_text']) cur_em = calc_em_score(list(answers), example_best_predict['predict_text']) f1 += cur_f1 em += cur_em # debug if cur_f1 == 0 or cur_em == 0: example_output = {} example_output.update(example_best_predict) example_output['question'] = examples[0]['question_text'] example_output['answer'] = answers example_output['f1'] = cur_f1 example_output['em'] = cur_em print(example_output) # total_count = len(qas_id_to_examples) f1_score = f1 / total_count em_score = em / total_count cm = ConfusionMatrix(ground_truth_for_impossible, predictions_for_impossible) logs = {} logs['skip_count'] = skip_count logs['total'] = total_count logs['val_f1_score'] = f1_score logs['val_em_score'] = em_score logs['val_f1_em_avg_score'] = (em_score * self.weights[0] + f1_score * self.weights[1]) / sum(self.weights[:2]) logs['val_f1_for_impossible'] = cm.avg_f1_score(average='macro') logs['val_accuracy_for_impossible'] = cm.overall_accuracy() logs['val_f1_avg_score'] = (em_score * self.weights[0] + f1_score * self.weights[1] + logs['val_f1_for_impossible'] * self.weights[2]) / sum(self.weights) return logs
44.997917
146
0.570582
2,567
21,599
4.40748
0.078691
0.028284
0.024748
0.018561
0.909758
0.901008
0.897207
0.884656
0.884656
0.884656
0
0.012167
0.32645
21,599
479
147
45.091858
0.765535
0.033752
0
0.821705
0
0.002584
0.13186
0.03407
0
0
0
0
0
1
0.020672
false
0
0.028424
0
0.059432
0.02584
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
c780e591cbad3129663e73ce7d7f50fa3fb44f8f
3,675
py
Python
cms/migrations/0006_auto_20170122_1545.py
josemlp91/django-landingcms
9d9270204369e9663ff15eb0bd4c4093b3727c6c
[ "Apache-2.0" ]
null
null
null
cms/migrations/0006_auto_20170122_1545.py
josemlp91/django-landingcms
9d9270204369e9663ff15eb0bd4c4093b3727c6c
[ "Apache-2.0" ]
null
null
null
cms/migrations/0006_auto_20170122_1545.py
josemlp91/django-landingcms
9d9270204369e9663ff15eb0bd4c4093b3727c6c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-01-22 15:45 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('content', '0002_auto_20170122_1509'), ('cms', '0005_auto_20170122_1534'), ] operations = [ migrations.AddField( model_name='paginahome', name='posts1_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts1_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts1_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts1_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts1_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts1_titulo', to='content.TitleContent'), ), migrations.AddField( model_name='paginahome', name='posts2_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts2_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts2_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts2_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts2_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts2_titulo', to='content.TitleContent'), ), migrations.AddField( model_name='paginahome', name='posts3_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts3_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts3_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts3_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts3_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts3_titulo', to='content.TitleContent'), ), migrations.AddField( model_name='paginahome', name='posts4_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts4_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts4_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts4_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts4_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts4_titulo', to='content.TitleContent'), ), ]
47.115385
164
0.653605
395
3,675
5.901266
0.149367
0.048048
0.078078
0.122694
0.88417
0.88417
0.88417
0.835693
0.835693
0.835693
0
0.025453
0.219592
3,675
77
165
47.727273
0.787308
0.018503
0
0.514286
1
0
0.198668
0.012764
0
0
0
0
0
1
0
false
0
0.042857
0
0.085714
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
c7a995a9727073409d096c9586ccf8c67b8e8dc3
7,320
py
Python
sketchduino/template.py
rodrigopmatias/sketchduino
567023d69cd21bf1f573d2a26fc855183abdef7e
[ "Apache-2.0" ]
null
null
null
sketchduino/template.py
rodrigopmatias/sketchduino
567023d69cd21bf1f573d2a26fc855183abdef7e
[ "Apache-2.0" ]
3
2015-01-09T20:31:22.000Z
2015-01-09T20:31:22.000Z
sketchduino/template.py
rodrigopmatias/sketchduino
567023d69cd21bf1f573d2a26fc855183abdef7e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Copyright 2012 Rodrigo Pinheiro Matias <[email protected]> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' templates = { 'static_link': ''' \t@$(AR) rcs %(lib)s %(obj)s \t@echo " [\033[33m\033[1mAR\033[0m] - \033[37m\033[1m%(obj)s\033[0m to \033[37m\033[1m%(lib)s\033[0m"''', 'c_obj_ruler': '''%(obj)s: %(source)s \t@$(CC) $(CFLAGS) $(INCLUDE) -c %(source)s -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCC\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'asm_obj_ruler': '''%(obj)s: %(source)s \t@$(AS) $(ASFLAGS) -o %(obj)s %(source)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mAS\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'c_asm_ruler': '''%(obj)s: %(source)s \t@$(CC) $(CFLAGS) $(INCLUDE) -c %(source)s -S -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCC\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'cxx_obj_ruler': '''%(obj)s: %(source)s \t@$(CXX) $(CXXFLAGS) $(INCLUDE) -c %(source)s -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCXX\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'cxx_asm_ruler': '''%(obj)s: %(source)s \t@$(CXX) $(CXXFLAGS) $(INCLUDE) -c %(source)s -S -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCXX\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'avr-main.cc': '''/** * Generated with sketch %(version)s **/ #include <avr/sleep.h> int main(void) { for(;;) sleep_mode(); return 0; }''', 'main.cc': '''/** * Generated with sketch %(version)s **/ #include <Arduino.h> /** * Setup of the firmware **/ void setup() { } /** * Schedule events for firmware program **/ void loop() { delay(250); }''', 'Makefile': '''########################################## # Makefile generated with sketch %(version)s ########################################## # Defines of Arduino ARDUINO_HOME=%(sdk_home)s ARDUINO_CORE=$(ARDUINO_HOME)/hardware/arduino/cores ARDUINO_VARIANT=$(ARDUINO_HOME)/hardware/arduino/variants/%(variant)s # Define toolchain CC=%(cc)s CXX=%(cxx)s AS=%(asm)s LD=%(ld)s AR=%(ar)s OBJCOPY=%(objcopy)s SIZE=%(size)s AVRDUDE=%(avrdude)s PROGRAMER=%(programer)s LIB= INCLUDE=-I$(ARDUINO_CORE)/arduino -I$(ARDUINO_VARIANT) -I$(ARDUINO_CORE) -I lib/ #Define of MCU MCU=%(mcu)s CLOCK=%(clock_hz)sUL ARDUINO=%(sdk_version)s # Define compiler flags _CFLAGS=-Os -Wall -fno-exceptions -ffunction-sections -fdata-sections -mmcu=$(MCU) \\ -DF_CPU=$(CLOCK) -MMD -DARDUINO=$(ARDUINO) \\ -fpermissive -lm -Wl,-u,vfprintf -lprintf_min CFLAGS=$(_CFLAGS) -std=c99 CXXFLAGS=$(_CFLAGS) -std=c++98 ASFLAGS=-mmcu $(MCU) # Define compiler rulers OBJ=%(obj_dep)s CORE_OBJ=%(core_obj_dep)s AOUT=binary/%(project_name)s-%(mcu)s.elf HEX=binary/%(project_name)s-%(mcu)s.hex EPP=binary/%(project_name)s-%(mcu)s.epp CORE_LIB=binary/core.a LIB_DEPS=%(lib_deps)s LD_FLAGS=-Os -Wl,--gc-sections -mmcu=$(MCU) -lm AVRDUDE_OPTIONS = -p$(MCU) -c$(PROGRAMER) %(pgrextra)s -Uflash:w:$(HEX):i SIZE_OPTS=-C --mcu=$(MCU) CONFIG_EXISTS=$(shell [ -e "Makefile.config" ] && echo 1 || echo 0) ifeq ($(CONFIG_EXISTS), 1) include Makefile.config endif all: $(HEX) $(EPP) rebuild: clean all deploy: $(HEX) \t$(AVRDUDE) $(AVRDUDE_OPTIONS) $(HEX): $(EPP) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mFirmware\033[0m" \t@$(OBJCOPY) -O ihex -R .eeprom $(AOUT) $(HEX) $(EPP): $(AOUT) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mMemory of EEPROM\033[0m" \t@$(OBJCOPY) -O ihex -j .eeprom --set-section-flags=.eeprom=alloc,load --no-change-warnings --change-section-lma .eeprom=0 $(AOUT) $(EPP) size: $(AOUT) \t@$(SIZE) $(SIZE_OPTS) $(AOUT) $(AOUT): clear-compiler $(OBJ) $(CORE_LIB) $(LIB_DEPS) \t@echo " [\033[33m\033[1mLD\033[0m] - \033[37m\033[1m$(AOUT)\033[0m" \t@$(CXX) $(LD_FLAGS) $(LIB) $(OBJ) $(CORE_LIB) $(LIB_DEPS) -o $(AOUT) $(CORE_LIB): $(CORE_OBJ)%(core_ruler)s %(asm_rulers)s %(obj_rulers)s %(libs_rulers)s %(core_asm_rulers)s %(core_obj_rulers)s clear-compiler: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear compiler logs" \trm -f compile.* clean-tmp: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* clean-bin: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* clean: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* ''', 'avr-Makefile': '''########################################## # Makefile generated with sketch %(version)s ########################################## # Define toolchain CC=%(cc)s CXX=%(cxx)s AS=%(asm)s LD=%(ld)s AR=%(ar)s OBJCOPY=%(objcopy)s SIZE=%(size)s AVRDUDE=%(avrdude)s PROGRAMER=%(programer)s LIB= INCLUDE=-I lib/ #Define of MCU MCU=%(mcu)s CLOCK=%(clock_hz)sUL # Define compiler flags _CFLAGS=-Os -Wall -fno-exceptions -ffunction-sections -fdata-sections -mmcu=$(MCU) \\ -DF_CPU=$(CLOCK) -fpermissive -lm -Wl,-u,vfprintf -lprintf_min CFLAGS=$(_CFLAGS) -std=c99 CXXFLAGS=$(_CFLAGS) -std=c++98 ASFLAGS=-mmcu $(MCU) # Define compiler rulers ASM=%(asm_dep)s OBJ=%(obj_dep)s LIB_DEPS=%(lib_deps)s AOUT=binary/%(project_name)s-%(mcu)s.elf HEX=binary/%(project_name)s-%(mcu)s.hex EPP=binary/%(project_name)s-%(mcu)s.epp LD_FLAGS=-Os -Wl,--gc-sections -mmcu=$(MCU) -lm AVRDUDE_OPTIONS = -p$(MCU) -c$(PROGRAMER) %(pgrextra)s -Uflash:w:$(HEX):i SIZE_OPTS=-A CONFIG_EXISTS=$(shell [ -e "Makefile.config" ] && echo 1 || echo 0) ifeq ($(CONFIG_EXISTS), 1) include Makefile.config endif all: $(HEX) $(EPP) rebuild: clean all deploy: $(HEX) \t$(AVRDUDE) $(AVRDUDE_OPTIONS) $(HEX): $(EPP) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mFirmware\033[0m" \t@$(OBJCOPY) -O ihex -R .eeprom $(AOUT) $(HEX) $(EPP): $(AOUT) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mMemory of EEPROM\033[0m" \t@$(OBJCOPY) -O ihex -j .eeprom --set-section-flags=.eeprom=alloc,load --no-change-warnings --change-section-lma .eeprom=0 $(AOUT) $(EPP) size: $(AOUT) \t@$(SIZE) $(SIZE_OPTS) $(AOUT) $(AOUT): clear-compiler $(OBJ) $(LIB_DEPS) \t@echo " [\033[33m\033[1mLD\033[0m] - \033[37m\033[1m$(AOUT)\033[0m" \t@$(CXX) $(LD_FLAGS) $(LIB) $(OBJ) $(LIB_DEPS) -o $(AOUT) %(asm_rulers)s %(obj_rulers)s %(libs_rulers)s clear-compiler: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear compiler logs" \t@rm -f compile.* clean-tmp: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* clean-bin: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* clean: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* ''' }
27.518797
138
0.630464
1,187
7,320
3.815501
0.187026
0.03864
0.038861
0.053433
0.765732
0.751601
0.748068
0.722234
0.704571
0.692427
0
0.077551
0.129781
7,320
265
139
27.622642
0.633438
0.083607
0
0.704082
0
0.183673
0.973433
0.278358
0
0
0
0
0
1
0
false
0
0
0
0.005102
0.010204
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
c7b0f4e12943a98dbd413a45f48a80cdcaf7bcf6
6,517
py
Python
testData/devSeedData.py
bgporter/wastebook
79885a8d503452e1fbeb8ff445cedd2daafff2a0
[ "MIT" ]
null
null
null
testData/devSeedData.py
bgporter/wastebook
79885a8d503452e1fbeb8ff445cedd2daafff2a0
[ "MIT" ]
null
null
null
testData/devSeedData.py
bgporter/wastebook
79885a8d503452e1fbeb8ff445cedd2daafff2a0
[ "MIT" ]
null
null
null
''' fake posts to bootstrap a development database. Put any interesting cases useful for development in here. ''' from datetime import datetime POST_DATA_1 = [ { "created" : datetime(2015, 10, 1), "published": datetime(2015, 10, 1), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "First Post", "slug": "", "text": "a bunch of words #foo #bar", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": False, "status": "published", "title": "Second Post", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": False, "status": "draft", "title": "Third Post", "slug": "", "text": "This is a #draft #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "draft", "title": "Fourth Post", "slug": "", "text": "This is a #draft #post", "tags": [], "type": "Post" }, ] POST_DATA_2 = [ { "created" : datetime(2015, 3, 2), "published": datetime(2015, 3, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 1", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 4, 2), "published": datetime(2015, 4, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 2", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 5, 2), "published": datetime(2015, 5, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 3", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 5, 2), "published": datetime(2015, 5, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 4", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 5", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 6", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 7", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 7, 2), "published": datetime(2015, 7, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 8", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 8, 2), "published": datetime(2015, 8, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 9", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 9, 2), "published": datetime(2015, 9, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 10", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 11", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, ]
29.224215
77
0.399724
567
6,517
4.587302
0.107584
0.207612
0.134564
0.098039
0.839677
0.839677
0.838139
0.838139
0.838139
0.838139
0
0.081816
0.418598
6,517
223
78
29.224215
0.604645
0.016265
0
0.706977
0
0
0.281069
0
0
0
0
0
0
1
0
false
0
0.004651
0
0.004651
0
0
0
0
null
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
c7b88fe5b2537ef40175e1a577b998fdb2d3a5c9
1,233
py
Python
SummaryExternalClient.py
Hackillinois2k18/Main-Repo
e998cc3283e0469b98a842220a30a72c5b105dad
[ "MIT" ]
5
2020-03-10T03:23:18.000Z
2021-11-12T17:06:51.000Z
SummaryExternalClient.py
Hackillinois2k18/FyveBot
e998cc3283e0469b98a842220a30a72c5b105dad
[ "MIT" ]
3
2018-02-24T05:25:28.000Z
2018-02-24T05:43:49.000Z
SummaryExternalClient.py
Hackillinois2k18/Main-Repo
e998cc3283e0469b98a842220a30a72c5b105dad
[ "MIT" ]
3
2019-01-20T14:50:11.000Z
2021-11-12T17:06:55.000Z
import requests import credentials class SummaryExternalClient: def pullSummaryForUrl(self, artUrl, title): url = "https://api.aylien.com/api/v1/summarize" headers = {"X-AYLIEN-TextAPI-Application-Key": credentials.AYLIEN_APP_KEY, "X-AYLIEN-TextAPI-Application-ID" : credentials.AYLIEN_APP_ID} params = {"url" : artUrl, "title" : title, "sentences_number": 7} summary = requests.get(url=url, headers=headers, params=params) try: sentences = summary.json()['sentences'] except: sentences = [] return sentences def pullSummaryForText(self, text, title): url = "https://api.aylien.com/api/v1/summarize" headers = {"X-AYLIEN-TextAPI-Application-Key": credentials.AYLIEN_APP_KEY, "X-AYLIEN-TextAPI-Application-ID" : credentials.AYLIEN_APP_ID} params = {"text": text, "title": title, "sentences_number": 7} summary = requests.get(url=url, headers=headers, params=params) try: sentences = summary.json()['sentences'] except: sentences = [] return sentences
35.228571
82
0.586375
122
1,233
5.844262
0.295082
0.039271
0.078541
0.140252
0.813464
0.813464
0.813464
0.813464
0.813464
0.813464
0
0.004608
0.296026
1,233
34
83
36.264706
0.81682
0
0
0.758621
0
0
0.219968
0.102273
0
0
0
0
0
1
0.068966
false
0
0.068966
0
0.241379
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
c7cb2a8553964cb9e86d2c3de96decefdde5eb6c
89
py
Python
tf2stats/__init__.py
TheAntecedent/Quintessence
f32dc1b11ded212121ebc0f925d15c845cb6ea4b
[ "MIT" ]
1
2019-10-08T04:38:08.000Z
2019-10-08T04:38:08.000Z
tf2stats/__init__.py
TheAntecedent/Quintessence
f32dc1b11ded212121ebc0f925d15c845cb6ea4b
[ "MIT" ]
1
2021-04-30T20:51:05.000Z
2021-04-30T20:51:05.000Z
tf2stats/__init__.py
TheAntecedent/Quintessence
f32dc1b11ded212121ebc0f925d15c845cb6ea4b
[ "MIT" ]
null
null
null
from .aggregated_stats import * from .game_stats import * from .stat_definitions import *
29.666667
31
0.808989
12
89
5.75
0.583333
0.318841
0.434783
0
0
0
0
0
0
0
0
0
0.123596
89
3
32
29.666667
0.884615
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
c7d37af76275d31df153580818ea0db96b86762e
1,210
py
Python
supermario/supermario 1117/start_state.py
Kimmiryeong/2DGP_GameProject
ad3fb197aab27227fc92fd404b2c310f8d0827ca
[ "MIT" ]
null
null
null
supermario/supermario 1117/start_state.py
Kimmiryeong/2DGP_GameProject
ad3fb197aab27227fc92fd404b2c310f8d0827ca
[ "MIT" ]
null
null
null
supermario/supermario 1117/start_state.py
Kimmiryeong/2DGP_GameProject
ad3fb197aab27227fc92fd404b2c310f8d0827ca
[ "MIT" ]
null
null
null
import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05 def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass
11.747573
48
0.634711
169
1,210
4.35503
0.254438
0.108696
0.07337
0.0625
0.978261
0.978261
0.978261
0.978261
0.978261
0.978261
0
0.042506
0.261157
1,210
102
49
11.862745
0.780761
0
0
0.947368
0
0
0.039801
0
0
0
0
0
0
0
null
null
0.105263
0.105263
null
null
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
1
0
0
1
0
0
0
0
0
9
c7d524f7dbf8736dbbb40f3bb15a61c60aba8191
22,620
py
Python
egs/librispeech/ASR/transducer/test_rnn.py
rosrad/icefall
6f282731286a6855658c6882c3c938437448e05e
[ "Apache-2.0" ]
null
null
null
egs/librispeech/ASR/transducer/test_rnn.py
rosrad/icefall
6f282731286a6855658c6882c3c938437448e05e
[ "Apache-2.0" ]
null
null
null
egs/librispeech/ASR/transducer/test_rnn.py
rosrad/icefall
6f282731286a6855658c6882c3c938437448e05e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transducer.rnn import ( LayerNormGRU, LayerNormGRUCell, LayerNormGRULayer, LayerNormLSTM, LayerNormLSTMCell, LayerNormLSTMLayer, ) def get_devices(): devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda", 0)) return devices def assert_allclose(a: torch.Tensor, b: torch.Tensor, atol=1e-6, **kwargs): assert torch.allclose( a, b, atol=atol, **kwargs ), f"{(a - b).abs().max()}, {a.numel()}" def test_layernorm_lstm_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 cell = LayerNormLSTMCell( input_size=input_size, hidden_size=hidden_size, bias=bias, device=device, ) torch.jit.script(cell) def test_layernorm_lstm_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_lstm_cell_with_projection_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 self_cell = LayerNormLSTMCell( input_size, hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(self_cell) def test_layernorm_lstm_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) torch_h, torch_c = torch_cell(x_clone, (h, c)) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum().backward() ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_lstm_cell_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, proj_size=proj_size, device=device, ) torch_cell = nn.LSTM( input_size, hidden_size, bias=bias, proj_size=proj_size, batch_first=True, ).to(device) with torch.no_grad(): for name, self_param in self_cell.named_parameters(): getattr(torch_cell, f"{name}_l0").copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) _, (torch_h, torch_c) = torch_cell( x_clone.unsqueeze(1), (h.unsqueeze(0), c.unsqueeze(0)) ) torch_h = torch_h.squeeze(0) torch_c = torch_c.squeeze(0) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) (self_h.sum() * self_c.sum()).backward() (torch_h.sum() * torch_c.sum()).backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_project_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, proj_size=proj_size, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_y.sum().backward() torch_y.sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c self_hc_sum = ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum() torch_hc_sum = ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum() self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() (self_hc_sum + self_y_sum).backward() (torch_hc_sum + torch_y_sum).backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_lstm_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_with_projection_jit(device="cpu"): input_size = 2 hidden_size = 5 proj_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_lstm_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, proj_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_gru_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 cell = LayerNormGRUCell( input_size=input_size, hidden_size=hidden_size, bias=True, device=device, ) torch.jit.script(cell) def test_layernorm_gru_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormGRUCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_gru_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormGRUCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h = self_cell(x.clone(), h) torch_h = torch_cell(x_clone, h) assert_allclose(self_h, torch_h, atol=1e-5) ( self_h.reshape(-1) * torch.arange(self_h.numel(), device=device) ).sum().backward() ( torch_h.reshape(-1) * torch.arange(torch_h.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_gru_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormGRULayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_gru_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormGRULayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, self_h = self_layer(x, h.clone()) torch_layer = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, torch_h = torch_layer(x_clone, h.unsqueeze(0)) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() self_y_sum.backward() torch_y_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_gru_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(gru) def test_layernorm_gru_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_gru = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_gru.state_dict()) == len(torch_gru.state_dict()) with torch.no_grad(): for name, param in self_gru.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_gru, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() states = [ torch.rand(N, hidden_size, device=device) for _ in range(num_layers) ] x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_gru(x, states) torch_y, torch_states = torch_gru(x_clone, torch.stack(states)) assert_allclose(self_y, torch_y) self_states = torch.stack(self_states) assert_allclose(self_states, torch_states) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() s_state_sum = s_sum + self_states.sum() t_state_sum = t_sum + torch_states.sum() s_state_sum.backward() t_state_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=1e-2) def _test_lstm(device): test_layernorm_lstm_cell_jit(device) test_layernorm_lstm_cell_constructor(device) test_layernorm_lstm_cell_with_projection_jit(device) test_layernorm_lstm_cell_forward(device) test_layernorm_lstm_cell_with_projection_forward(device) # test_layernorm_lstm_layer_jit(device) test_layernorm_lstm_layer_with_project_jit(device) test_layernorm_lstm_layer_forward(device) test_layernorm_lstm_layer_with_projection_forward(device) test_layernorm_lstm_jit(device) test_layernorm_lstm_with_projection_jit(device) test_layernorm_lstm_forward(device) test_layernorm_lstm_with_projection_forward(device) def _test_gru(device): test_layernorm_gru_cell_jit(device) test_layernorm_gru_cell_constructor(device) test_layernorm_gru_cell_forward(device) # test_layernorm_gru_layer_jit(device) test_layernorm_gru_layer_forward(device) # test_layernorm_gru_jit(device) test_layernorm_gru_forward(device) torch.set_num_threads(1) torch.set_num_interop_threads(1) def main(): for device in get_devices(): print("device", device) _test_lstm(device) _test_gru(device) if __name__ == "__main__": torch.manual_seed(20211202) main()
29.530026
79
0.642706
3,254
22,620
4.201291
0.062385
0.060712
0.058152
0.046814
0.895399
0.878356
0.837539
0.81384
0.79131
0.773243
0
0.023413
0.22206
22,620
765
80
29.568627
0.753481
0.035455
0
0.740678
0
0
0.010369
0.003303
0
0
0
0
0.066102
1
0.042373
false
0
0.005085
0
0.049153
0.001695
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
1bf02d45108f641ace7558443cc9e030c46ebd2f
65
py
Python
python/UdemyCourse/2022_Python_Bootcamp/basics/errors_exception_handling/__init__.py
pradyotprksh/development_learning
b6c5494196842f3c273965063815ad222a18b4da
[ "MIT" ]
9
2021-09-03T06:20:48.000Z
2022-03-19T12:43:30.000Z
python/UdemyCourse/2022_Python_Bootcamp/basics/errors_exception_handling/__init__.py
pradyotprksh/development_learning
b6c5494196842f3c273965063815ad222a18b4da
[ "MIT" ]
null
null
null
python/UdemyCourse/2022_Python_Bootcamp/basics/errors_exception_handling/__init__.py
pradyotprksh/development_learning
b6c5494196842f3c273965063815ad222a18b4da
[ "MIT" ]
6
2021-08-16T01:13:36.000Z
2022-03-19T12:44:10.000Z
from .errors_exception_handling import errors_exception_handling
32.5
64
0.923077
8
65
7
0.625
0.535714
0.821429
0
0
0
0
0
0
0
0
0
0.061538
65
1
65
65
0.918033
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
4037b4c2546a2c9d2335471a4c5869528e8d4f28
2,399
py
Python
apex/contrib/conv_bias_relu/conv_bias_relu.py
XL-Kong/Painter_GAN
23cfb57638497fdd1f2d8c09728b439b0e83efde
[ "BSD-3-Clause" ]
null
null
null
apex/contrib/conv_bias_relu/conv_bias_relu.py
XL-Kong/Painter_GAN
23cfb57638497fdd1f2d8c09728b439b0e83efde
[ "BSD-3-Clause" ]
null
null
null
apex/contrib/conv_bias_relu/conv_bias_relu.py
XL-Kong/Painter_GAN
23cfb57638497fdd1f2d8c09728b439b0e83efde
[ "BSD-3-Clause" ]
null
null
null
import torch import pdb from torch.autograd import gradcheck import fused_conv_bias_relu class ConvBiasReLU_(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, x, weight, bias, padding, stride): outputs = fused_conv_bias_relu.forward([x, weight, bias], padding, stride) ctx.save_for_backward(x, weight, outputs[0]) ctx.padding = padding ctx.stride = stride return outputs[0] @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad_output): bwd_args = [*ctx.saved_tensors, grad_output] padding = ctx.padding stride = ctx.stride grads = fused_conv_bias_relu.backward(bwd_args, padding, stride) return grads[0], grads[1], grads[2], None, None class ConvBiasMaskReLU_(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, x, weight, bias, mask, padding, stride): outputs = fused_conv_bias_relu.forward_mask([x, weight, bias, mask], padding, stride) ctx.save_for_backward(x, weight, outputs[0]) ctx.padding = padding ctx.stride = stride return outputs[0] @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad_output): bwd_args = [*ctx.saved_tensors, grad_output] padding = ctx.padding stride = ctx.stride grads = fused_conv_bias_relu.backward(bwd_args, padding, stride) return grads[0], grads[1], grads[2], None, None, None class ConvBias_(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.half) def forward(ctx, x, weight, bias, padding, stride): outputs = fused_conv_bias_relu.forward_no_relu([x, weight, bias], padding, stride) ctx.save_for_backward(x, weight) ctx.padding = padding ctx.stride = stride return outputs[0] @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad_output): bwd_args = [*ctx.saved_tensors, grad_output] padding = ctx.padding stride = ctx.stride grads = fused_conv_bias_relu.backward_no_relu(bwd_args, padding, stride) return grads[0], grads[1], grads[2], None, None ConvBiasReLU = ConvBiasReLU_.apply ConvBiasMaskReLU = ConvBiasMaskReLU_.apply ConvBias = ConvBias_.apply
31.155844
93
0.681951
311
2,399
5.061093
0.157556
0.099111
0.057814
0.075604
0.85197
0.85197
0.839898
0.839898
0.811944
0.811944
0
0.007435
0.21509
2,399
76
94
31.565789
0.828465
0
0
0.706897
0
0
0
0
0
0
0
0
0
1
0.103448
false
0
0.068966
0
0.327586
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
403b3bdafa5f824c48528757629f8e664b7cbcd3
9,018
py
Python
DesksReminder/Desks/accounts_desk.py
flopezag/fiware-management-scripts
3e9ccdb62a11ec0ffd0747511f5512bcdb0df729
[ "Apache-2.0" ]
null
null
null
DesksReminder/Desks/accounts_desk.py
flopezag/fiware-management-scripts
3e9ccdb62a11ec0ffd0747511f5512bcdb0df729
[ "Apache-2.0" ]
21
2017-01-17T12:19:47.000Z
2021-06-03T07:56:56.000Z
DesksReminder/Desks/accounts_desk.py
flopezag/fiware-management-scripts
3e9ccdb62a11ec0ffd0747511f5512bcdb0df729
[ "Apache-2.0" ]
1
2017-05-03T21:42:49.000Z
2017-05-03T21:42:49.000Z
from datetime import date, datetime from DesksReminder.Basics.dataFinder import Data from DesksReminder.Basics.nickNames import ContactBook from Config.settings import JIRA_URL __author__ = 'Manuel Escriche' class AccountsDesk: def __init__(self): self.contactBook = ContactBook() def open(self): messages = list() for issue in Data().getAccountsDeskOpen(): created = datetime.strptime(issue.fields.created[:10], '%Y-%m-%d').date() unanswered = (date.today() - created).days if unanswered <= 1: continue summary = issue.fields.summary displayName = issue.fields.assignee.displayName.strip() nickName = self.contactBook.getNickName(displayName) emailAddress = issue.fields.assignee.emailAddress url = 'http://{}/browse/{}'.format(JIRA_URL, issue) subject = 'FIWARE: Accounts Desk : Open Issue' message = 'Dear {},'.format(nickName.encode('utf-8')) +\ "\n\nI noticed the issue {} is still OPEN, i.e. not replied for {} days.".format(issue, unanswered) +\ "\nLet me remind you of our rule to reply in the first 24 hours during working days." +\ "\nI would appreciate you spent a minute to reply to this request and to progress it " \ "on its workflow." +\ "\n\nIssue Summary: {}".format(summary.encode('utf-8')) +\ "\nYou can access it at {}".format(url) +\ "\n\nIssues in the Accounts Desk are available at\n\thttp://backlog.fiware.org/lab/upgradeAccount" +\ '\n\nThanks in advance for cooperation!!' +\ '\n\nKind Regards,' +\ '\nFernando' messages.append(dict(issue=issue, summary=summary.encode('utf-8'), email=emailAddress, nickname=nickName.encode('utf-8'), displayname=displayName, subject=subject, body=message)) return messages def inProgress(self): messages = list() for issue in Data().getAccountsDeskInProgress(): updated = datetime.strptime(issue.fields.updated[:10], '%Y-%m-%d').date() noupdated = (date.today() - updated).days if noupdated < 7: continue summary = issue.fields.summary displayName = issue.fields.assignee.displayName.strip() nickName = self.contactBook.getNickName(displayName) emailAddress = issue.fields.assignee.emailAddress url = 'http://{}/browse/{}'.format(JIRA_URL, issue) subject = 'FIWARE: Accounts Desk: stalled Issue?' message = 'Dear {},'.format(nickName.encode('utf-8')) +\ "\n\nI noticed issue {} is In Progress but no update happened in the last {} days.".format(issue, noupdated) +\ "\nI would appreciate you spent a minute to update it by reporting its progress in a comment" +\ "\n\tor if ready for analysing, please, evolve it" +\ "\n\nIssue Summary: {}".format(summary.encode('utf-8')) +\ "\nYou can access it at {}".format(url) +\ "\n\nIssues in the Accounts Desk are available at\n\thttp://backlog.fiware.org/lab/upgradeAccount" +\ '\n\nThanks in advance for cooperation!!' +\ '\n\nKind Regards,' +\ '\nFernando' messages.append(dict(issue=issue, summary=summary.encode('utf-8'), email=emailAddress, nickname=nickName.encode('utf-8'), displayname=displayName, subject=subject, body=message)) return messages def scheduled(self): messages = list() for issue in Data().getAccountsDeskScheduled(): updated = datetime.strptime(issue.fields.updated[:10], '%Y-%m-%d').date() noupdated = (date.today() - updated).days if noupdated < 7: continue summary = issue.fields.summary displayName = issue.fields.assignee.displayName.strip() nickName = self.contactBook.getNickName(displayName) emailAddress = issue.fields.assignee.emailAddress url = 'http://{}/browse/{}'.format(JIRA_URL, issue) subject = 'FIWARE: Accounts Desk: stalled Issue?' message = 'Dear {},'.format(nickName.encode('utf-8')) +\ "\n\nI noticed issue {} is Scheduled but no update happened in the last {} days.".format(issue, noupdated) +\ "\nI would appreciate you spent a minute to update it by reporting its progress in a comment" +\ "\n\tor if ready for Answered, please, evolve it" +\ "\n\nIssue Summary: {}".format(summary.encode('utf-8')) +\ "\nYou can access it at {}".format(url) +\ "\n\nIssues in the Accounts Desk are available at\n\thttp://backlog.fiware.org/lab/upgradeAccount" +\ '\n\nThanks in advance for cooperation!!' +\ '\n\nKind Regards,' +\ '\nFernando' messages.append(dict(issue=issue, summary=summary.encode('utf-8'), email=emailAddress, nickname=nickName.encode('utf-8'), displayname=displayName, subject=subject, body=message)) return messages def answered(self): messages = list() for issue in Data().getAccountsDeskAnswered(): updated = datetime.strptime(issue.fields.updated[:10], '%Y-%m-%d').date() noupdated = (date.today() - updated).days if noupdated < 7: continue summary = issue.fields.summary displayName = issue.fields.assignee.displayName.strip() nickName = self.contactBook.getNickName(displayName) emailAddress = issue.fields.assignee.emailAddress url = 'http://{}/browse/{}'.format(JIRA_URL, issue) subject = 'FIWARE: Accounts Desk: Closed Issue?' message = 'Dear {},'.format(nickName.encode('utf-8')) +\ "\n\nI noticed issue {} has been Answered but no update happened in the " \ "last {} days.".format(issue, noupdated) +\ "\nI would appreciate you spent a minute to close it" \ "\n\tor if the exchange continues, please, update its progress in a comment" \ "\n\nIssue Summary: {}".format(summary.encode('utf-8')) +\ "\nYou can access it at {}".format(url) +\ "\n\nIssues in the Accounts Desk are available at\n\thttp://backlog.fiware.org/lab/upgradeAccount" +\ '\n\nThanks in advance for cooperation!!' +\ '\n\nKind Regards,' +\ '\nFernando' messages.append(dict(issue=issue, summary=summary.encode('utf-8'), email=emailAddress, nickname=nickName.encode('utf-8'), displayname=displayName, subject=subject, body=message)) return messages def rejected(self): messages = list() for issue in Data().getAccountsDeskRejected(): updated = datetime.strptime(issue.fields.updated[:10], '%Y-%m-%d').date() noupdated = (date.today() - updated).days if noupdated < 1: continue summary = issue.fields.summary displayName = issue.fields.assignee.displayName.strip() nickName = self.contactBook.getNickName(displayName) emailAddress = issue.fields.assignee.emailAddress url = 'http://{}/browse/{}'.format(JIRA_URL, issue) subject = 'FIWARE: Accounts Desk: Close the procedure' message = 'Dear {},'.format(nickName.encode('utf-8')) +\ "\n\nI noticed issue {} has been Rejected.".format(issue) +\ "\nI would appreciate you spent a minute to close the procedure" \ "\n\nIssue Summary: {}".format(summary.encode('utf-8')) +\ "\nYou can access it at {}".format(url) +\ "\n\nIssues in the Accounts Desk are available at\n\thttp://backlog.fiware.org/lab/upgradeAccount" +\ '\n\nThanks in advance for cooperation!!' +\ '\n\nKind Regards,' +\ '\nFernando' messages.append(dict(issue=issue, summary=summary.encode('utf-8'), email=emailAddress, nickname=nickName.encode('utf-8'), displayname=displayName, subject=subject, body=message)) return messages if __name__ == "__main__": pass
49.01087
120
0.555001
920
9,018
5.416304
0.170652
0.04415
0.040136
0.036123
0.84106
0.839253
0.835039
0.804937
0.798114
0.789284
0
0.006051
0.321912
9,018
183
121
49.278689
0.808831
0
0
0.722973
0
0.040541
0.280217
0
0
0
0
0
0
1
0.040541
false
0.006757
0.027027
0
0.108108
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
4040a877bb3e28b9851ff90970e6bf5e768e303c
31,211
py
Python
alembic/versions/92235b77ea53_check_new.py
go-lab/appcomposer
c2468f11b8398edc9b16e1552ac8d609d8347677
[ "BSD-2-Clause" ]
1
2018-01-20T14:56:01.000Z
2018-01-20T14:56:01.000Z
alembic/versions/92235b77ea53_check_new.py
go-lab/appcomposer
c2468f11b8398edc9b16e1552ac8d609d8347677
[ "BSD-2-Clause" ]
25
2015-01-21T09:16:26.000Z
2021-12-13T20:01:21.000Z
alembic/versions/92235b77ea53_check_new.py
go-lab/appcomposer
c2468f11b8398edc9b16e1552ac8d609d8347677
[ "BSD-2-Clause" ]
3
2015-07-28T18:40:05.000Z
2017-03-28T08:14:37.000Z
"""Check new Revision ID: 92235b77ea53 Revises: 381fdb66ec27 Create Date: 2017-10-14 02:38:51.007307 """ # revision identifiers, used by Alembic. revision = '92235b77ea53' down_revision = '381fdb66ec27' from alembic import op import sqlalchemy as sa def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index('ix_ActiveTranslationMessages_category', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_datetime', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_fmt', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_from_developer', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_key', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_namespace', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_position', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_same_tool', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_taken_from_default', table_name='ActiveTranslationMessages') op.drop_index('ix_ActiveTranslationMessages_tool_id', table_name='ActiveTranslationMessages') op.drop_index('ix_Apps_composer', table_name='Apps') op.drop_index('ix_Apps_creation_date', table_name='Apps') op.drop_index('ix_Apps_last_access_date', table_name='Apps') op.drop_index('ix_Apps_modification_date', table_name='Apps') op.drop_index('ix_Apps_name', table_name='Apps') op.drop_index('ix_Apps_owner_id', table_name='Apps') op.drop_index('ix_Apps_unique_id', table_name='Apps') op.drop_index('ix_GoLabOAuthUsers_display_name', table_name='GoLabOAuthUsers') op.drop_index('ix_GoLabOAuthUsers_email', table_name='GoLabOAuthUsers') op.drop_index('ix_Languages_language', table_name='Languages') op.drop_index('ix_RepositoryApps_adaptable', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_contents_hash', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_downloaded_hash', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_external_id', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_failing', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_failing_since', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_last_change', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_last_check', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_last_download_change', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_last_processed_contents_hash', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_last_processed_downloaded_hash', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_last_processed_time', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_name', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_repository', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_translatable', table_name='RepositoryApps') op.drop_index('ix_RepositoryApps_url', table_name='RepositoryApps') op.drop_index('ix_TranslatedApps_url', table_name='TranslatedApps') op.drop_index('ix_TranslationBundles_from_developer', table_name='TranslationBundles') op.drop_index('ix_TranslationBundles_language', table_name='TranslationBundles') op.drop_index('ix_TranslationBundles_target', table_name='TranslationBundles') op.drop_index('ix_TranslationCurrentActiveUsers_last_check', table_name='TranslationCurrentActiveUsers') op.drop_index('ix_TranslationExternalSuggestions_engine', table_name='TranslationExternalSuggestions') op.drop_index('ix_TranslationExternalSuggestions_human_key', table_name='TranslationExternalSuggestions') op.drop_index('ix_TranslationExternalSuggestions_human_key_hash', table_name='TranslationExternalSuggestions') op.drop_index('ix_TranslationExternalSuggestions_language', table_name='TranslationExternalSuggestions') op.drop_index('ix_TranslationExternalSuggestions_origin_language', table_name='TranslationExternalSuggestions') op.drop_index('ix_TranslationKeySuggestions_key', table_name='TranslationKeySuggestions') op.drop_index('ix_TranslationKeySuggestions_language', table_name='TranslationKeySuggestions') op.drop_index('ix_TranslationKeySuggestions_target', table_name='TranslationKeySuggestions') op.drop_index('ix_TranslationMessageHistory_category', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_datetime', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_fmt', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_from_developer', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_key', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_namespace', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_parent_translation_id', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_position', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_same_tool', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_taken_from_default', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationMessageHistory_tool_id', table_name='TranslationMessageHistory') op.drop_index('ix_TranslationNotificationRecipients_created', table_name='TranslationNotificationRecipients') op.drop_index('ix_TranslationNotificationRecipients_email', table_name='TranslationNotificationRecipients') op.drop_index('ix_TranslationSubscriptions_last_check', table_name='TranslationSubscriptions') op.drop_index('ix_TranslationSubscriptions_mechanism', table_name='TranslationSubscriptions') op.drop_index('ix_TranslationSyncLogs_end_datetime', table_name='TranslationSyncLogs') op.drop_index('ix_TranslationSyncLogs_start_datetime', table_name='TranslationSyncLogs') op.drop_index('ix_TranslationUrls_automatic', table_name='TranslationUrls') op.drop_index('ix_TranslationUrls_url', table_name='TranslationUrls') op.drop_index('ix_TranslationValueSuggestions_human_key', table_name='TranslationValueSuggestions') op.drop_index('ix_TranslationValueSuggestions_language', table_name='TranslationValueSuggestions') op.drop_index('ix_TranslationValueSuggestions_target', table_name='TranslationValueSuggestions') op.drop_index('ix_Users_creation_date', table_name='Users') op.drop_index('ix_Users_last_access_date', table_name='Users') op.create_index(op.f('ix_ActiveTranslationMessages_category'), 'ActiveTranslationMessages', ['category'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_datetime'), 'ActiveTranslationMessages', ['datetime'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_fmt'), 'ActiveTranslationMessages', ['fmt'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_from_developer'), 'ActiveTranslationMessages', ['from_developer'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_key'), 'ActiveTranslationMessages', ['key'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_namespace'), 'ActiveTranslationMessages', ['namespace'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_position'), 'ActiveTranslationMessages', ['position'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_same_tool'), 'ActiveTranslationMessages', ['same_tool'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_taken_from_default'), 'ActiveTranslationMessages', ['taken_from_default'], unique=False) op.create_index(op.f('ix_ActiveTranslationMessages_tool_id'), 'ActiveTranslationMessages', ['tool_id'], unique=False) op.create_index(op.f('ix_Apps_composer'), 'Apps', ['composer'], unique=False) op.create_index(op.f('ix_Apps_creation_date'), 'Apps', ['creation_date'], unique=False) op.create_index(op.f('ix_Apps_last_access_date'), 'Apps', ['last_access_date'], unique=False) op.create_index(op.f('ix_Apps_modification_date'), 'Apps', ['modification_date'], unique=False) op.create_index(op.f('ix_Apps_name'), 'Apps', ['name'], unique=False) op.create_index(op.f('ix_Apps_owner_id'), 'Apps', ['owner_id'], unique=False) op.create_index(op.f('ix_Apps_unique_id'), 'Apps', ['unique_id'], unique=True) op.create_index(op.f('ix_GoLabOAuthUsers_display_name'), 'GoLabOAuthUsers', ['display_name'], unique=False) op.create_index(op.f('ix_GoLabOAuthUsers_email'), 'GoLabOAuthUsers', ['email'], unique=True) op.create_index(op.f('ix_Languages_language'), 'Languages', ['language'], unique=True) op.create_index(op.f('ix_RepositoryApps_adaptable'), 'RepositoryApps', ['adaptable'], unique=False) op.create_index(op.f('ix_RepositoryApps_contents_hash'), 'RepositoryApps', ['contents_hash'], unique=False) op.create_index(op.f('ix_RepositoryApps_downloaded_hash'), 'RepositoryApps', ['downloaded_hash'], unique=False) op.create_index(op.f('ix_RepositoryApps_external_id'), 'RepositoryApps', ['external_id'], unique=False) op.create_index(op.f('ix_RepositoryApps_failing_since'), 'RepositoryApps', ['failing_since'], unique=False) op.create_index(op.f('ix_RepositoryApps_failing'), 'RepositoryApps', ['failing'], unique=False) op.create_index(op.f('ix_RepositoryApps_last_change'), 'RepositoryApps', ['last_change'], unique=False) op.create_index(op.f('ix_RepositoryApps_last_check'), 'RepositoryApps', ['last_check'], unique=False) op.create_index(op.f('ix_RepositoryApps_last_download_change'), 'RepositoryApps', ['last_download_change'], unique=False) op.create_index(op.f('ix_RepositoryApps_last_processed_contents_hash'), 'RepositoryApps', ['last_processed_contents_hash'], unique=False) op.create_index(op.f('ix_RepositoryApps_last_processed_downloaded_hash'), 'RepositoryApps', ['last_processed_downloaded_hash'], unique=False) op.create_index(op.f('ix_RepositoryApps_last_processed_time'), 'RepositoryApps', ['last_processed_time'], unique=False) op.create_index(op.f('ix_RepositoryApps_name'), 'RepositoryApps', ['name'], unique=False) op.create_index(op.f('ix_RepositoryApps_repository'), 'RepositoryApps', ['repository'], unique=False) op.create_index(op.f('ix_RepositoryApps_translatable'), 'RepositoryApps', ['translatable'], unique=False) op.create_index(op.f('ix_RepositoryApps_url'), 'RepositoryApps', ['url'], unique=False) op.create_index(op.f('ix_TranslatedApps_url'), 'TranslatedApps', ['url'], unique=True) op.create_index(op.f('ix_TranslationBundles_from_developer'), 'TranslationBundles', ['from_developer'], unique=False) op.create_index(op.f('ix_TranslationBundles_language'), 'TranslationBundles', ['language'], unique=False) op.create_index(op.f('ix_TranslationBundles_target'), 'TranslationBundles', ['target'], unique=False) op.create_index(op.f('ix_TranslationCurrentActiveUsers_last_check'), 'TranslationCurrentActiveUsers', ['last_check'], unique=False) op.create_index(op.f('ix_TranslationExternalSuggestions_engine'), 'TranslationExternalSuggestions', ['engine'], unique=False) op.create_index(op.f('ix_TranslationExternalSuggestions_human_key_hash'), 'TranslationExternalSuggestions', ['human_key_hash'], unique=False) op.create_index(op.f('ix_TranslationExternalSuggestions_human_key'), 'TranslationExternalSuggestions', ['human_key'], unique=False) op.create_index(op.f('ix_TranslationExternalSuggestions_language'), 'TranslationExternalSuggestions', ['language'], unique=False) op.create_index(op.f('ix_TranslationExternalSuggestions_origin_language'), 'TranslationExternalSuggestions', ['origin_language'], unique=False) op.create_index(op.f('ix_TranslationKeySuggestions_key'), 'TranslationKeySuggestions', ['key'], unique=False) op.create_index(op.f('ix_TranslationKeySuggestions_language'), 'TranslationKeySuggestions', ['language'], unique=False) op.create_index(op.f('ix_TranslationKeySuggestions_target'), 'TranslationKeySuggestions', ['target'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_category'), 'TranslationMessageHistory', ['category'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_datetime'), 'TranslationMessageHistory', ['datetime'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_fmt'), 'TranslationMessageHistory', ['fmt'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_from_developer'), 'TranslationMessageHistory', ['from_developer'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_key'), 'TranslationMessageHistory', ['key'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_namespace'), 'TranslationMessageHistory', ['namespace'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_parent_translation_id'), 'TranslationMessageHistory', ['parent_translation_id'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_position'), 'TranslationMessageHistory', ['position'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_same_tool'), 'TranslationMessageHistory', ['same_tool'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_taken_from_default'), 'TranslationMessageHistory', ['taken_from_default'], unique=False) op.create_index(op.f('ix_TranslationMessageHistory_tool_id'), 'TranslationMessageHistory', ['tool_id'], unique=False) op.create_index(op.f('ix_TranslationNotificationRecipients_created'), 'TranslationNotificationRecipients', ['created'], unique=False) op.create_index(op.f('ix_TranslationNotificationRecipients_email'), 'TranslationNotificationRecipients', ['email'], unique=True) op.create_index(op.f('ix_TranslationSubscriptions_last_check'), 'TranslationSubscriptions', ['last_check'], unique=False) op.create_index(op.f('ix_TranslationSubscriptions_mechanism'), 'TranslationSubscriptions', ['mechanism'], unique=False) op.create_index(op.f('ix_TranslationSyncLogs_end_datetime'), 'TranslationSyncLogs', ['end_datetime'], unique=False) op.create_index(op.f('ix_TranslationSyncLogs_start_datetime'), 'TranslationSyncLogs', ['start_datetime'], unique=False) op.create_index(op.f('ix_TranslationUrls_automatic'), 'TranslationUrls', ['automatic'], unique=False) op.create_index(op.f('ix_TranslationUrls_url'), 'TranslationUrls', ['url'], unique=True) op.create_index(op.f('ix_TranslationValueSuggestions_human_key'), 'TranslationValueSuggestions', ['human_key'], unique=False) op.create_index(op.f('ix_TranslationValueSuggestions_language'), 'TranslationValueSuggestions', ['language'], unique=False) op.create_index(op.f('ix_TranslationValueSuggestions_target'), 'TranslationValueSuggestions', ['target'], unique=False) op.create_index(op.f('ix_Users_creation_date'), 'Users', ['creation_date'], unique=False) op.create_index(op.f('ix_Users_last_access_date'), 'Users', ['last_access_date'], unique=False) # op.create_unique_constraint(None, 'ActiveTranslationMessages', ['bundle_id', 'key']) # op.create_unique_constraint(None, 'RepositoryApp2languages', ['repository_app_id', 'language_id']) # op.create_unique_constraint(None, 'TranslationBundles', ['translation_url_id', 'language', 'target']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_Users_last_access_date'), table_name='Users') op.drop_index(op.f('ix_Users_creation_date'), table_name='Users') op.drop_index(op.f('ix_TranslationValueSuggestions_target'), table_name='TranslationValueSuggestions') op.drop_index(op.f('ix_TranslationValueSuggestions_language'), table_name='TranslationValueSuggestions') op.drop_index(op.f('ix_TranslationValueSuggestions_human_key'), table_name='TranslationValueSuggestions') op.drop_index(op.f('ix_TranslationUrls_url'), table_name='TranslationUrls') op.drop_index(op.f('ix_TranslationUrls_automatic'), table_name='TranslationUrls') op.drop_index(op.f('ix_TranslationSyncLogs_start_datetime'), table_name='TranslationSyncLogs') op.drop_index(op.f('ix_TranslationSyncLogs_end_datetime'), table_name='TranslationSyncLogs') op.drop_index(op.f('ix_TranslationSubscriptions_mechanism'), table_name='TranslationSubscriptions') op.drop_index(op.f('ix_TranslationSubscriptions_last_check'), table_name='TranslationSubscriptions') op.drop_index(op.f('ix_TranslationNotificationRecipients_email'), table_name='TranslationNotificationRecipients') op.drop_index(op.f('ix_TranslationNotificationRecipients_created'), table_name='TranslationNotificationRecipients') op.drop_index(op.f('ix_TranslationMessageHistory_tool_id'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_taken_from_default'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_same_tool'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_position'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_parent_translation_id'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_namespace'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_key'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_from_developer'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_fmt'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_datetime'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationMessageHistory_category'), table_name='TranslationMessageHistory') op.drop_index(op.f('ix_TranslationKeySuggestions_target'), table_name='TranslationKeySuggestions') op.drop_index(op.f('ix_TranslationKeySuggestions_language'), table_name='TranslationKeySuggestions') op.drop_index(op.f('ix_TranslationKeySuggestions_key'), table_name='TranslationKeySuggestions') op.drop_index(op.f('ix_TranslationExternalSuggestions_origin_language'), table_name='TranslationExternalSuggestions') op.drop_index(op.f('ix_TranslationExternalSuggestions_language'), table_name='TranslationExternalSuggestions') op.drop_index(op.f('ix_TranslationExternalSuggestions_human_key'), table_name='TranslationExternalSuggestions') op.drop_index(op.f('ix_TranslationExternalSuggestions_human_key_hash'), table_name='TranslationExternalSuggestions') op.drop_index(op.f('ix_TranslationExternalSuggestions_engine'), table_name='TranslationExternalSuggestions') op.drop_index(op.f('ix_TranslationBundles_target'), table_name='TranslationBundles') op.drop_index(op.f('ix_TranslationBundles_language'), table_name='TranslationBundles') op.drop_index(op.f('ix_TranslationBundles_from_developer'), table_name='TranslationBundles') op.drop_index(op.f('ix_TranslationCurrentActiveUsers_last_check'), table_name='TranslationCurrentActiveUsers') # op.drop_constraint(None, 'TranslationBundles', type_='unique') op.drop_index(op.f('ix_RepositoryApps_url'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_translatable'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_repository'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_name'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_last_processed_time'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_last_processed_downloaded_hash'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_last_processed_contents_hash'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_last_download_change'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_last_check'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_last_change'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_failing'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_failing_since'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_external_id'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_downloaded_hash'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_contents_hash'), table_name='RepositoryApps') op.drop_index(op.f('ix_RepositoryApps_adaptable'), table_name='RepositoryApps') # op.drop_constraint(None, 'RepositoryApp2languages', type_='unique') op.drop_index(op.f('ix_TranslatedApps_url'), table_name='TranslatedApps') op.drop_index(op.f('ix_Languages_language'), table_name='Languages') op.drop_index(op.f('ix_GoLabOAuthUsers_email'), table_name='GoLabOAuthUsers') op.drop_index(op.f('ix_GoLabOAuthUsers_display_name'), table_name='GoLabOAuthUsers') op.drop_index(op.f('ix_Apps_unique_id'), table_name='Apps') op.drop_index(op.f('ix_Apps_owner_id'), table_name='Apps') op.drop_index(op.f('ix_Apps_name'), table_name='Apps') op.drop_index(op.f('ix_Apps_modification_date'), table_name='Apps') op.drop_index(op.f('ix_Apps_last_access_date'), table_name='Apps') op.drop_index(op.f('ix_Apps_creation_date'), table_name='Apps') op.drop_index(op.f('ix_Apps_composer'), table_name='Apps') # op.drop_constraint(None, 'ActiveTranslationMessages', type_='unique') op.drop_index(op.f('ix_ActiveTranslationMessages_tool_id'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_taken_from_default'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_same_tool'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_position'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_namespace'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_key'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_from_developer'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_fmt'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_datetime'), table_name='ActiveTranslationMessages') op.drop_index(op.f('ix_ActiveTranslationMessages_category'), table_name='ActiveTranslationMessages') op.create_index('ix_Users_last_access_date', 'Users', ['last_access_date'], unique=False) op.create_index('ix_Users_creation_date', 'Users', ['creation_date'], unique=False) op.create_index('ix_TranslationValueSuggestions_target', 'TranslationValueSuggestions', ['target'], unique=False) op.create_index('ix_TranslationValueSuggestions_language', 'TranslationValueSuggestions', ['language'], unique=False) op.create_index('ix_TranslationValueSuggestions_human_key', 'TranslationValueSuggestions', ['human_key'], unique=False) op.create_index('ix_TranslationUrls_url', 'TranslationUrls', ['url'], unique=True) op.create_index('ix_TranslationUrls_automatic', 'TranslationUrls', ['automatic'], unique=False) op.create_index('ix_TranslationSyncLogs_start_datetime', 'TranslationSyncLogs', ['start_datetime'], unique=False) op.create_index('ix_TranslationSyncLogs_end_datetime', 'TranslationSyncLogs', ['end_datetime'], unique=False) op.create_index('ix_TranslationSubscriptions_mechanism', 'TranslationSubscriptions', ['mechanism'], unique=False) op.create_index('ix_TranslationSubscriptions_last_check', 'TranslationSubscriptions', ['last_check'], unique=False) op.create_index('ix_TranslationNotificationRecipients_email', 'TranslationNotificationRecipients', ['email'], unique=True) op.create_index('ix_TranslationNotificationRecipients_created', 'TranslationNotificationRecipients', ['created'], unique=False) op.create_index('ix_TranslationMessageHistory_tool_id', 'TranslationMessageHistory', ['tool_id'], unique=False) op.create_index('ix_TranslationMessageHistory_taken_from_default', 'TranslationMessageHistory', ['taken_from_default'], unique=False) op.create_index('ix_TranslationMessageHistory_same_tool', 'TranslationMessageHistory', ['same_tool'], unique=False) op.create_index('ix_TranslationMessageHistory_position', 'TranslationMessageHistory', ['position'], unique=False) op.create_index('ix_TranslationMessageHistory_parent_translation_id', 'TranslationMessageHistory', ['parent_translation_id'], unique=False) op.create_index('ix_TranslationMessageHistory_namespace', 'TranslationMessageHistory', ['namespace'], unique=False) op.create_index('ix_TranslationMessageHistory_key', 'TranslationMessageHistory', ['key'], unique=False) op.create_index('ix_TranslationMessageHistory_from_developer', 'TranslationMessageHistory', ['from_developer'], unique=False) op.create_index('ix_TranslationMessageHistory_fmt', 'TranslationMessageHistory', ['fmt'], unique=False) op.create_index('ix_TranslationMessageHistory_datetime', 'TranslationMessageHistory', ['datetime'], unique=False) op.create_index('ix_TranslationMessageHistory_category', 'TranslationMessageHistory', ['category'], unique=False) op.create_index('ix_TranslationKeySuggestions_target', 'TranslationKeySuggestions', ['target'], unique=False) op.create_index('ix_TranslationKeySuggestions_language', 'TranslationKeySuggestions', ['language'], unique=False) op.create_index('ix_TranslationKeySuggestions_key', 'TranslationKeySuggestions', ['key'], unique=False) op.create_index('ix_TranslationExternalSuggestions_origin_language', 'TranslationExternalSuggestions', ['origin_language'], unique=False) op.create_index('ix_TranslationExternalSuggestions_language', 'TranslationExternalSuggestions', ['language'], unique=False) op.create_index('ix_TranslationExternalSuggestions_human_key_hash', 'TranslationExternalSuggestions', ['human_key_hash'], unique=False) op.create_index('ix_TranslationExternalSuggestions_human_key', 'TranslationExternalSuggestions', ['human_key'], unique=False) op.create_index('ix_TranslationExternalSuggestions_engine', 'TranslationExternalSuggestions', ['engine'], unique=False) op.create_index('ix_TranslationCurrentActiveUsers_last_check', 'TranslationCurrentActiveUsers', ['last_check'], unique=False) op.create_index('ix_TranslationBundles_target', 'TranslationBundles', ['target'], unique=False) op.create_index('ix_TranslationBundles_language', 'TranslationBundles', ['language'], unique=False) op.create_index('ix_TranslationBundles_from_developer', 'TranslationBundles', ['from_developer'], unique=False) op.create_index('ix_TranslatedApps_url', 'TranslatedApps', ['url'], unique=True) op.create_index('ix_RepositoryApps_url', 'RepositoryApps', ['url'], unique=False) op.create_index('ix_RepositoryApps_translatable', 'RepositoryApps', ['translatable'], unique=False) op.create_index('ix_RepositoryApps_repository', 'RepositoryApps', ['repository'], unique=False) op.create_index('ix_RepositoryApps_name', 'RepositoryApps', ['name'], unique=False) op.create_index('ix_RepositoryApps_last_processed_time', 'RepositoryApps', ['last_processed_time'], unique=False) op.create_index('ix_RepositoryApps_last_processed_downloaded_hash', 'RepositoryApps', ['last_processed_downloaded_hash'], unique=False) op.create_index('ix_RepositoryApps_last_processed_contents_hash', 'RepositoryApps', ['last_processed_contents_hash'], unique=False) op.create_index('ix_RepositoryApps_last_download_change', 'RepositoryApps', ['last_download_change'], unique=False) op.create_index('ix_RepositoryApps_last_check', 'RepositoryApps', ['last_check'], unique=False) op.create_index('ix_RepositoryApps_last_change', 'RepositoryApps', ['last_change'], unique=False) op.create_index('ix_RepositoryApps_failing_since', 'RepositoryApps', ['failing_since'], unique=False) op.create_index('ix_RepositoryApps_failing', 'RepositoryApps', ['failing'], unique=False) op.create_index('ix_RepositoryApps_external_id', 'RepositoryApps', ['external_id'], unique=False) op.create_index('ix_RepositoryApps_downloaded_hash', 'RepositoryApps', ['downloaded_hash'], unique=False) op.create_index('ix_RepositoryApps_contents_hash', 'RepositoryApps', ['contents_hash'], unique=False) op.create_index('ix_RepositoryApps_adaptable', 'RepositoryApps', ['adaptable'], unique=False) op.create_index('ix_Languages_language', 'Languages', ['language'], unique=True) op.create_index('ix_GoLabOAuthUsers_email', 'GoLabOAuthUsers', ['email'], unique=True) op.create_index('ix_GoLabOAuthUsers_display_name', 'GoLabOAuthUsers', ['display_name'], unique=False) op.create_index('ix_Apps_unique_id', 'Apps', ['unique_id'], unique=True) op.create_index('ix_Apps_owner_id', 'Apps', ['owner_id'], unique=False) op.create_index('ix_Apps_name', 'Apps', ['name'], unique=False) op.create_index('ix_Apps_modification_date', 'Apps', ['modification_date'], unique=False) op.create_index('ix_Apps_last_access_date', 'Apps', ['last_access_date'], unique=False) op.create_index('ix_Apps_creation_date', 'Apps', ['creation_date'], unique=False) op.create_index('ix_Apps_composer', 'Apps', ['composer'], unique=False) op.create_index('ix_ActiveTranslationMessages_tool_id', 'ActiveTranslationMessages', ['tool_id'], unique=False) op.create_index('ix_ActiveTranslationMessages_taken_from_default', 'ActiveTranslationMessages', ['taken_from_default'], unique=False) op.create_index('ix_ActiveTranslationMessages_same_tool', 'ActiveTranslationMessages', ['same_tool'], unique=False) op.create_index('ix_ActiveTranslationMessages_position', 'ActiveTranslationMessages', ['position'], unique=False) op.create_index('ix_ActiveTranslationMessages_namespace', 'ActiveTranslationMessages', ['namespace'], unique=False) op.create_index('ix_ActiveTranslationMessages_key', 'ActiveTranslationMessages', ['key'], unique=False) op.create_index('ix_ActiveTranslationMessages_from_developer', 'ActiveTranslationMessages', ['from_developer'], unique=False) op.create_index('ix_ActiveTranslationMessages_fmt', 'ActiveTranslationMessages', ['fmt'], unique=False) op.create_index('ix_ActiveTranslationMessages_datetime', 'ActiveTranslationMessages', ['datetime'], unique=False) op.create_index('ix_ActiveTranslationMessages_category', 'ActiveTranslationMessages', ['category'], unique=False) # ### end Alembic commands ###
90.205202
149
0.79834
3,464
31,211
6.809469
0.032333
0.037901
0.068085
0.061896
0.979142
0.975454
0.975114
0.965152
0.952815
0.795447
0
0.001862
0.070808
31,211
345
150
90.466667
0.811489
0.0256
0
0
0
0
0.557345
0.447364
0
0
0
0
0
1
0.006711
false
0
0.006711
0
0.013423
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
40686bfbfab402b52cf133e6f6f5366a147289d1
14,107
py
Python
appengine/findit/handlers/test/completed_build_pubsub_ingestor_test.py
xswz8015/infra
f956b78ce4c39cc76acdda47601b86794ae0c1ba
[ "BSD-3-Clause" ]
null
null
null
appengine/findit/handlers/test/completed_build_pubsub_ingestor_test.py
xswz8015/infra
f956b78ce4c39cc76acdda47601b86794ae0c1ba
[ "BSD-3-Clause" ]
4
2022-03-17T18:58:21.000Z
2022-03-17T18:58:22.000Z
appengine/findit/handlers/test/completed_build_pubsub_ingestor_test.py
xswz8015/infra
f956b78ce4c39cc76acdda47601b86794ae0c1ba
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import base64 import json import mock import webapp2 from google.appengine.api import taskqueue from go.chromium.org.luci.buildbucket.proto.build_pb2 import Build from testing_utils.testing import AppengineTestCase from common.findit_http_client import FinditHttpClient from common.waterfall import buildbucket_client from handlers import completed_build_pubsub_ingestor from model.isolated_target import IsolatedTarget class CompletedBuildPubsubIngestorTest(AppengineTestCase): app_module = webapp2.WSGIApplication([ ('/index-isolated-builds', completed_build_pubsub_ingestor.CompletedBuildPubsubIngestor), ], debug=True) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(FinditHttpClient, 'Post') def testSucessfulPushCIBuild(self, mock_post, mock_get_build, *_): mock_build = Build() mock_build.id = 8945610992972640896 mock_build.status = 12 mock_build.input.properties['builder_group'] = 'chromium.linux' mock_build.output.properties['buildername'] = 'Linux Builder' mock_build.output.properties.get_or_create_struct( 'swarm_hashes_ref/heads/mockmaster(at){#123}' )['mock_target'] = 'mock_hash' gitiles_commit = mock_build.input.gitiles_commit gitiles_commit.host = 'gitiles.host' gitiles_commit.project = 'gitiles/project' gitiles_commit.ref = 'refs/heads/mockmaster' mock_build.builder.project = 'mock_luci_project' mock_build.builder.bucket = 'mock_bucket' mock_build.builder.builder = 'Linux Builder' mock_headers = {'X-Prpc-Grpc-Code': '0'} binary_data = mock_build.SerializeToString() mock_post.return_value = (200, binary_data, mock_headers) mock_get_build.return_value = mock_build request_body = json.dumps({ 'message': { 'attributes': { 'build_id': str(mock_build.id), }, 'data': base64.b64encode( json.dumps({ 'build': { 'project': 'chromium', 'bucket': 'luci.chromium.ci', 'status': 'COMPLETED', 'parameters_json': '{"builder_name": "builder"}', } })), }, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body) self.assertEqual(200, response.status_int) self.assertEqual( 123, IsolatedTarget.get_by_id( '8945610992972640896/mock_target').commit_position) self.assertEqual( 8945610992972640896, IsolatedTarget.get_by_id('8945610992972640896/mock_target').build_id) self.assertEqual(1, len(json.loads(response.body)['created_rows'])) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(FinditHttpClient, 'Post') def testPushNoBuild(self, mock_post, *_): mock_headers = {'X-Prpc-Grpc-Code': '5'} mock_post.return_value = (404, 'Build not found', mock_headers) request_body = json.dumps({ 'message': { 'attributes': { 'build_id': '123456', }, 'data': base64.b64encode( json.dumps({ 'build': { 'project': 'chromium', 'bucket': 'luci.chromium.ci', 'status': 'COMPLETED', 'result': 'SUCCESS', 'parameters_json': '{"builder_name": "builder"}', } })), }, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body, status=200) self.assertEqual(200, response.status_int) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(FinditHttpClient, 'Post') def testPushPendingBuild(self, mock_post, *_): request_body = json.dumps({ 'message': { 'attributes': { 'build_id': '123456', }, 'data': base64.b64encode( json.dumps({ 'build': { 'project': 'chromium', 'bucket': 'luci.chromium.ci', 'status': 'PENDING', 'parameters_json': '{"builder_name": "builder"}', } })), }, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body) self.assertFalse(mock_post.called) self.assertEqual(200, response.status_int) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(FinditHttpClient, 'Post') def testSucessfulPushBadFormat(self, mock_post, *_): request_body = json.dumps({ 'message': {}, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body) self.assertFalse(mock_post.called) self.assertEqual(200, response.status_int) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(FinditHttpClient, 'Post') def testNonIsolateBuild(self, mock_post, mock_get_build, *_): # This build does not isolate any targets. mock_build = Build() mock_build.id = 8945610992972640896 mock_build.status = 12 mock_build.input.properties['builder_group'] = 'chromium.linux' mock_build.output.properties['buildername'] = 'Linux Tester' gitiles_commit = mock_build.input.gitiles_commit gitiles_commit.host = 'gitiles.host' gitiles_commit.project = 'gitiles/project' gitiles_commit.ref = 'refs/heads/mockmaster' mock_build.builder.project = 'mock_luci_project' mock_build.builder.bucket = 'mock_bucket' mock_build.builder.builder = 'Linux Tester' mock_headers = {'X-Prpc-Grpc-Code': '0'} binary_data = mock_build.SerializeToString() mock_post.return_value = (200, binary_data, mock_headers) mock_get_build.return_value = mock_build request_body = json.dumps({ 'message': { 'attributes': { 'build_id': str(mock_build.id), }, 'data': base64.b64encode( json.dumps({ 'build': { 'project': 'chromium', 'bucket': 'luci.chromium.ci', 'status': 'COMPLETED', 'parameters_json': '{"builder_name": "builder"}', } })), }, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body) self.assertEqual(200, response.status_int) self.assertNotIn('created_rows', response.body) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(FinditHttpClient, 'Post') def testNoMasternameBuild(self, mock_post, mock_get_build, *_): mock_build = Build() mock_build.id = 8945610992972640896 mock_build.status = 12 mock_build.output.properties['buildername'] = 'Linux Builder' mock_build.output.properties.get_or_create_struct( 'swarm_hashes_ref/heads/mockmaster(at){#123}' )['mock_target'] = 'mock_hash' gitiles_commit = mock_build.input.gitiles_commit gitiles_commit.host = 'gitiles.host' gitiles_commit.project = 'gitiles/project' gitiles_commit.ref = 'refs/heads/mockmaster' mock_build.builder.project = 'mock_luci_project' mock_build.builder.bucket = 'mock_bucket' mock_build.builder.builder = 'Linux Builder' mock_headers = {'X-Prpc-Grpc-Code': '0'} binary_data = mock_build.SerializeToString() mock_post.return_value = (200, binary_data, mock_headers) mock_get_build.return_value = mock_build request_body = json.dumps({ 'message': { 'attributes': { 'build_id': str(mock_build.id), }, 'data': base64.b64encode( json.dumps({ 'build': { 'project': 'chromium', 'bucket': 'luci.chromium.ci', 'status': 'COMPLETED', 'parameters_json': '{"builder_name": "builder"}', } })), }, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body) self.assertEqual(200, response.status_int) self.assertNotIn('created_rows', response.body) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(FinditHttpClient, 'Post') def testSucessfulPushTryJob(self, mock_post, mock_get_build, *_): mock_build = Build() mock_build.id = 8945610992972640896 mock_build.status = 12 mock_build.input.properties['builder_group'] = 'luci.chromium.findit' mock_build.input.properties['target_builder_group'] = 'chromium.linux' mock_build.output.properties['buildername'] = ('findit_variable') mock_build.output.properties['target_buildername'] = ( 'linux_chromium_compile_dbg_ng') mock_build.output.properties.get_or_create_struct( 'swarm_hashes_ref/heads/mockmaster(at){#123}_with_patch' )['mock_target'] = 'mock_hash' mock_build.output.properties.get_or_create_struct( 'swarm_hashes_ref/heads/mockmaster(at){#123}_without_patch' )['mock_target'] = 'mock_hash_without' mock_build.output.properties['repository'] = ( 'https://test.googlesource.com/team/project.git') mock_build.output.properties['gitiles_ref'] = 'refs/heads/mockmaster' mock_change = mock_build.input.gerrit_changes.add() mock_change.host = 'mock.gerrit.host' mock_change.change = 12345 mock_change.patchset = 1 mock_build.builder.project = 'mock_luci_project' mock_build.builder.bucket = 'mock_bucket' mock_build.builder.builder = 'findit_variable' mock_headers = {'X-Prpc-Grpc-Code': '0'} binary_data = mock_build.SerializeToString() mock_post.return_value = (200, binary_data, mock_headers) mock_get_build.return_value = mock_build request_body = json.dumps({ 'message': { 'attributes': { 'build_id': str(mock_build.id), }, 'data': base64.b64encode( json.dumps({ 'build': { 'project': 'chromium', 'bucket': 'luci.chromium.ci', 'status': 'COMPLETED', 'parameters_json': '{"builder_name": "builder"}', } })), }, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body) self.assertEqual(200, response.status_int) self.assertEqual( 123, IsolatedTarget.get_by_id( '8945610992972640896/mock_target').commit_position) self.assertEqual(2, len(json.loads(response.body)['created_rows'])) # Ensure target values were used. entry = IsolatedTarget.get_by_id('8945610992972640896/mock_target') self.assertEqual('chromium.linux', entry.master_name) self.assertEqual('linux_chromium_compile_dbg_ng', entry.builder_name) @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleFailuresInBuild') @mock.patch.object(completed_build_pubsub_ingestor, '_HandlePossibleCodeCoverageBuild') @mock.patch.object(FinditHttpClient, 'Post') def testPushIgnoreV2Push(self, mock_post, *_): request_body = json.dumps({ 'message': { 'attributes': { 'build_id': '123456', 'version': 'v2', }, 'data': base64.b64encode( json.dumps({ 'build': { 'project': 'chromium', 'bucket': 'luci.chromium.ci', 'status': 'COMPLETED', 'parameters_json': '{"builder_name": "builder"}', } })), }, }) response = self.test_app.post( '/index-isolated-builds?format=json', params=request_body) self.assertFalse(mock_post.called) self.assertEqual(200, response.status_int)
40.654179
78
0.607712
1,352
14,107
6.075444
0.140533
0.060263
0.051132
0.061359
0.822255
0.807402
0.801558
0.780862
0.776114
0.768688
0
0.030753
0.278514
14,107
346
79
40.771676
0.776282
0.016162
0
0.757009
0
0
0.222086
0.090319
0
0
0
0
0.062305
1
0.024922
false
0
0.034268
0
0.065421
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
407e66ad31400c201f52210276cc27484a563068
22,314
py
Python
google/ads/google_ads/v5/__init__.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
1
2021-04-09T04:28:47.000Z
2021-04-09T04:28:47.000Z
google/ads/google_ads/v5/__init__.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v5/__init__.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import sys from google.ads.google_ads import util if sys.version_info < (3, 6): raise ImportError("This module requires Python 3.6 or later.") _lazy_name_to_package_map = { "account_budget_proposal_service_client": "google.ads.google_ads.v5.services", "account_budget_service_client": "google.ads.google_ads.v5.services", "account_link_service_client": "google.ads.google_ads.v5.services", "ad_group_ad_asset_view_service_client": "google.ads.google_ads.v5.services", "ad_group_ad_label_service_client": "google.ads.google_ads.v5.services", "ad_group_ad_service_client": "google.ads.google_ads.v5.services", "ad_group_audience_view_service_client": "google.ads.google_ads.v5.services", "ad_group_bid_modifier_service_client": "google.ads.google_ads.v5.services", "ad_group_criterion_label_service_client": "google.ads.google_ads.v5.services", "ad_group_criterion_service_client": "google.ads.google_ads.v5.services", "ad_group_criterion_simulation_service_client": "google.ads.google_ads.v5.services", "ad_group_extension_setting_service_client": "google.ads.google_ads.v5.services", "ad_group_feed_service_client": "google.ads.google_ads.v5.services", "ad_group_label_service_client": "google.ads.google_ads.v5.services", "ad_group_service_client": "google.ads.google_ads.v5.services", "ad_group_simulation_service_client": "google.ads.google_ads.v5.services", "ad_parameter_service_client": "google.ads.google_ads.v5.services", "ad_schedule_view_service_client": "google.ads.google_ads.v5.services", "ad_service_client": "google.ads.google_ads.v5.services", "age_range_view_service_client": "google.ads.google_ads.v5.services", "asset_service_client": "google.ads.google_ads.v5.services", "batch_job_service_client": "google.ads.google_ads.v5.services", "bidding_strategy_service_client": "google.ads.google_ads.v5.services", "billing_setup_service_client": "google.ads.google_ads.v5.services", "campaign_asset_service_client": "google.ads.google_ads.v5.services", "campaign_audience_view_service_client": "google.ads.google_ads.v5.services", "campaign_bid_modifier_service_client": "google.ads.google_ads.v5.services", "campaign_budget_service_client": "google.ads.google_ads.v5.services", "campaign_criterion_service_client": "google.ads.google_ads.v5.services", "campaign_criterion_simulation_service_client": "google.ads.google_ads.v5.services", "campaign_draft_service_client": "google.ads.google_ads.v5.services", "campaign_experiment_service_client": "google.ads.google_ads.v5.services", "campaign_extension_setting_service_client": "google.ads.google_ads.v5.services", "campaign_feed_service_client": "google.ads.google_ads.v5.services", "campaign_label_service_client": "google.ads.google_ads.v5.services", "campaign_service_client": "google.ads.google_ads.v5.services", "campaign_shared_set_service_client": "google.ads.google_ads.v5.services", "carrier_constant_service_client": "google.ads.google_ads.v5.services", "change_status_service_client": "google.ads.google_ads.v5.services", "click_view_service_client": "google.ads.google_ads.v5.services", "conversion_action_service_client": "google.ads.google_ads.v5.services", "conversion_adjustment_upload_service_client": "google.ads.google_ads.v5.services", "conversion_upload_service_client": "google.ads.google_ads.v5.services", "currency_constant_service_client": "google.ads.google_ads.v5.services", "custom_interest_service_client": "google.ads.google_ads.v5.services", "customer_client_link_service_client": "google.ads.google_ads.v5.services", "customer_client_service_client": "google.ads.google_ads.v5.services", "customer_extension_setting_service_client": "google.ads.google_ads.v5.services", "customer_feed_service_client": "google.ads.google_ads.v5.services", "customer_label_service_client": "google.ads.google_ads.v5.services", "customer_manager_link_service_client": "google.ads.google_ads.v5.services", "customer_negative_criterion_service_client": "google.ads.google_ads.v5.services", "customer_service_client": "google.ads.google_ads.v5.services", "detail_placement_view_service_client": "google.ads.google_ads.v5.services", "display_keyword_view_service_client": "google.ads.google_ads.v5.services", "distance_view_service_client": "google.ads.google_ads.v5.services", "domain_category_service_client": "google.ads.google_ads.v5.services", "dynamic_search_ads_search_term_view_service_client": "google.ads.google_ads.v5.services", "expanded_landing_page_view_service_client": "google.ads.google_ads.v5.services", "extension_feed_item_service_client": "google.ads.google_ads.v5.services", "feed_item_service_client": "google.ads.google_ads.v5.services", "feed_item_target_service_client": "google.ads.google_ads.v5.services", "feed_mapping_service_client": "google.ads.google_ads.v5.services", "feed_placeholder_view_service_client": "google.ads.google_ads.v5.services", "feed_service_client": "google.ads.google_ads.v5.services", "gender_view_service_client": "google.ads.google_ads.v5.services", "geo_target_constant_service_client": "google.ads.google_ads.v5.services", "geographic_view_service_client": "google.ads.google_ads.v5.services", "google_ads_field_service_client": "google.ads.google_ads.v5.services", "google_ads_service_client": "google.ads.google_ads.v5.services", "group_placement_view_service_client": "google.ads.google_ads.v5.services", "hotel_group_view_service_client": "google.ads.google_ads.v5.services", "hotel_performance_view_service_client": "google.ads.google_ads.v5.services", "income_range_view_service_client": "google.ads.google_ads.v5.services", "invoice_service_client": "google.ads.google_ads.v5.services", "keyword_plan_ad_group_keyword_service_client": "google.ads.google_ads.v5.services", "keyword_plan_ad_group_service_client": "google.ads.google_ads.v5.services", "keyword_plan_campaign_keyword_service_client": "google.ads.google_ads.v5.services", "keyword_plan_campaign_service_client": "google.ads.google_ads.v5.services", "keyword_plan_idea_service_client": "google.ads.google_ads.v5.services", "keyword_plan_service_client": "google.ads.google_ads.v5.services", "keyword_view_service_client": "google.ads.google_ads.v5.services", "label_service_client": "google.ads.google_ads.v5.services", "landing_page_view_service_client": "google.ads.google_ads.v5.services", "language_constant_service_client": "google.ads.google_ads.v5.services", "location_view_service_client": "google.ads.google_ads.v5.services", "managed_placement_view_service_client": "google.ads.google_ads.v5.services", "media_file_service_client": "google.ads.google_ads.v5.services", "merchant_center_link_service_client": "google.ads.google_ads.v5.services", "mobile_app_category_constant_service_client": "google.ads.google_ads.v5.services", "mobile_device_constant_service_client": "google.ads.google_ads.v5.services", "offline_user_data_job_service_client": "google.ads.google_ads.v5.services", "operating_system_version_constant_service_client": "google.ads.google_ads.v5.services", "paid_organic_search_term_view_service_client": "google.ads.google_ads.v5.services", "parental_status_view_service_client": "google.ads.google_ads.v5.services", "payments_account_service_client": "google.ads.google_ads.v5.services", "product_bidding_category_constant_service_client": "google.ads.google_ads.v5.services", "product_group_view_service_client": "google.ads.google_ads.v5.services", "reach_plan_service_client": "google.ads.google_ads.v5.services", "recommendation_service_client": "google.ads.google_ads.v5.services", "remarketing_action_service_client": "google.ads.google_ads.v5.services", "search_term_view_service_client": "google.ads.google_ads.v5.services", "shared_criterion_service_client": "google.ads.google_ads.v5.services", "shared_set_service_client": "google.ads.google_ads.v5.services", "shopping_performance_view_service_client": "google.ads.google_ads.v5.services", "third_party_app_analytics_link_service_client": "google.ads.google_ads.v5.services", "topic_constant_service_client": "google.ads.google_ads.v5.services", "topic_view_service_client": "google.ads.google_ads.v5.services", "user_data_service_client": "google.ads.google_ads.v5.services", "user_interest_service_client": "google.ads.google_ads.v5.services", "user_list_service_client": "google.ads.google_ads.v5.services", "user_location_view_service_client": "google.ads.google_ads.v5.services", "video_service_client": "google.ads.google_ads.v5.services", "account_budget_proposal_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "account_budget_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "account_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_ad_asset_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_ad_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_ad_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_audience_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_bid_modifier_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_criterion_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_criterion_simulation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_extension_setting_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_simulation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_parameter_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_schedule_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "age_range_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "asset_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "batch_job_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "bidding_strategy_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "billing_setup_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_asset_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_audience_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_bid_modifier_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_budget_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_criterion_simulation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_draft_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_experiment_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_extension_setting_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_shared_set_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "carrier_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "change_status_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "click_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "conversion_action_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "conversion_adjustment_upload_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "conversion_upload_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "currency_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "custom_interest_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_client_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_client_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_extension_setting_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_manager_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_negative_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "detail_placement_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "display_keyword_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "distance_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "domain_category_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "dynamic_search_ads_search_term_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "expanded_landing_page_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "extension_feed_item_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_item_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_item_target_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_mapping_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_placeholder_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "gender_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "geo_target_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "geographic_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "google_ads_field_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "google_ads_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "group_placement_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "hotel_group_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "hotel_performance_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "income_range_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "invoice_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_ad_group_keyword_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_ad_group_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_campaign_keyword_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_campaign_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_idea_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "landing_page_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "language_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "location_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "managed_placement_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "media_file_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "merchant_center_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "mobile_app_category_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "mobile_device_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "offline_user_data_job_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "operating_system_version_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "paid_organic_search_term_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "parental_status_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "payments_account_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "product_bidding_category_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "product_group_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "reach_plan_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "recommendation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "remarketing_action_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "search_term_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "shared_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "shared_set_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "shopping_performance_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "third_party_app_analytics_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "topic_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "topic_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_data_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_interest_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_list_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_location_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "video_service_grpc_transport": "google.ads.google_ads.v5.services.transports", } # Background on how this behaves: https://www.python.org/dev/peps/pep-0562/ def __getattr__(name): # Requires Python >= 3.7 """Lazily perform imports and class definitions on first demand.""" if name == "__all__": converted = ( util.convert_snake_case_to_upper_case(key) for key in _lazy_name_to_package_map ) all_names = sorted(converted) globals()["__all__"] = all_names return all_names elif name.endswith("Transport"): module = __getattr__(util.convert_upper_case_to_snake_case(name)) sub_mod_class = getattr(module, name) klass = type(name, (sub_mod_class,), {"__doc__": sub_mod_class.__doc__}) globals()[name] = klass return klass elif name.endswith("ServiceClient"): module = __getattr__(util.convert_upper_case_to_snake_case(name)) enums = __getattr__("enums") sub_mod_class = getattr(module, name) klass = type( name, (sub_mod_class,), {"__doc__": sub_mod_class.__doc__, "enums": enums}, ) globals()[name] = klass return klass elif name == "enums": path = "google.ads.google_ads.v5.services.enums" module = importlib.import_module(path) globals()[name] = module return module elif name == "types": path = "google.ads.google_ads.v5.types" module = importlib.import_module(path) globals()[name] = module return module elif name in _lazy_name_to_package_map: module = importlib.import_module( f"{_lazy_name_to_package_map[name]}.{name}" ) globals()[name] = module return module else: raise AttributeError(f"unknown sub-module {name!r}.") def __dir__(): return globals().get("__all__") or __getattr__("__all__") if not sys.version_info >= (3, 7): from pep562 import Pep562 Pep562(__name__)
71.519231
113
0.791118
2,988
22,314
5.47925
0.079987
0.25397
0.209809
0.251771
0.886697
0.875764
0.865013
0.858783
0.841253
0.696433
0
0.012659
0.090168
22,314
311
114
71.749196
0.793764
0.031729
0
0.056738
0
0
0.793431
0.781896
0
0
0
0
0
1
0.007092
false
0
0.028369
0.003546
0.060284
0
0
0
0
null
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
11
40c4517b7bccc080e6b7ec11639bdde005bb213a
739
py
Python
tests/test_config.py
savilard/flask-ecom-api
d94ee7873b9ec80645c05422e3355e8dc045ebeb
[ "MIT" ]
1
2021-04-17T15:25:36.000Z
2021-04-17T15:25:36.000Z
tests/test_config.py
savilard/flask-ecom-api
d94ee7873b9ec80645c05422e3355e8dc045ebeb
[ "MIT" ]
null
null
null
tests/test_config.py
savilard/flask-ecom-api
d94ee7873b9ec80645c05422e3355e8dc045ebeb
[ "MIT" ]
1
2021-04-18T15:47:02.000Z
2021-04-18T15:47:02.000Z
import os def test_development_config(test_app): test_app.config.from_object('flask_ecom_api.config.DevelopmentConfig') assert not test_app.config['TESTING'] assert test_app.config['SQLALCHEMY_DATABASE_URI'] == os.environ.get('DATABASE_URL') def test_testing_config(test_app): test_app.config.from_object('flask_ecom_api.config.TestingConfig') assert test_app.config['TESTING'] assert test_app.config['SQLALCHEMY_DATABASE_URI'] == os.environ.get('DATABASE_TEST_URL') def test_production_config(test_app): test_app.config.from_object('flask_ecom_api.config.ProductionConfig') assert not test_app.config['TESTING'] assert test_app.config['SQLALCHEMY_DATABASE_URI'] == os.environ.get('DATABASE_URL')
36.95
92
0.783491
104
739
5.211538
0.240385
0.154982
0.215867
0.140221
0.785978
0.785978
0.785978
0.785978
0.785978
0.785978
0
0
0.098782
739
19
93
38.894737
0.813814
0
0
0.307692
0
0
0.328823
0.244926
0
0
0
0
0.461538
1
0.230769
false
0
0.076923
0
0.307692
0
0
0
0
null
0
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
1
0
0
0
0
0
0
0
8
90a4ede6bfdb471d923545a3e19b34b37a9df384
7,038
py
Python
parser/fase2/team28/models/Other/funcion.py
jossiebk/tytus
de6ce433d61609d4eaa5d0dbbd2ce13aaa573544
[ "MIT" ]
null
null
null
parser/fase2/team28/models/Other/funcion.py
jossiebk/tytus
de6ce433d61609d4eaa5d0dbbd2ce13aaa573544
[ "MIT" ]
null
null
null
parser/fase2/team28/models/Other/funcion.py
jossiebk/tytus
de6ce433d61609d4eaa5d0dbbd2ce13aaa573544
[ "MIT" ]
null
null
null
from models.instructions.shared import Instruction from models.Other.ambito import Ambito from controllers.three_address_code import ThreeAddressCode from controllers.procedures import Procedures from models.instructions.Expression.expression import DATA_TYPE, PrimitiveData class Parametro(Instruction): def __init__(self, id, data_type, line, column): self.id = id self.data_type = data_type self.line = line self.column = column self._tac = '' def compile(self): pass def process(self, environment): pass def __repr__(self): return str(vars(self)) class Funcion(Instruction): def __init__(self, id, params, body, val_return, isNew, isCall, line, column): self.id = id self.params = params self.body = body self.val_return = val_return self.isNew = isNew self.isCall = isCall self.environment = None self.line = line self.column = column def __repr__(self): return str(vars(self)) def process(self, environment): pass def compile(self, environment): params = len(self.params) temporal = None if self.isNew: self.environment = environment # TODO verificar if Procedures().saveProcedure(self.id, self, self.line, self.column): var_array = self.print(environment) temporal = self.setVariables(var_array, environment) else: var_array = Procedures().getProcedure(self.id, params, self.line, self.column) if var_array: temporal = self.setVariables(var_array, environment) fun = ThreeAddressCode().searchFunction(self.id) if fun: temporal = self.setVariables(fun['variables'], environment) return temporal #temp = ThreeAddressCode().newTemp() def print(self, environment): if ThreeAddressCode().searchFunction(self.id): return None ThreeAddressCode().newFunction(self.id) newAmbito = Ambito(environment) pos = 0 var_array = [] for var in self.params: pos = ThreeAddressCode().stackCounter var_array.append(newAmbito.addVar(var.id, var.data_type, None, pos, var.line, var.column)) ThreeAddressCode().incStackCounter() pos = ThreeAddressCode().stackCounter #Generando etiqueta de salida para la funcion lbl_exit = ThreeAddressCode().newLabel() newAmbito.lbl_return = lbl_exit #Agregando cuerpo de la funcion self.body.compile(newAmbito) # Agregando etiqueta de salida ThreeAddressCode().addCode(f"label .{lbl_exit}") # Imprime primera variable declarada, NO parametro # ThreeAddressCode().addCode(f"print(Stack[{pos}])") ThreeAddressCode().createFunction(self.id, self.params, var_array) return var_array def setVariables(self, var_array, environment): if self.isCall: value = 0 for index, var in enumerate(var_array): value = self.params[index].compile(environment) if isinstance(value, PrimitiveData): if value.data_type == DATA_TYPE.STRING: value.value = f"\'{value.value}\'" ThreeAddressCode().addCode(f"Stack[{var.position}] = {value.value}") temp = ThreeAddressCode().newTemp() #Llamando a la funcion ThreeAddressCode().addCode(f"{self.id}()") #Obteniendo el valor de retorno de la funcion ThreeAddressCode().addCode("#Obteniendo valor de retorno--------") ThreeAddressCode().addCode(f"{temp} = Stack[P]") return temp return None class DropFuncion(Instruction): def __init__(self, id, params, line, column): self.id = id self.params = params self.line = line self.column = column class ProcedimientoAlmacenado(Instruction): def __init__(self, id, params, body, isNew, isCall, line, column): self.id = id self.params = params self.body = body self.isNew = isNew self.isCall = isCall self.environment = None self.line = line self.column = column def __repr__(self): return str(vars(self)) def process(self, environment): pass def compile(self, environment): params = len(self.params) if self.isNew: self.environment = environment # TODO verificar if Procedures().saveProcedure(self.id, self, self.line, self.column): var_array = self.print(environment) self.setVariables(var_array, environment) else: var_array = Procedures().getProcedure(self.id, params, self.line, self.column) if var_array: self.setVariables(var_array, environment) fun = ThreeAddressCode().searchFunction(self.id) if fun: self.setVariables(fun['variables'], environment) #temp = ThreeAddressCode().newTemp() def print(self, environment): if ThreeAddressCode().searchFunction(self.id): return None ThreeAddressCode().newFunction(self.id) newAmbito = Ambito(environment) pos = 0 var_array = [] for var in self.params: pos = ThreeAddressCode().stackCounter var_array.append(newAmbito.addVar(var.id, var.data_type, None, pos, var.line, var.column)) ThreeAddressCode().incStackCounter() pos = ThreeAddressCode().stackCounter #Generando etiqueta de salida para la funcion lbl_exit = ThreeAddressCode().newLabel() newAmbito.lbl_return = lbl_exit #Agregando cuerpo de la funcion self.body.compile(newAmbito) # Agregando etiqueta de salida ThreeAddressCode().addCode(f"label .{lbl_exit}") # Imprime primera variable declarada, NO parametro ThreeAddressCode().addCode(f"print(Stack[{pos}])") ThreeAddressCode().createFunction(self.id, self.params, var_array) return var_array def setVariables(self, var_array, environment): if self.isCall: value = 0 for index, var in enumerate(var_array): value = self.params[index].compile(environment) if isinstance(value, PrimitiveData): if value.data_type == DATA_TYPE.STRING: value.value = f"\'{value.value}\'" ThreeAddressCode().addCode(f"Stack[{var.position}] = {value.value}") #Llamando a la funcion ThreeAddressCode().addCode(f"{self.id}()") #Una procedimiento almacenado NO devuelve nada
34.331707
90
0.596903
717
7,038
5.755927
0.153417
0.031984
0.052338
0.021323
0.848316
0.823601
0.787497
0.764236
0.764236
0.731766
0
0.00082
0.306763
7,038
205
91
34.331707
0.84505
0.08312
0
0.823129
0
0
0.039466
0.006526
0
0
0
0.004878
0
1
0.115646
false
0.027211
0.034014
0.020408
0.244898
0.034014
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
90d6fa60d16e379bff07b720da304a90340377ce
1,135
py
Python
safe_control_gym/controllers/__init__.py
gokhanalcan/safe-control-gym
e9086e102663a60a66f2cc9c8cd7610888744056
[ "MIT" ]
null
null
null
safe_control_gym/controllers/__init__.py
gokhanalcan/safe-control-gym
e9086e102663a60a66f2cc9c8cd7610888744056
[ "MIT" ]
null
null
null
safe_control_gym/controllers/__init__.py
gokhanalcan/safe-control-gym
e9086e102663a60a66f2cc9c8cd7610888744056
[ "MIT" ]
null
null
null
"""Register controllers. """ from safe_control_gym.utils.registration import register register(id="mpc", entry_point="safe_control_gym.controllers.mpc.mpc:MPC", config_entry_point="safe_control_gym.controllers.mpc:mpc.yaml") register(id="linear_mpc", entry_point="safe_control_gym.controllers.mpc.linear_mpc:LinearMPC", config_entry_point="safe_control_gym.controllers.mpc:linear_mpc.yaml") register(id="gp_mpc", entry_point="safe_control_gym.controllers.mpc.gp_mpc:GPMPC", config_entry_point="safe_control_gym.controllers.mpc:gp_mpc.yaml") register(id="mpsc", entry_point="safe_control_gym.controllers.mpsc.mpsc:MPSC", config_entry_point="safe_control_gym.controllers.mpsc:mpsc.yaml") register(id="ppo", entry_point="safe_control_gym.controllers.ppo.ppo:PPO", config_entry_point="safe_control_gym.controllers.ppo:ppo.yaml") register(id="safe_explorer_ppo", entry_point="safe_control_gym.controllers.safe_explorer.safe_ppo:SafeExplorerPPO", config_entry_point="safe_control_gym.controllers.safe_explorer:safe_ppo.yaml")
39.137931
91
0.757709
154
1,135
5.220779
0.149351
0.177861
0.226368
0.313433
0.732587
0.732587
0.732587
0.702736
0.358209
0.134328
0
0
0.123348
1,135
28
92
40.535714
0.80804
0.018502
0
0
0
0
0.546112
0.507233
0
0
0
0
0
1
0
true
0
0.052632
0
0.052632
0
0
0
0
null
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
null
0
0
0
0
0
0
1
0
0
0
0
0
0
7
90fa1b52a86892da98479fc272386682615fa765
17,478
py
Python
Termux-pkg-apt.py
Hironotori/Termux-pkg-apt
db1c33b750e82943c8c5b2780d69654ab4afde96
[ "BSL-1.0" ]
1
2021-04-12T18:33:25.000Z
2021-04-12T18:33:25.000Z
Termux-pkg-apt.py
Hironotori/Termux-pkg-apt
db1c33b750e82943c8c5b2780d69654ab4afde96
[ "BSL-1.0" ]
null
null
null
Termux-pkg-apt.py
Hironotori/Termux-pkg-apt
db1c33b750e82943c8c5b2780d69654ab4afde96
[ "BSL-1.0" ]
1
2021-10-17T00:44:37.000Z
2021-10-17T00:44:37.000Z
#!/usr/bin/python3 import os import time import sys os.system("clear") print('''\033[91m CREATED BY Hironotori ''') def slowprint(s): for c in s + '\n' : sys.stdout.write(c) sys.stdout.flush() slowprint(''' \033[93m [1] apt-pkg pip-pip3 [2] apt-pkg python [3] apt-pkg python2 [4] apt-pkg bash [5] apt-pkg git [6] apt-pkg perl [7] apt-pkg nano [8] apt-pkg curl [9] apt-pkg openssl [10] apt-pkg openssh [11] apt-pkg wget [12] apt-pkg clang [13] apt-pkg nmap [14] apt-pkg w3m [15] apt-pkg ruby [16] apt-pkg dnsutils [17] apt-pkg coreutils [18] apt-pkg fish. [19] apt-pkg zip [20] apt-pkg figlet. [21] apt-pkg cowsay [22] apt-pkg unzip. [23] apt-pkg vim [24] apt-pkg wcalc. [25] apt-pkg bmon [26] apt-pkg unrar. [27] apt-pkg proot [28] apt-pkg golang. [29] apt-pkg tsu [30] apt-pkg tor. [31] apt-pkg php [00] Установить все Вместе [0] Выход''') print (" ") choice = input("\033[93mВыберите пункт : ") if choice == '0' : sys.exit() if choice == '1' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system("python -m pip install --upgrade pip") os.system ("pip3 install --upgrade setuptools pip") os.system ("termux-setup-storage") sys.exit () if choice == '2' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install python -y") os.system ("pkg upgrade python -y") os.system ("apt install python -y") os.system ("apt upgrade python -y") os.system ("termux-setup-storage") sys.exit () if choice == '3' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install python2 -y") os.system ("pkg upgrade python2 -y") os.system ("apt install python2 -y") os.system ("apt upgrade python2 -y") os.system ("termux-setup-storage") sys.exit () if choice == '4' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install bash") os.system ("apt install bash") os.system ("pkg upgrade bash") os.system ("apt upgrade bash") os.system ("termux-setup-storage") sys.exit () if choice == '5' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("apt install git -y") os.system ("pkg install git -y") os.system ("pkg upgrade git -y") os.system ("apt upgrade git -y") os.system ("termux-setup-storage") sys.exit () if choice == '6' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install perl -y") os.system ("apt install perl -y") os.system ("pkg upgrade perl -y") os.system ("apt upgrade perl -y") os.system ("termux-setup-storage") sys.exit () if choice == '7' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install nano -y") os.system ("apt install nano -y") os.system ("pkg upgrade nano -y") os.system ("apt upgrade nano -y") os.system ("termux-setup-storage") sys.exit () if choice == '8' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install curl -y") os.system ("apt install curl -y") os.system ("pkg upgrade curl -y") os.system ("apt upgrade curl -y") os.system ("termux-setup-storage") sys.exit () if choice == '9' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install openssl -y") os.system ("apt install openssl -y") os.system ("pkg upgrade openssl -y") os.system ("apt upgrade openssl -y") os.system ("termux-setup-storage") sys.exit () if choice == '10' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install openssh -y") os.system ("apt install openssh -y") os.system ("pkg upgrade openssh -y") os.system ("apt upgrade openssh -y") os.system ("termux-setup-storage") sys.exit () if choice == '11' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install wget -y") os.system ("apt install wget -y") os.system ("pkg upgrade wget -y") os.system ("apt upgrade wget -y") os.system ("termux-setup-storage") sys.exit () if choice == '12' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install clang -y") os.system ("apt install clang -y") os.system ("pkg upgrade clang -y") os.system ("apt upgrade clang -y") os.system ("termux-setup-storage") sys.exit () if choice == '13' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install nmap -y") os.system ("apt install nmap -y") os.system ("pkg upgrade nmap -y") os.system ("apt upgrade nmap -y") os.system ("termux-setup-storage") sys.exit () if choice == '14' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install w3m -y") os.system ("apt install w3m -y") os.system ("pkg upgrade w3m -y") os.system ("apt upgrade w3m -y") os.system ("termux-setup-storage") sys.exit () if choice == '15' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install ruby -y") os.system ("apt install ruby -y") os.system ("pkg upgrade ruby -y") os.system ("apt upgrade ruby -y") os.system ("termux-setup-storage") sys.exit () if choice == '16' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install dnsutils -y") os.system ("apt install dnsutils -y") os.system ("pkg upgrade dnsutils -y") os.system ("apt upgrade dnsutils -y") os.system ("termux-setup-storage") sys.exit () if choice == '17' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install coreutils -y") os.system ("apt install coreutils -y") os.system ("pkg upgrade coreutils -y") os.system ("apt upgrade coreutils -y") os.system ("termux-setup-storage") sys.exit () if choice == '18' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install fish -y") os.system ("apt install fish -y") os.system ("pkg upgrade fish -y") os.system ("apt upgrade fish -y") os.system ("termux-setup-storage") sys.exit () if choice == '19' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install zip -y") os.system ("apt install zip -y") os.system ("pkg upgrade zip -y") os.system ("apt upgrade zip -y") os.system ("termux-setup-storage") sys.exit () if choice == '20' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install figlet -y") os.system ("apt install figlet -y") os.system ("pkg upgrade figlet -y") os.system ("apt upgrade figlet -y") os.system ("termux-setup-storage") sys.exit () if choice == '21' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install cowsay -y") os.system ("apt install cowsay -y") os.system ("pkg upgrade cowsay -y") os.system ("apt upgrade cowsay -y") os.system ("termux-setup-storage") sys.exit () if choice == '22' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install unzip -y") os.system ("apt install unzip -y") os.system ("pkg upgrade unzip -y") os.system ("apt upgrade unzip -y") os.system ("termux-setup-storage") sys.exit () if choice == '23' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install vim -y") os.system ("apt install vim -y") os.system ("pkg upgrade vim -y") os.system ("apt upgrade vim -y") os.system ("termux-setup-storage") sys.exit () if choice == '24' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install wcalc -y") os.system ("apt install wcalc -y") os.system ("pkg upgrade wcalc -y") os.system ("apt upgrade wcalc -y") os.system ("termux-setup-storage") sys.exit () if choice == '25' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install bmon -y") os.system ("apt install bmon -y") os.system ("pkg upgrade bmon -y") os.system ("apt upgrade bmon -y") os.system ("termux-setup-storage") sys.exit () if choice == '26' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install unrar -y") os.system ("apt install unrar -y") os.system ("pkg upgrade unrar -y") os.system ("apt upgrade unrar -y") os.system ("termux-setup-storage") sys.exit () if choice == '27' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install proot -y") os.system ("apt install proot -y") os.system ("pkg upgrade proot -y") os.system ("apt upgrade proot -y") os.system ("termux-setup-storage") sys.exit () if choice == '28' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install golang -y") os.system ("apt install golang -y") os.system ("pkg upgrade golang -y") os.system ("apt upgrade golang -y") os.system ("termux-setup-storage") sys.exit () if choice == '29' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system("pkg install tsu-y") os.system ("apt install tsu -y") os.system ("pkg upgrade tsu -y") os.system ("apt upgrade tsu -y") os.system ("termux-setup-storage") sys.exit () if choice == '30' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install tor") os.system ("termux-setup-storage") sys.exit () if choice == '31' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install php -y") os.system ("pkg upgrade php -y") os.system ("apt install php -y") os.system ("apt upgrade php -y") os.system ("termux-setup-storage") sys.exit () if choice == '00' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system("python -m pip install --upgrade pip") os.system ("pip3 install --upgrade setuptools pip") os.system ("pkg install python -y") os.system ("pkg upgrade python -y") os.system ("apt install python -y") os.system ("apt upgrade python -y") os.system ("pkg install python2 -y") os.system ("pkg upgrade python2 -y") os.system ("apt install python2 -y") os.system ("apt upgrade python2 -y") os.system ("pkg install php -y") os.system ("pkg upgrade php -y") os.system ("apt install php -y") os.system ("apt upgrade php -y") os.system ("pkg install bash") os.system ("apt install bash") os.system ("pkg upgrade bash") os.system ("apt upgrade bash") os.system ("apt install git -y") os.system ("pkg install git -y") os.system ("pkg upgrade git -y") os.system ("apt upgrade git -y") os.system ("pkg install perl -y") os.system ("apt install perl -y") os.system ("pkg upgrade perl -y") os.system ("apt upgrade perl -y") os.system ("pkg install nano -y") os.system ("apt install nano -y") os.system ("pkg upgrade nano -y") os.system ("apt upgrade nano -y") os.system ("pkg install curl -y") os.system ("apt install curl -y") os.system ("pkg upgrade curl -y") os.system ("apt upgrade curl -y") os.system ("pkg install openssl -y") os.system ("apt install openssl -y") os.system ("pkg upgrade openssl -y") os.system ("apt upgrade openssl -y") os.system ("pkg install openssh -y") os.system ("apt install openssh -y") os.system ("pkg upgrade openssh -y") os.system ("apt upgrade openssh -y") os.system ("pkg install wget -y") os.system ("apt install wget -y") os.system ("pkg upgrade wget -y") os.system ("apt upgrade wget -y") os.system ("pkg install clang -y") os.system ("apt install clang -y") os.system ("pkg upgrade clang -y") os.system ("apt upgrade clang -y") os.system ("pkg install nmap -y") os.system ("apt install nmap -y") os.system ("pkg upgrade nmap -y") os.system ("apt upgrade nmap -y") os.system ("pkg install w3m -y") os.system ("apt install w3m -y") os.system ("pkg upgrade w3m -y") os.system ("apt upgrade w3m -y") os.system ("pkg install ruby -y") os.system ("apt install ruby -y") os.system ("pkg upgrade ruby -y") os.system ("apt upgrade ruby -y") os.system ("pkg install dnsutils -y") os.system ("apt install dnsutils -y") os.system ("pkg upgrade dnsutils -y") os.system ("apt upgrade dnsutils -y") os.system ("pkg install coreutils -y") os.system ("apt install coreutils -y") os.system ("pkg upgrade coreutils -y") os.system ("apt upgrade coreutils -y") os.system ("pkg install fish -y") os.system ("apt install fish -y") os.system ("pkg upgrade fish -y") os.system ("apt upgrade fish -y") os.system ("pkg install zip -y") os.system ("apt install zip -y") os.system ("pkg upgrade zip -y") os.system ("apt upgrade zip -y") os.system ("pkg install figlet -y") os.system ("apt install figlet -y") os.system ("pkg upgrade figlet -y") os.system ("apt upgrade figlet -y") os.system ("pkg install cowsay -y") os.system ("apt install cowsay -y") os.system ("pkg upgrade cowsay -y") os.system ("apt upgrade cowsay -y") os.system ("pkg install unzip -y") os.system ("apt install unzip -y") os.system ("pkg upgrade unzip -y") os.system ("apt upgrade unzip -y") os.system ("pkg install vim -y") os.system ("apt install vim -y") os.system ("pkg upgrade vim -y") os.system ("apt upgrade vim -y") os.system ("pkg install wcalc -y") os.system ("apt install wcalc -y") os.system ("pkg upgrade wcalc -y") os.system ("apt upgrade wcalc -y") os.system ("pkg install bmon -y") os.system ("apt install bmon -y") os.system ("pkg upgrade bmon -y") os.system ("apt upgrade bmon -y") os.system ("pkg install unrar -y") os.system ("apt install unrar -y") os.system ("pkg upgrade unrar -y") os.system ("apt upgrade unrar -y") os.system ("pkg install proot -y") os.system ("apt install proot -y") os.system ("pkg upgrade proot -y") os.system ("apt upgrade proot -y") os.system ("pkg install golang -y") os.system ("apt install golang -y") os.system ("pkg upgrade golang -y") os.system ("apt upgrade golang -y") os.system("pkg install tsu-y") os.system ("apt install tsu -y") os.system ("pkg upgrade tsu -y") os.system ("apt upgrade tsu -y") os.system ("pkg install tor") os.system ("termux-setup-storage") sys.exit ()
31.099644
54
0.66947
2,850
17,478
4.105614
0.039649
0.338433
0.196906
0.121015
0.941971
0.941971
0.941971
0.941971
0.941971
0.935647
0
0.009981
0.145898
17,478
562
55
31.099644
0.773848
0.000973
0
0.885305
0
0
0.507302
0
0
0
0
0
0
1
0.001792
false
0
0.005376
0
0.007168
0.007168
0
0
0
null
1
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
9
d3d3a5b087e35b140a4cca72077a3d96a9f4d93b
42,865
py
Python
grafana/common/dashboards/aggregated/client_subnet_statistics_detail.py
MikeAT/visualizer
946b98d82eaf7ec508861115585afd683fc49e5c
[ "MIT" ]
6
2021-03-03T17:52:24.000Z
2022-02-10T11:45:22.000Z
grafana/common/dashboards/aggregated/client_subnet_statistics_detail.py
Acidburn0zzz/visualizer
20fba91f0d26b98531f97f643c8329640d1c0d11
[ "MIT" ]
1
2021-04-29T12:34:04.000Z
2021-04-29T14:50:17.000Z
grafana/common/dashboards/aggregated/client_subnet_statistics_detail.py
Acidburn0zzz/visualizer
20fba91f0d26b98531f97f643c8329640d1c0d11
[ "MIT" ]
2
2021-04-27T14:02:03.000Z
2021-11-12T10:34:32.000Z
# Copyright 2021 Internet Corporation for Assigned Names and Numbers. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, you can obtain one at https://mozilla.org/MPL/2.0/. # # Developed by Sinodun IT (sinodun.com) # # Aggregation client subnet statistics import textwrap import grafanalib.core as GCore import grafanacommon as GCommon def query_classification_chart(chart_title, yaxis_label, prefix_field, agginfo, nodesel): return GCommon.BarChart( title = chart_title, orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = yaxis_label, ), ), traces = [ GCommon.BarChartTrace( name = 'AForA', x = 'AForA', y = 'AForAPrefix', text = 'AForA', ), GCommon.BarChartTrace( name = 'AForRoot', x = 'AForRoot', y = 'AForRootPrefix', text = 'AForRoot', ), GCommon.BarChartTrace( name = 'FunnyQueryClass', x = 'FunnyQueryClass', y = 'FunnyQueryClassPrefix', text = 'FunnyQueryClass', ), GCommon.BarChartTrace( name = 'FunnyQueryType', x = 'FunnyQueryType', y = 'FunnyQueryTypePrefix', text = 'FunnyQueryType', ), GCommon.BarChartTrace( name = 'Localhost', x = 'Localhost', y = 'LocalhostPrefix', text = 'Localhost', ), GCommon.BarChartTrace( name = 'NonAuthTld', x = 'NonAuthTld', y = 'NonAuthTldPrefix', text = 'NonAuthTld', ), GCommon.BarChartTrace( name = 'Ok', x = 'Ok', y = 'OkPrefix', text = 'Ok', ), GCommon.BarChartTrace( name = 'RFC1918Ptr', x = 'RFC1918Ptr', y = 'RFC1918PtrPrefix', text = 'RFC1918Ptr', ), GCommon.BarChartTrace( name = 'RootServersNet', x = 'RootServersNet', y = 'RootServersNetPrefix', text = 'RootServersNet', ), GCommon.BarChartTrace( name = 'SrcPortZero', x = 'SrcPortZero', y = 'SrcPortZeroPrefix', text = 'SrcPortZero', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForAPrefix, AForA, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForACount)/($to - $from) AS AForA FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForRootPrefix, AForRoot, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForRootCount)/($to - $from) AS AForRoot FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'B' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryClassPrefix, FunnyQueryClass, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryClassCount)/($to - $from) AS FunnyQueryClass FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'C' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryTypePrefix, FunnyQueryType, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryTypeCount)/($to - $from) AS FunnyQueryType FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count DESC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'D' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS LocalhostPrefix, Localhost, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(LocalhostCount)/($to - $from) AS Localhost FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'E' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS NonAuthTldPrefix, NonAuthTld, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(NonAuthTldCount)/($to - $from) AS NonAuthTld FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'F' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS OkPrefix, Ok, TotalCount FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS TotalCount, sum(Count - (AForACount + AForRootCount + FunnyQueryClassCount + FunnyQueryTypeCount + LocalhostCount + NonAuthTldCount + RFC1918PtrCount + RootServersNetCount + SrcPortZeroCount))/($to - $from) AS Ok FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY TotalCount DESC LIMIT 40 ) ORDER BY TotalCount ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'G' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RFC1918PtrPrefix, RFC1918Ptr, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RFC1918PtrCount)/($to - $from) AS RFC1918Ptr FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'H' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RootServersNetPrefix, RootServersNet, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RootServersNetCount)/($to - $from) AS RootServersNet FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'I' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS SrcPortZeroPrefix, SrcPortZero, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(SrcPortZeroCount)/($to - $from) AS SrcPortZero FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'J' ), ], ) def dash(myuid, agginfo, nodesel, **kwargs): return GCommon.Dashboard( title = "Client subnet statistics detail", tags = [ agginfo['graph_tag'] ], uid = myuid, rows = [ GCore.Row( height = GCore.Pixels(50), panels = [ GCommon.HTMLPanel('grafana/common/dashboards/aggregated/client_subnet_statistics_header.html', transparent=True), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT Prefix AS Subnet, sum(Count)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY QPS DESC LIMIT 30 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by ASN', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'ASN', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, ClientASN FROM ( SELECT ClientASN, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT ClientASN, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ORDER BY sCount DESC, ClientASN ASC LIMIT 30 ) AS ClientASNCounts ALL LEFT JOIN ( SELECT ClientASN, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN, rcode UNION ALL ( SELECT ClientASN, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, ClientASN FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ) AS ZeroClientASN ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS ClientASNRcodeCounts USING ClientASN GROUP BY ClientASN, rcode ) AS ClientASNRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS ClientASNNameCountsTotal USING rcode GROUP BY ClientASN, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, ClientASN DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by AS subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'AS Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BGPPrefix' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefox ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefix ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Root abusers by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT FixedPrefix AS Subnet, sum(RootAbuseCount)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY FixedPrefix ORDER BY QPS DESC LIMIT 40 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest fixed subnet', 'Fixed Subnet', 'FixedPrefix', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest ASN', 'ASN', 'ClientASN', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest AS subnet', 'AS subnet', 'ASPrefix', agginfo, nodesel) ], ), ] )
46.04189
133
0.30778
2,201
42,865
5.915039
0.110404
0.026192
0.033182
0.044243
0.790537
0.784699
0.784699
0.784699
0.784699
0.777479
0
0.008435
0.643205
42,865
930
134
46.091398
0.842814
0.007839
0
0.785792
0
0
0.620405
0.01811
0
0
0
0
0
1
0.002186
false
0
0.003279
0.002186
0.00765
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
d3dacb32ea41d2fb0546ec04640a3b17315faa08
118,963
py
Python
h1/api/insight_project_journal_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/api/insight_project_journal_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/api/insight_project_journal_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
""" HyperOne HyperOne API # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from h1.api_client import ApiClient, Endpoint as _Endpoint from h1.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from h1.model.event import Event from h1.model.inline_response400 import InlineResponse400 from h1.model.insight_project_journal_create import InsightProjectJournalCreate from h1.model.insight_project_journal_credential_patch import InsightProjectJournalCredentialPatch from h1.model.insight_project_journal_transfer import InsightProjectJournalTransfer from h1.model.insight_project_journal_update import InsightProjectJournalUpdate from h1.model.journal import Journal from h1.model.journal_credential import JournalCredential from h1.model.resource_service import ResourceService from h1.model.tag import Tag from h1.model.tag_array import TagArray class InsightProjectJournalApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __insight_project_journal_create( self, project_id, location_id, insight_project_journal_create, **kwargs ): """Create insight/journal # noqa: E501 Create journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_create(project_id, location_id, insight_project_journal_create, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id insight_project_journal_create (InsightProjectJournalCreate): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['insight_project_journal_create'] = \ insight_project_journal_create return self.call_with_http_info(**kwargs) self.insight_project_journal_create = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'insight_project_journal_create', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'insight_project_journal_create', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'insight_project_journal_create': (InsightProjectJournalCreate,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'insight_project_journal_create': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_create ) def __insight_project_journal_credential_create( self, project_id, location_id, journal_id, journal_credential, **kwargs ): """Create insight/journal.credential # noqa: E501 Create insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_create(project_id, location_id, journal_id, journal_credential, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id journal_credential (JournalCredential): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['journal_credential'] = \ journal_credential return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_create = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'journal_credential': (JournalCredential,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'journal_credential': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_create ) def __insight_project_journal_credential_delete( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Delete insight/journal.credential # noqa: E501 Delete insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_delete(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_delete = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_delete ) def __insight_project_journal_credential_get( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Get insight/journal.credential # noqa: E501 Get insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_get(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_get = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_get ) def __insight_project_journal_credential_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.credential # noqa: E501 List insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [JournalCredential] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_list = _Endpoint( settings={ 'response_type': ([JournalCredential],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_list ) def __insight_project_journal_credential_patch( self, project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, **kwargs ): """Update insight/journal.credential # noqa: E501 Update insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_patch(project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId insight_project_journal_credential_patch (InsightProjectJournalCredentialPatch): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id kwargs['insight_project_journal_credential_patch'] = \ insight_project_journal_credential_patch return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_patch = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_patch', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), 'insight_project_journal_credential_patch': (InsightProjectJournalCredentialPatch,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', 'insight_project_journal_credential_patch': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_patch ) def __insight_project_journal_delete( self, project_id, location_id, journal_id, **kwargs ): """Delete insight/journal # noqa: E501 Delete journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_delete(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_delete ) def __insight_project_journal_event_get( self, project_id, location_id, journal_id, event_id, **kwargs ): """Get insight/journal.event # noqa: E501 Get insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_get(project_id, location_id, journal_id, event_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id event_id (str): eventId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Event If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['event_id'] = \ event_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_get = _Endpoint( settings={ 'response_type': (Event,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event/{eventId}', 'operation_id': 'insight_project_journal_event_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'event_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'event_id': 'eventId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'event_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_get ) def __insight_project_journal_event_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.event # noqa: E501 List insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: limit (float): $limit. [optional] if omitted the server will use the default value of 100 skip (float): $skip. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Event] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_list = _Endpoint( settings={ 'response_type': ([Event],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event', 'operation_id': 'insight_project_journal_event_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'limit', 'skip', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ 'limit', ] }, root_map={ 'validations': { ('limit',): { 'inclusive_maximum': 1000, 'inclusive_minimum': 1, }, }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'limit': (float,), 'skip': (float,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'limit': '$limit', 'skip': '$skip', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'limit': 'query', 'skip': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_list ) def __insight_project_journal_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal # noqa: E501 Returns a single journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_get = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_get ) def __insight_project_journal_list( self, project_id, location_id, **kwargs ): """List insight/journal # noqa: E501 List journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_list(project_id, location_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id Keyword Args: name (str): Filter by name. [optional] tag_value (str): Filter by tag.value. [optional] tag_key (str): Filter by tag.key. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Journal] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id return self.call_with_http_info(**kwargs) self.insight_project_journal_list = _Endpoint( settings={ 'response_type': ([Journal],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'name', 'tag_value', 'tag_key', ], 'required': [ 'project_id', 'location_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'name': (str,), 'tag_value': (str,), 'tag_key': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'name': 'name', 'tag_value': 'tag.value', 'tag_key': 'tag.key', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'name': 'query', 'tag_value': 'query', 'tag_key': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_list ) def __insight_project_journal_log_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal.log # noqa: E501 websocket is also supported # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_log_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: since (datetime): since. [optional] until (datetime): until. [optional] follow (bool): follow. [optional] if omitted the server will use the default value of False tail (float): tail. [optional] tag (TagArray): tag. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_log_get = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/log', 'operation_id': 'insight_project_journal_log_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'since', 'until', 'follow', 'tail', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'since': (datetime,), 'until': (datetime,), 'follow': (bool,), 'tail': (float,), 'tag': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'since': 'since', 'until': 'until', 'follow': 'follow', 'tail': 'tail', 'tag': 'tag', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'since': 'query', 'until': 'query', 'follow': 'query', 'tail': 'query', 'tag': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_log_get ) def __insight_project_journal_service_get( self, project_id, location_id, journal_id, service_id, **kwargs ): """Get insight/journal.service # noqa: E501 Get insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_get(project_id, location_id, journal_id, service_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id service_id (str): serviceId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: ResourceService If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['service_id'] = \ service_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_get = _Endpoint( settings={ 'response_type': (ResourceService,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service/{serviceId}', 'operation_id': 'insight_project_journal_service_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'service_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'service_id': 'serviceId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'service_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_get ) def __insight_project_journal_service_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.service # noqa: E501 List insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [ResourceService] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_list = _Endpoint( settings={ 'response_type': ([ResourceService],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service', 'operation_id': 'insight_project_journal_service_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_list ) def __insight_project_journal_tag_create( self, project_id, location_id, journal_id, tag, **kwargs ): """Create insight/journal.tag # noqa: E501 Create insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_create(project_id, location_id, journal_id, tag, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag (Tag): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag'] = \ tag return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_create = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag': (Tag,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_create ) def __insight_project_journal_tag_delete( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Delete insight/journal.tag # noqa: E501 Delete insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_delete(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_delete ) def __insight_project_journal_tag_get( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Get insight/journal.tag # noqa: E501 Get insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_get(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_get = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_get ) def __insight_project_journal_tag_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.tag # noqa: E501 List insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_list = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_list ) def __insight_project_journal_tag_put( self, project_id, location_id, journal_id, tag_array, **kwargs ): """Replace insight/journal.tag # noqa: E501 Replace insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_put(project_id, location_id, journal_id, tag_array, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_array (TagArray): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_array'] = \ tag_array return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_put = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_put', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_array': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_array': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_put ) def __insight_project_journal_transfer( self, project_id, location_id, journal_id, insight_project_journal_transfer, **kwargs ): """Transfer insight/journal # noqa: E501 action transfer # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_transfer(project_id, location_id, journal_id, insight_project_journal_transfer, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_transfer (InsightProjectJournalTransfer): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_transfer'] = \ insight_project_journal_transfer return self.call_with_http_info(**kwargs) self.insight_project_journal_transfer = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/actions/transfer', 'operation_id': 'insight_project_journal_transfer', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_transfer': (InsightProjectJournalTransfer,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_transfer': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_transfer ) def __insight_project_journal_update( self, project_id, location_id, journal_id, insight_project_journal_update, **kwargs ): """Update insight/journal # noqa: E501 Returns modified journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_update(project_id, location_id, journal_id, insight_project_journal_update, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_update (InsightProjectJournalUpdate): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_update'] = \ insight_project_journal_update return self.call_with_http_info(**kwargs) self.insight_project_journal_update = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_update', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_update': (InsightProjectJournalUpdate,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_update': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_update )
37.362751
179
0.451342
9,773
118,963
5.196153
0.02333
0.04094
0.059962
0.039286
0.953409
0.932122
0.909043
0.907448
0.890315
0.889035
0
0.00297
0.465002
118,963
3,183
180
37.374489
0.794925
0.287619
0
0.732151
1
0
0.239957
0.055432
0
0
0
0
0
1
0.009756
false
0
0.006652
0
0.026164
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
8
3175aae311124c706359c0501c4ffc334907f123
24,640
py
Python
sarnet_td3/common/gpu_multithread.py
JingdiC/SARNet
05d668c2d1c0d3f8009ecb98ab33cd5a496cd4ea
[ "MIT" ]
16
2020-11-04T10:12:09.000Z
2022-03-26T13:25:16.000Z
sarnet_td3/common/gpu_multithread.py
JingdiC/SARNet
05d668c2d1c0d3f8009ecb98ab33cd5a496cd4ea
[ "MIT" ]
5
2020-11-18T13:07:11.000Z
2022-03-06T08:40:01.000Z
sarnet_td3/common/gpu_multithread.py
JingdiC/SARNet
05d668c2d1c0d3f8009ecb98ab33cd5a496cd4ea
[ "MIT" ]
5
2020-11-26T09:17:23.000Z
2022-03-06T08:40:53.000Z
import threading, queue, time, os, pickle # from queue import Queue import numpy as np import tensorflow as tf import sarnet_td3.common.tf_util as U from tensorflow.python.keras.backend import set_session lock = threading.Lock() class MultiTrainTD3(threading.Thread): def __init__(self, input_queue, output_queue, args=(), kwargs=None): threading.Thread.__init__(self, args=(), kwargs=None) self.input_queue = input_queue self.output_queue = output_queue self.daemon = True self.trainers = args[0] self.args = args[1] self.buffer_op = args[2] self.num_env = args[3] self.sess = args[4] self.num_agents = args[5] self.num_adversaries = args[6] self.ep_rewards = [[0.0] for _ in range(self.num_env)] self.ep_end_rewards = [[0.0] for _ in range(self.num_env)] self.ep_success = [[0.0] for _ in range(self.num_env)] self.agent_rewards = [[[0.0] for _ in range(self.num_agents)] for _ in range(self.num_env)] self.agent_info = [[[[]] for i in range(self.num_agents)] for _ in range(self.num_env)] # self.agent_info = [[[[]]] for _ in range(self.num_env)] self.final_ep_rewards = [] # Shape: (batch, #) sum of rewards for training curve self.final_ep_end_rewards = [] self.final_ep_ag_rewards = [] # agent rewards for training curve self.save_rate = self.args.max_episode_len * 100 self.save_n_ep = self.num_env * 10 self.print_step = -int(self.save_n_ep / self.num_env) self.q_h_init = np.zeros(shape=(self.num_env, self.args.critic_units)) self.mem_init = np.zeros(shape=(self.num_env, self.args.value_units)) self.time_prev = time.time() def run(self): # print(threading.currentThread().getName(), self.receive_messages) with self.sess.as_default(): # Freeze graph to avoid memory leaks # self.sess.graph.finalize() while True: try: action, p_index, data = self.input_queue.get() if action is "None": # If you send `None`, the thread will exit. return elif action is "get_action": out = self.get_action(data, p_index) self.output_queue.put(out) elif action is "get_qdebug": out = self.get_qdebug(data, p_index) self.output_queue.put(out) elif action is "get_loss": out = self.get_loss(data, p_index) self.output_queue.put(out) elif action is "write_tboard": self.write_tboard(data) elif action is "add_to_buffer": self.buffer_op.collect_exp(data) elif action is "save_rew_info": self.save_rew_info(data) elif action is "save_benchmark": out = self.save_benchmark(data) self.output_queue.put(out) elif action is "reset_rew_info": self.reset_rew_info() elif action is "save_model_rew": if not (self.args.benchmark or self.args.display): self.save_model(data) self.plot_rewards(data) except queue.Empty: continue def get_action(self, data, p_index): with lock: agent = self.trainers[p_index] obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t, is_train = data obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim] obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] p_input_j = agent.prep_input(obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t[p_index], is_train) # print(np.shape(obs_n_t)) act_j_t, state_j_t1, mem_j_t1, attn_j_t = agent.action(p_input_j, is_train) if self.args.encoder_model == "LSTM" or self.args.encoder_model != "DDPG": c_j_t1, h_j_t1 = state_j_t1 else: h_j_t1 = state_j_t1 c_j_t1 = state_j_t1 if agent.comm_type in {"DDPG", "COMMNET", "IC3NET"}: mem_j_t1 = np.zeros(shape=(self.num_env, self.args.value_units)) return act_j_t, h_j_t1, c_j_t1, mem_j_t1, attn_j_t def get_qdebug(self, data, p_index): with lock: # with sess.as_default(): agent = self.trainers[p_index] obs_n_t, action_n_t, q1_h_n_t, q2_h_n_t = data obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim] obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] q1_j_input = agent.prep_q_input(obs_n_t, action_n_t, q1_h_n_t[p_index]) _, q1_h_j_t1 = agent.q1_debug['q_values'](*(q1_j_input)) if self.args.td3: q2_input = agent.prep_q_input(obs_n_t, action_n_t, q2_h_n_t[p_index]) _, q2_h_j_t1 = agent.q2_debug['q_values'](*(q2_input)) else: q2_h_j_t1 = [] return q1_h_j_t1, q2_h_j_t1 def get_loss(self, data, p_index): with lock: # with sess.as_default(): agent = self.trainers[p_index] train_step = data loss = agent.update(self.trainers, self.buffer_op, train_step) return loss def write_tboard(self, data): with lock: loss, train_step, writer, summary_ops, summary_vars, num_agents = data # Tensorboard episode_b_rewards = [] for j in range(self.num_env): if self.args.env_type == "mpe": episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) else: episode_b_rewards.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) num_steps = train_step * self.num_env # Add to tensorboard only when actor agent is updated if loss[0][1] is not None: fd = {} for i, key in enumerate(summary_vars): if i == 0: fd[key] = episode_b_rewards else: agnt_idx = int((i - 1) / 5) if agnt_idx == num_agents: agnt_idx -= 1 if loss[agnt_idx] is not None: fd[key] = loss[agnt_idx][int((i - 1) % 5)] summary_str = U.get_session().run(summary_ops, feed_dict=fd) writer.add_summary(summary_str, num_steps) writer.flush() def save_rew_info(self, data): with lock: rew_n, info_n, ep_step = data # rew_n (num_env, num_agents) if self.args.env_type == "mpe": for j in range(self.num_env): for i, rew in enumerate(rew_n[j]): if ep_step >= self.args.max_episode_len - 10: # Compute only last 10 episode step rewards self.ep_end_rewards[j][-1] += rew self.ep_rewards[j][-1] += rew self.agent_rewards[j][i][-1] += rew elif self.args.env_type == "ic3net": for j in range(self.num_env): self.ep_success[j][-1] += info_n[j] if self.args.benchmark and self.args.env_type == "mpe": for j in range(self.num_env): for i, info in enumerate(info_n[j]): self.agent_info[j][i][-1].append(info) def reset_rew_info(self): with lock: for j in range(self.num_env): self.ep_rewards[j].append(0) self.ep_success[j].append(0) self.ep_end_rewards[j].append(0) for i in range(self.num_agents): self.agent_rewards[j][i].append(0) if self.args.benchmark: for j in range(self.num_env): for i in range(self.num_agents): self.agent_info[j][i].append([[]]) def save_benchmark(self, data): with lock: exp_name, exp_itr = data benchmark_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.benchmark_dir) if not os.path.exists(benchmark_dir): os.mkdir(benchmark_dir) file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.benchmark_dir + '/' + exp_name + '.pkl' print('Finished benchmarking, now saving...') # pickle_info = [self.agent_info[j] for j in range(self.num_env)] with open(file_name, 'wb') as fp: # Dump files as [num_env, [# agents, [#ep, [#stps, [dim]]]] pickle.dump(self.agent_info, fp) return "bench_saved" def save_model(self, data): with lock: # train_step = t_step * num_env train_step, num_episodes, time_taken, exp_name, exp_itr, data_file, saver = data # Policy File if num_episodes % (self.save_n_ep) == 0: save_dir = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.save_dir + str(train_step) U.save_state(save_dir, self.sess, saver=saver) # episode_rewards, agent_rewards, final_ep_rewards, final_ep_ag_rewards = rewards if self.args.env_type == "mpe": # print statement depends on whether or not there are adversaries if self.num_adversaries == 0: episode_b_rewards = [] ep_end_b_rewards = [] ep_ag_b_rewards = [] for j in range(self.num_env): episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) ep_end_b_rewards.append(np.mean(self.ep_end_rewards[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) ep_end_b_rewards = np.mean(ep_end_b_rewards) / 10. for i in range(self.num_agents): temp_ag_reward = [] for j in range(self.num_env): temp_ag_reward.append(np.mean(self.agent_rewards[j][i][self.print_step:])) ep_ag_b_rewards.append(np.mean(np.array(temp_ag_reward))) print("steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, round(time.time() - self.time_prev, 3))) with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, round(time.time() - self.time_prev, 3)) + "\n") else: episode_b_rewards = [] ep_end_b_rewards = [] ep_ag_b_rewards = [] for j in range(self.num_env): episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) ep_end_b_rewards.append(np.mean(self.ep_end_rewards[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) ep_end_b_rewards = np.mean(ep_end_b_rewards) for i in range(self.num_agents): temp_ag_reward = [] for j in range(self.num_env): temp_ag_reward.append(np.mean(self.agent_rewards[j][i][self.print_step:])) ep_ag_b_rewards.append(np.mean(np.array(temp_ag_reward))) print("steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, agent episode reward: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, [rew for rew in ep_ag_b_rewards], round(time.time() - self.time_prev, 3)) + "\n") with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, agent episode reward: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, [rew for rew in ep_ag_b_rewards], round(time.time() - self.time_prev, 3)) + "\n") # Keep track of final episode reward self.final_ep_rewards.append(episode_b_rewards) self.final_ep_end_rewards.append(ep_end_b_rewards) for rew in ep_ag_b_rewards: self.final_ep_ag_rewards.append(rew) self.time_prev = time.time() def plot_rewards(self, data): with lock: train_step, num_episodes, t_start, exp_name, exp_itr, data_file, saver = data plot_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.plots_dir) if not os.path.exists(plot_dir): os.mkdir(plot_dir) rew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards.pkl' with open(rew_file_name, 'wb') as fp: pickle.dump(self.final_ep_rewards, fp) rew_ep_end_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards_ep_end.pkl' with open(rew_ep_end_file_name, 'wb') as fp: pickle.dump(self.final_ep_end_rewards, fp) agrew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_agrewards.pkl' with open(agrew_file_name, 'wb') as fp: pickle.dump(self.final_ep_ag_rewards, fp) """ REINFORCE Threads """ class MultiTrainVPG(threading.Thread): def __init__(self, input_queue, output_queue, args=(), kwargs=None): threading.Thread.__init__(self, args=(), kwargs=None) self.input_queue = input_queue self.output_queue = output_queue self.daemon = True self.trainers = args[0] self.args = args[1] self.buffer_op = args[2] self.num_env = args[3] self.sess = args[4] self.num_agents = args[5] self.num_adversaries = args[6] self.ep_rewards = [[0.0] for _ in range(self.num_env)] self.ep_success = [[0.0] for _ in range(self.num_env)] self.agent_rewards = [[[0.0] for _ in range(self.num_agents)] for _ in range(self.num_env)] self.agent_info = [[[[]]] for _ in range(self.num_env)] self.final_ep_rewards = [] # Shape: (batch, #) sum of rewards for training curve self.final_ep_ag_rewards = [] # agent rewards for training curve self.save_rate = self.args.max_episode_len * 100 if self.args.env_type == "mpe": self.print_step = -int(self.save_rate / self.num_env) else: # print for episode end only (success rate) self.print_step = -int(self.save_rate / (self.num_env * self.args.max_episode_len)) self.q_h_init = np.zeros(shape=(self.num_env, self.args.critic_units)) self.mem_init = np.zeros(shape=(self.num_env, self.args.value_units)) self.time_prev = time.time() def run(self): # print(threading.currentThread().getName(), self.receive_messages) with self.sess.as_default(): # Freeze graph to avoid memory leaks # self.sess.graph.finalize() while True: try: action, p_index, data = self.input_queue.get() if action is "None": # If you send `None`, the thread will exit. return elif action is "get_action": out = self.get_action(data, p_index) self.output_queue.put(out) elif action is "get_loss": out = self.get_loss(data, p_index) self.output_queue.put(out) elif action is "write_tboard": self.write_tboard(data) elif action is "add_to_buffer": self.buffer_op.collect_exp(data) elif action is "add_to_buffer_reinforce": self.buffer_op.collect_exp(data) elif action is "save_rew_info": self.save_rew_info(data) elif action is "save_benchmark": out = self.save_benchmark(data) self.output_queue.put(out) elif action is "reset_rew_info": self.reset_rew_info() elif action is "save_model_rew": if not (self.args.benchmark or self.args.display): self.save_model(data) self.plot_rewards(data) except queue.Empty: continue def get_action(self, data, p_index): with lock: agent = self.trainers[p_index] obs_n_t, h_n_t, c_n_t, mem_n_t, is_train = data obs_n_t = np.stack(obs_n_t, axis=-2) obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] p_input_j = agent.prep_input(obs_n_t, h_n_t, c_n_t, mem_n_t, is_train) act_j_t, act_soft_j_t, state_j_t1, mem_j_t1, attn_j_t, value_j_t = agent.action(p_input_j, is_train) if self.args.encoder_model == "LSTM": c_j_t1, h_j_t1 = state_j_t1 else: h_j_t1 = state_j_t1 c_j_t1 = state_j_t1 if agent.comm_type in {"DDPG", "COMMNET", "IC3NET"}: mem_j_t1 = np.zeros(shape=(self.num_env, self.args.value_units)) return act_j_t, act_soft_j_t, h_j_t1, c_j_t1, mem_j_t1, attn_j_t, value_j_t def get_loss(self, data, p_index): with lock: # with sess.as_default(): train_step, buffer_data = data agent = self.trainers[p_index] loss = agent.update(self.trainers, buffer_data, train_step) return loss def write_tboard(self, data): with lock: loss, train_step, writer, summary_ops, summary_vars, num_agents = data # Tensorboard episode_b_rewards = [] for j in range(self.num_env): if self.args.env_type == "mpe": episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) else: episode_b_rewards.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) num_steps = train_step * self.num_env # Add to tensorboard only when actor agent is updated if loss[0][1] is not None: fd = {} for i, key in enumerate(summary_vars): if i == 0: fd[key] = episode_b_rewards else: agnt_idx = int((i - 1) / 5) if agnt_idx == num_agents: agnt_idx -= 1 if loss[agnt_idx] is not None: fd[key] = loss[agnt_idx][int((i - 1) % 5)] summary_str = U.get_session().run(summary_ops, feed_dict=fd) writer.add_summary(summary_str, num_steps) writer.flush() def save_rew_info(self, data): with lock: rew_n, info_n, terminal = data if self.args.env_type == "mpe": for j in range(self.num_env): for i, rew in enumerate(rew_n[j]): self.ep_rewards[j][-1] += rew self.agent_rewards[j][i][-1] += rew elif self.args.env_type == "ic3net": for j in range(self.num_env): self.ep_success[j][-1] += info_n[j] if self.args.benchmark and self.args.env_type == "mpe": for j in range(self.num_env): for i, info in enumerate(info_n[j]): self.agent_info[-1][i].append(info_n[0]['n']) def reset_rew_info(self): with lock: for j in range(self.num_env): self.ep_rewards[j].append(0) self.ep_success[j].append(0) for i in range(self.num_agents): self.agent_rewards[j][i].append(0) if self.args.benchmark: for j in range(self.num_env): self.agent_info[j].append([[]]) def save_benchmark(self, data): with lock: exp_name, exp_itr = data benchmark_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.benchmark_dir) if not os.path.exists(benchmark_dir): os.mkdir(benchmark_dir) file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.benchmark_dir + '/' + exp_name + '.pkl' print('Finished benchmarking, now saving...') with open(file_name, 'wb') as fp: pickle.dump(self.ep_success, fp) return "bench_saved" def save_model(self, data): with lock: # train_step = t_step * num_env train_step, num_episodes, time_taken, exp_name, exp_itr, data_file, saver = data # Policy File save_dir = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.save_dir + str(train_step) U.save_state(save_dir, self.sess, saver=saver) episode_b_success = [] for j in range(self.num_env): episode_b_success.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_success = np.mean(np.array(episode_b_success)) / self.args.max_episode_len print("steps: {}, episodes: {}, mean episode success: {}, time: {}".format( train_step, num_episodes, episode_b_success, round(time.time() - self.time_prev, 3)) + "\n") with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode success: {}, time: {}".format( train_step, num_episodes, episode_b_success, round(time.time() - self.time_prev, 3)) + "\n") self.final_ep_rewards.append(episode_b_success) def plot_rewards(self, data): with lock: train_step, num_episodes, t_start, exp_name, exp_itr, data_file, saver = data plot_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.plots_dir) if not os.path.exists(plot_dir): os.mkdir(plot_dir) rew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards.pkl' with open(rew_file_name, 'wb') as fp: pickle.dump(self.final_ep_rewards, fp) def get_gputhreads(trainers, args, buffer_op, num_env, num_agents, num_adv): threads = [] sess = tf.compat.v1.get_default_session() for t in range(args.num_gpu_threads): input_q = queue.Queue() output_q = queue.Queue() if args.policy_grad == "maddpg": threads.append(MultiTrainTD3(input_q, output_q, args=(trainers, args, buffer_op, num_env, sess, num_agents, num_adv))) elif args.policy_grad == "reinforce": threads.append( MultiTrainVPG(input_q, output_q, args=(trainers, args, buffer_op, num_env, sess, num_agents, num_adv))) threads[t].start() time.sleep(1) return threads def close_gputhreads(threads): for t in threads: t.input_queue.put(("None", None, None)) for t in threads: t.join() print('GPU trainers cancelled') return
48.888889
159
0.544562
3,293
24,640
3.781051
0.077133
0.030921
0.033732
0.040479
0.890531
0.863384
0.850534
0.833829
0.830536
0.825556
0
0.009107
0.344927
24,640
503
160
48.986084
0.762282
0.060065
0
0.768496
0
0.004773
0.052404
0.000996
0
0
0
0
0
1
0.054893
false
0
0.011933
0
0.097852
0.047733
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
31bdffc8c81e843699509af2486f317c1a1c36b7
35,087
py
Python
gips/gistmodel/post_processing.py
accsc/gips
6b20b2b0fa76ee24b04237b1edd5c8a26738d460
[ "MIT" ]
1
2021-04-24T10:29:39.000Z
2021-04-24T10:29:39.000Z
gips/gistmodel/post_processing.py
accsc/gips
6b20b2b0fa76ee24b04237b1edd5c8a26738d460
[ "MIT" ]
null
null
null
gips/gistmodel/post_processing.py
accsc/gips
6b20b2b0fa76ee24b04237b1edd5c8a26738d460
[ "MIT" ]
2
2021-02-16T14:18:59.000Z
2021-06-04T05:09:22.000Z
import numpy as np import copy from gips import FLOAT from gips import DOUBLE class post_processing(object): def __init__(self, fitter, x, pairs=False, prefix=None): self.fitter = fitter self.x = x self.pairs = pairs self.case = 0 score_dict = { 4 : self.parms4, 5 : self.parms5, 6 : self.parms6 } mode_dict = { 0 : self.mode0, 1 : self.mode1, 3 : self.mode3, 4 : self.mode4, 5 : self.mode5, 6 : self.mode6, 7 : self.mode7 } self.score = score_dict[self.fitter.parms] self.process = mode_dict[self.fitter.mode] self.prefix = prefix if type(self.prefix)==type(None) \ or self.prefix=="": self.prefix = "" else: self.prefix = "%s" %self.prefix self.set_x(self.x) self.set_case(0) self.process_rec = False self.process_cplx = False self.process_lig = False def set_x(self, x): self.x = copy.copy(x) ### Apply the solution to the scoring function self.fitter.gist_functional(self.x) self.fitter._f_process(self.x) def set_case(self, case): self.case = case self.name = self.fitter.name[case] ### |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ### |OVERVIEW OF THE DATA STRUCTURE IN THE FITTER OBJECT| ### |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ### ### Experimental data stored with gdat_fit_lib ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### self.dg = np.zeros(self.N_case, dtype=DOUBLE) ### self.dh = np.zeros(self.N_case, dtype=DOUBLE) ### self.ds = np.zeros(self.N_case, dtype=DOUBLE) ### ### ### GIST data generated with gdat_fit_lib (receptor) ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### self.E = np.zeros((self.N_rec, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.S = np.zeros((self.N_rec, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.g = np.zeros((self.N_rec, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.w = np.zeros(self.N_pos, dtype=DOUBLE) ### self.vol = np.zeros((self.N_pos, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### Which pose belongs to which receptor/gistdata ### self.ind_rec = np.zeros(self.N_pos, dtype=np.int32) ### Which pose belongs to which case ### self.ind_case = np.zeros(self.N_pos, dtype=np.int32) ### ### ### GIST data generated with gdat_fit_lib (complex) ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### self.E_cplx = np.zeros((self.N_cplx, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.S_cplx = np.zeros((self.N_cplx, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.g_cplx = np.zeros((self.N_cplx, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.w_cplx = np.zeros(self.N_cplx, dtype=DOUBLE) ### self.vol_cplx = np.zeros((self.N_cplx, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.ind_rec_cplx = np.arange(self.N_cplx, dtype=np.int32) ### self.ind_case_cplx = np.zeros(self.N_cplx, dtype=np.int32) ### ### ### GIST data generated with gdat_fit_lib (ligand) ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### self.E_lig = np.zeros((self.N_lig, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.S_lig = np.zeros((self.N_lig, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.g_lig = np.zeros((self.N_lig, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.w_lig = np.zeros(self.N_lig, dtype=DOUBLE) ### self.vol_lig = np.zeros((self.N_lig, self.maxdim[0], self.maxdim[1], self.maxdim[2]), dtype=DOUBLE) ### self.ind_rec_lig = np.arange(self.N_lig, dtype=np.int32) ### self.ind_case_lig = np.zeros(self.N_lig, dtype=np.int32) ### def mode0(self, callback=None): ### The receptor ### ~~~~~~~~~~~~ if self.process_rec: valid_poses = np.where(self.fitter.ind_case==self.case)[0] valid_recep = self.fitter.ind_rec[valid_poses] i=0 for pose, recep in zip(valid_poses, valid_recep): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E[recep], self.fitter.S[recep], self.fitter.g[recep], self.fitter.vol[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[0], "C" : self.x[-1] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat[recep], self.fitter.pdat[pose], prefix="%s.%d.%s" %(self.name, i, "rec"), **kwargs) i += 1 def mode1(self, callback=None): ### The receptor ### ~~~~~~~~~~~~ if self.process_rec: valid_poses = np.where(self.fitter.ind_case==self.case)[0] valid_recep = self.fitter.ind_rec[valid_poses] i=0 for pose, recep in zip(valid_poses, valid_recep): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E[recep], self.fitter.S[recep], self.fitter.g[recep], self.fitter.vol[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[0], "C" : self.x[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat[recep], self.fitter.pdat[pose], prefix="%s.%d.%s" %(self.name, i, "rec"), **kwargs) i += 1 def mode2(self, callback=None): pass def mode3(self, callback=None): if not self.pairs: ### The receptor ### ~~~~~~~~~~~~ if self.process_rec: valid_poses = np.where(self.fitter.ind_case==self.case)[0] valid_recep = self.fitter.ind_rec[valid_poses] i=0 for pose, recep in zip(valid_poses, valid_recep): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E[recep], self.fitter.S[recep], self.fitter.g[recep], self.fitter.vol[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[0], "C" : self.x[-1] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat[recep], self.fitter.pdat[pose], prefix="%s.%d.%s" %(self.name, i, "rec"), **kwargs) i += 1 ### The complex ### ~~~~~~~~~~~ if self.process_cplx: valid_poses_cplx = np.where(self.fitter.ind_case_cplx==self.case)[0] valid_recep_cplx = self.fitter.ind_rec_cplx[valid_poses_cplx] i=0 for pose, recep in zip(valid_poses_cplx, valid_recep_cplx): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_cplx[recep], self.fitter.S_cplx[recep], self.fitter.g_cplx[recep], self.fitter.vol_cplx[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : self.x[-1] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_cplx[recep], self.fitter.pdat_cplx[pose], prefix="%s.%d.%s" %(self.name, i, "cplx"), **kwargs) i += 1 ### The ligand ### ~~~~~~~~~~ if self.process_lig: valid_poses_lig = np.where(self.fitter.ind_case_lig==self.case)[0] valid_recep_lig = self.fitter.ind_rec_lig[valid_poses_lig] i=0 for pose, recep in zip(valid_poses_lig, valid_recep_lig): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_lig[recep], self.fitter.S_lig[recep], self.fitter.g_lig[recep], self.fitter.vol_lig[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : self.x[-1] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_lig[recep], self.fitter.pdat_lig[pose], prefix="%s.%d.%s" %(self.name, i, "lig"), **kwargs) i += 1 def mode4(self, callback=None): if not self.pairs: ### The receptor ### ~~~~~~~~~~~~ if self.process_rec: valid_poses = np.where(self.fitter.ind_case==self.case)[0] valid_recep = self.fitter.ind_rec[valid_poses] i=0 for pose, recep in zip(valid_poses, valid_recep): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E[recep], self.fitter.S[recep], self.fitter.g[recep], self.fitter.vol[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[0], "C" : self.x[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat[recep], self.fitter.pdat[pose], prefix="%s.%d.%s" %(self.name, i, "rec"), **kwargs) i += 1 ### The complex ### ~~~~~~~~~~~ if self.process_cplx: valid_poses_cplx = np.where(self.fitter.ind_case_cplx==self.case)[0] valid_recep_cplx = self.fitter.ind_rec_cplx[valid_poses_cplx] i=0 for pose, recep in zip(valid_poses_cplx, valid_recep_cplx): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_cplx[recep], self.fitter.S_cplx[recep], self.fitter.g_cplx[recep], self.fitter.vol_cplx[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : self.x[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_cplx[recep], self.fitter.pdat_cplx[pose], prefix="%s.%d.%s" %(self.name, i, "cplx"), **kwargs) i += 1 ### The ligand ### ~~~~~~~~~~ if self.process_lig: valid_poses_lig = np.where(self.fitter.ind_case_lig==self.case)[0] valid_recep_lig = self.fitter.ind_rec_lig[valid_poses_lig] i=0 for pose, recep in zip(valid_poses_lig, valid_recep_lig): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_lig[recep], self.fitter.S_lig[recep], self.fitter.g_lig[recep], self.fitter.vol_lig[pose], self.x) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : self.x[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_lig[recep], self.fitter.pdat_lig[pose], prefix="%s.%d.%s" %(self.name, i, "lig"), **kwargs) i += 1 def mode5(self, callback=None): if not self.pairs: ### The receptor ### ~~~~~~~~~~~~ if self.process_rec: valid_poses = np.where(self.fitter.ind_case==self.case)[0] valid_recep = self.fitter.ind_rec[valid_poses] _xr = np.zeros(self.fitter.parms, dtype=DOUBLE) _xr[:-2] = self.x[:-4] _xr[-2] = self.x[-4] i=0 for pose, recep in zip(valid_poses, valid_recep): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E[recep], self.fitter.S[recep], self.fitter.g[recep], self.fitter.vol[pose], _xr) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[0], "C" : self.x[-1] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat[recep], self.fitter.pdat[pose], prefix="%s.%d.%s" %(self.name, i, "rec"), **kwargs) i += 1 ### The complex ### ~~~~~~~~~~~ if self.process_cplx: valid_poses_cplx = np.where(self.fitter.ind_case_cplx==self.case)[0] valid_recep_cplx = self.fitter.ind_rec_cplx[valid_poses_cplx] _xc = np.zeros(self.fitter.parms, dtype=DOUBLE) _xc[:-2] = self.x[:-4] _xc[-2] = self.x[-3] i=0 for pose, recep in zip(valid_poses_cplx, valid_recep_cplx): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_cplx[recep], self.fitter.S_cplx[recep], self.fitter.g_cplx[recep], self.fitter.vol_cplx[pose], _xc) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : self.x[-1] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_cplx[recep], self.fitter.pdat_cplx[pose], prefix="%s.%d.%s" %(self.name, i, "cplx"), **kwargs) i += 1 ### The ligand ### ~~~~~~~~~~ if self.process_lig: _xl = np.zeros(self.fitter.parms, dtype=DOUBLE) _xl[:-2] = self.x[:-4] _xl[-2] = self.x[-2] valid_poses_lig = np.where(self.fitter.ind_case_lig==self.case)[0] valid_recep_lig = self.fitter.ind_rec_lig[valid_poses_lig] i=0 for pose, recep in zip(valid_poses_lig, valid_recep_lig): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_lig[recep], self.fitter.S_lig[recep], self.fitter.g_lig[recep], self.fitter.vol_lig[pose], _xl) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : self.x[-1] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_lig[recep], self.fitter.pdat_lig[pose], prefix="%s.%d.%s" %(self.name, i, "lig"), **kwargs) i += 1 def mode6(self, callback=None): if not self.pairs: ### The receptor ### ~~~~~~~~~~~~ if self.process_rec: valid_poses = np.where(self.fitter.ind_case==self.case)[0] valid_recep = self.fitter.ind_rec[valid_poses] _xr = np.zeros(self.fitter.parms+1, dtype=DOUBLE) _xr[:-3] = self.x[:-5] _xr[-3] = self.x[-5] i=0 for pose, recep in zip(valid_poses, valid_recep): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E[recep], self.fitter.S[recep], self.fitter.g[recep], self.fitter.vol[pose], _xr) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[0], "C" : _xr[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat[recep], self.fitter.pdat[pose], prefix="%s.%d.%s" %(self.name, i, "rec"), **kwargs) i += 1 ### The complex ### ~~~~~~~~~~~ if self.process_cplx: valid_poses_cplx = np.where(self.fitter.ind_case_cplx==self.case)[0] valid_recep_cplx = self.fitter.ind_rec_cplx[valid_poses_cplx] _xc = np.zeros(self.fitter.parms+1, dtype=DOUBLE) _xc[:-3] = self.x[:-5] _xc[-3] = self.x[-4] i=0 for pose, recep in zip(valid_poses_cplx, valid_recep_cplx): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_cplx[recep], self.fitter.S_cplx[recep], self.fitter.g_cplx[recep], self.fitter.vol_cplx[pose], _xc) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : _xc[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_cplx[recep], self.fitter.pdat_cplx[pose], prefix="%s.%d.%s" %(self.name, i, "cplx"), **kwargs) i += 1 ### The ligand ### ~~~~~~~~~~ if self.process_lig: valid_poses_lig = np.where(self.fitter.ind_case_lig==self.case)[0] valid_recep_lig = self.fitter.ind_rec_lig[valid_poses_lig] _xl = np.zeros(self.fitter.parms+1, dtype=DOUBLE) _xl[:-3] = self.x[:-5] _xl[-3] = self.x[-3] i=0 for pose, recep in zip(valid_poses_lig, valid_recep_lig): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_lig[recep], self.fitter.S_lig[recep], self.fitter.g_lig[recep], self.fitter.vol_lig[pose], _xl) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : _xl[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_lig[recep], self.fitter.pdat_lig[pose], prefix="%s.%d.%s" %(self.name, i, "lig"), **kwargs) i += 1 def mode7(self, callback=None): if self.process_rec and not self.pairs: _xr = np.zeros(self.fitter.parms+1, dtype=DOUBLE) if self.process_cplx: _xc = np.zeros(self.fitter.parms+1, dtype=DOUBLE) if self.process_lig: _xl = np.zeros(self.fitter.parms+1, dtype=DOUBLE) ### ### For parms=4: ### ### with pairs: ### ----------- ### x[0] = e_co (Cplx) ### x[1] = e_co (Lig) ### x[2] = s_co (Cplx) ### x[3] = s_co (Lig) ### x[4] = g_co (Cplx) ### x[5] = g_co (Lig) ### x[6] = C_E ### x[7] = C_S ### ### without pairs: ### -------------- ### x[0] = e_co (Rec) ### x[1] = e_co (Cplx) ### x[2] = e_co (Lig) ### x[3] = s_co (Rec) ### x[4] = s_co (Cplx) ### x[5] = s_co (Lig) ### x[6] = g_co (Rec) ### x[7] = g_co (Cplx) ### x[8] = g_co (Lig) ### x[9] = C_E ### x[10] = C_S if self.fitter.parms==4: if self.pairs: if self.process_cplx: _xc[:-2] = self.x[[0,2,4]] if self.process_lig: _xl[:-2] = self.x[[1,3,5]] else: if self.process_rec: _xr[:-2] = self.x[[0,3,6]] if self.process_cplx: _xc[:-2] = self.x[[1,4,7]] if self.process_lig: _xl[:-2] = self.x[[2,5,8]] ### ### For parms=5: ### ### with pairs: ### ----------- ### x[0] = A ### x[1] = e_co (Cplx) ### x[2] = e_co (Lig) ### x[3] = s_co (Cplx) ### x[4] = s_co (Lig) ### x[5] = g_co (Cplx) ### x[6] = g_co (Lig) ### x[7] = C_E ### x[8] = C_S ### ### without pairs: ### -------------- ### x[0] = A ### x[1] = e_co (Rec) ### x[2] = e_co (Cplx) ### x[3] = e_co (Lig) ### x[4] = s_co (Rec) ### x[5] = s_co (Cplx) ### x[6] = s_co (Lig) ### x[7] = g_co (Rec) ### x[8] = g_co (Cplx) ### x[9] = g_co (Lig) ### x[10] = C_E ### x[11] = C_S elif self.fitter.parms==5: if self.pairs: if self.process_cplx: _xc[:-2] = self.x[[0,1,3,5]] if self.process_lig: _xl[:-2] = self.x[[0,2,4,6]] else: if self.process_rec: _xr[:-2] = self.x[[0,1,4,7]] if self.process_cplx: _xc[:-2] = self.x[[0,2,5,8]] if self.process_lig: _xl[:-2] = self.x[[0,3,6,9]] ### ### For parms=6: ### ### with pairs: ### ----------- ### x[0] = E_aff ### x[1] = e_co (Cplx) ### x[2] = e_co (Lig) ### x[3] = S_aff ### x[4] = s_co (Cplx) ### x[5] = s_co (Lig) ### x[6] = g_co (Cplx) ### x[7] = g_co (Lig) ### x[8] = C_E ### x[9] = C_S ### ### without pairs: ### -------------- ### x[0] = E_aff ### x[1] = e_co (Rec) ### x[2] = e_co (Cplx) ### x[3] = e_co (Lig) ### x[4] = S_aff ### x[5] = s_co (Rec) ### x[6] = s_co (Cplx) ### x[7] = s_co (Lig) ### x[8] = g_co (Rec) ### x[9] = g_co (Cplx) ### x[10] = g_co (Lig) ### x[11] = C_E ### x[12] = C_S elif self.fitter.parms==6: if self.pairs: if self.process_cplx: _xc[:-2] = self.x[[0,1,3,4,6]] if self.process_lig: _xl[:-2] = self.x[[0,2,3,5,7]] else: if self.process_rec: _xr[:-2] = self.x[[0,1,4,5,8]] if self.process_cplx: _xc[:-2] = self.x[[0,2,4,6,9]] if self.process_lig: _xl[:-2] = self.x[[0,3,4,7,10]] if not self.pairs: ### The receptor ### ~~~~~~~~~~~~ if self.process_rec: valid_poses = np.where(self.fitter.ind_case==self.case)[0] valid_recep = self.fitter.ind_rec[valid_poses] i=0 for pose, recep in zip(valid_poses, valid_recep): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E[recep], self.fitter.S[recep], self.fitter.g[recep], self.fitter.vol[pose], _xr) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[0], "C" : _xr[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat[recep], self.fitter.pdat[pose], prefix="%s.%d.%s" %(self.name, i, "rec"), **kwargs) i += 1 ### The complex ### ~~~~~~~~~~~ if self.process_cplx: valid_poses_cplx = np.where(self.fitter.ind_case_cplx==self.case)[0] valid_recep_cplx = self.fitter.ind_rec_cplx[valid_poses_cplx] i=0 for pose, recep in zip(valid_poses_cplx, valid_recep_cplx): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_cplx[recep], self.fitter.S_cplx[recep], self.fitter.g_cplx[recep], self.fitter.vol_cplx[pose], _xc) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : _xc[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_cplx[recep], self.fitter.pdat_cplx[pose], prefix="%s.%d.%s" %(self.name, i, "cplx"), **kwargs) i += 1 ### The ligand ### ~~~~~~~~~~ if self.process_lig: valid_poses_lig = np.where(self.fitter.ind_case_lig==self.case)[0] valid_recep_lig = self.fitter.ind_rec_lig[valid_poses_lig] i=0 for pose, recep in zip(valid_poses_lig, valid_recep_lig): E_grid_val, S_grid_val, gv_grid_val = self.score(self.fitter.E_lig[recep], self.fitter.S_lig[recep], self.fitter.g_lig[recep], self.fitter.vol_lig[pose], _xl) if callback != None: kwargs = { "pose" : pose, "radius" : self.fitter.radiusadd[1], "C" : _xl[-2:] } callback(E_grid_val, S_grid_val, gv_grid_val, self.fitter.gdat_lig[recep], self.fitter.pdat_lig[pose], prefix="%s.%d.%s" %(self.name, i, "lig"), **kwargs) i += 1 def parms4(self, E_grid, S_grid, g_grid, vol_grid, x): E = np.zeros_like(E_grid) S = np.zeros_like(S_grid) g = np.zeros_like(g_grid) valids_E = np.where(E_grid>x[0]) valids_S = np.where(S_grid>x[1]) valids_g = np.where(g_grid>x[2]) E[valids_E] = np.copy(E_grid[valids_E]) S[valids_S] = np.copy(S_grid[valids_S]) g[valids_g] = np.copy(g_grid[valids_g]) E_grid_val = np.zeros_like(E) S_grid_val = np.zeros_like(S) gv_grid_val = np.zeros_like(g) ### This is probably wrong: #E_grid_val[valids_g] = E[valids_g] * vol_grid[valids_g] / g[valids_g] * 0.0332 #S_grid_val[valids_g] = S[valids_g] * vol_grid[valids_g] / g[valids_g] * 0.0332 * -1. ### This is how it should be: ### Note: 0.125 is the volume of one voxel E_grid_val[valids_g] = E[valids_g] * vol_grid[valids_g] * g[valids_g] * 0.0332 * 0.125 S_grid_val[valids_g] = S[valids_g] * vol_grid[valids_g] * g[valids_g] * 0.0332 * 0.125 gv_grid_val[valids_g] = vol_grid[valids_g]*g[valids_g] return E_grid_val, S_grid_val, gv_grid_val def parms5(self, E_grid, S_grid, g_grid, vol_grid, x): E = np.zeros_like(E_grid) S = np.zeros_like(S_grid) g = np.zeros_like(g_grid) E[np.where(E_grid>x[1])] = 1. S[np.where(S_grid>x[2])] = 1. g[np.where(g_grid>x[3])] = 1. E_grid_val = E*g*vol_grid*x[0] S_grid_val = S*g*vol_grid*x[0] gv_grid_val = vol_grid*g return E_grid_val, S_grid_val, gv_grid_val def parms6(self, E_grid, S_grid, g_grid, vol_grid, x): E = np.zeros_like(E_grid) S = np.zeros_like(S_grid) g = np.zeros_like(g_grid) E[np.where(E_grid>x[1])] = 1. S[np.where(S_grid>x[3])] = 1. g[np.where(g_grid>x[4])] = 1. E_grid_val = E*g*vol_grid*x[0] S_grid_val = S*g*vol_grid*x[2] gv_grid_val = vol_grid*g return E_grid_val, S_grid_val, gv_grid_val
38.899113
109
0.378545
3,672
35,087
3.398965
0.04085
0.137809
0.090137
0.026681
0.872446
0.855941
0.840718
0.821409
0.805945
0.800817
0
0.022386
0.492006
35,087
902
110
38.899113
0.67785
0.126457
0
0.777778
0
0
0.012642
0
0
0
0
0
0
1
0.025501
false
0.001821
0.007286
0
0.040073
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
31c78d6966a9d84a523a15b22e795f490c2201f9
44
py
Python
vertex-server/signals/__init__.py
aoswalt/greenlite-hardware
056ed78829519f49adab60dbcf67878243fe764e
[ "MIT" ]
null
null
null
vertex-server/signals/__init__.py
aoswalt/greenlite-hardware
056ed78829519f49adab60dbcf67878243fe764e
[ "MIT" ]
1
2016-11-01T23:55:07.000Z
2016-11-01T23:55:07.000Z
vertex-server/signals/__init__.py
aoswalt/greenlite-hardware
056ed78829519f49adab60dbcf67878243fe764e
[ "MIT" ]
null
null
null
from . import lights from . import schedule
14.666667
22
0.772727
6
44
5.666667
0.666667
0.588235
0
0
0
0
0
0
0
0
0
0
0.181818
44
2
23
22
0.944444
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
31c871b146933705ca94093543636c2b4a72c392
22,970
py
Python
test_training_data.py
miermans/gym-2048
39f2cf375ef936284677a97b373aa2b97c8e45fc
[ "MIT" ]
null
null
null
test_training_data.py
miermans/gym-2048
39f2cf375ef936284677a97b373aa2b97c8e45fc
[ "MIT" ]
2
2021-05-26T20:24:09.000Z
2021-05-27T08:44:54.000Z
test_training_data.py
miermans/gym-2048
39f2cf375ef936284677a97b373aa2b97c8e45fc
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import absolute_import import numpy as np import os import pytest import tempfile import training_data class TestTrainingData(): def test_add(self): td = training_data.training_data() assert np.array_equal(td.get_x(), np.empty([0, 4, 4], dtype=np.int)) assert np.array_equal(td.get_y_digit(), np.empty([0, 1], dtype=np.int)) assert np.allclose(td.get_reward(), np.empty([0, 1], dtype=np.float)) assert np.array_equal(td.get_next_x(), np.empty([0, 4, 4], dtype=np.int)) assert np.array_equal(td.get_done(), np.empty([0, 1], dtype=np.bool)) td.add(np.ones([1, 4, 4]), 1, 4, np.zeros([1, 4, 4]), True) assert np.array_equal(td.get_x(), np.ones([1, 4, 4], dtype=np.int)) assert np.array_equal(td.get_y_digit(), np.array([[1]], dtype=np.int)) assert np.allclose(td.get_reward(), np.array([[4]], dtype=np.float)) assert np.array_equal(td.get_next_x(), np.zeros([1, 4, 4], dtype=np.int)) assert np.array_equal(td.get_done(), np.array([[1]], dtype=np.bool)) def test_get_x_stacked(self): td = training_data.training_data() td.add(np.full([4, 4], 2), 0, 4, np.zeros([4, 4])) td.add(np.full([4, 4], 8), 1, 8, np.ones([4, 4])) td.add(np.full([4, 4], 2048), 1, 8, np.ones([4, 4])) expected_x_stacked = np.array([ [ [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] ], [ [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] ], [ [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]], [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]], [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]], [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]] ] ], dtype=np.int) assert np.array_equal(td.get_x_stacked(), expected_x_stacked) def test_get_y_one_hot(self): td = training_data.training_data() td.add(np.ones([4, 4]), 0, 4, np.zeros([4, 4])) td.add(np.zeros([4, 4]), 1, 8, np.ones([4, 4])) td.add(np.zeros([4, 4]), 3, 8, np.ones([4, 4])) td.add(np.zeros([4, 4]), 2, 8, np.ones([4, 4])) expected_y_one_hot = np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0] ], dtype=np.int) assert np.array_equal(td.get_y_one_hot(), expected_y_one_hot) def test_get_total_reward(self): td = training_data.training_data() td.add(np.ones([4, 4]), 0, 4, np.zeros([4, 4])) td.add(np.zeros([4, 4]), 1, 8, np.ones([4, 4])) td.add(np.zeros([4, 4]), 3, 16, np.ones([4, 4])) td.add(np.zeros([4, 4]), 2, 32, np.ones([4, 4])) assert td.get_total_reward() == 60 def test_get_highest_tile(self): td = training_data.training_data() td.add(np.full((4, 4), 1), 0, 4, np.full((4, 4), 2)) td.add(np.full((4, 4), 2), 0, 4, np.full((4, 4), 4)) assert td.get_highest_tile() == 4 def test_get_n(self): td = training_data.training_data() td.add(np.ones([4, 4]), 1, 4, np.zeros([4, 4])) td.add(np.zeros([4, 4]), 2, 8, np.ones([4, 4])) (state, action, reward, next_state, done) = td.get_n(1) assert np.array_equal(state, np.zeros([4, 4], dtype=np.int)) assert action == 2 assert reward == pytest.approx(8.) assert np.array_equal(next_state, np.ones([4, 4], dtype=np.int)) def test_hflip(self): td = training_data.training_data() board1 = np.array([[1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) board2 = np.array([[0, 0, 0, 0], [2, 4, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) td.add(board1, 1, 2, board2) td.add(board2, 2, 0, board1) td.hflip() expected_x = np.array([ [[0, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 4, 2], [0, 0, 0, 0], [0, 0, 0, 0]] ], dtype=np.int) expected_y_digit = np.array([ [3], [2] ], dtype=np.int) expected_reward = np.array([ [2], [0], ], dtype=np.float) expected_next_x = np.array([ [[0, 0, 0, 0], [0, 0, 4, 2], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] ], dtype=np.int) assert np.array_equal(td.get_x(), expected_x) assert np.array_equal(td.get_y_digit(), expected_y_digit) assert np.allclose(td.get_reward(), expected_reward) assert np.allclose(td.get_next_x(), expected_next_x) def test_rotate(self): td = training_data.training_data() board1 = np.array([[1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) board2 = np.array([[0, 0, 0, 0], [2, 4, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) td.add(board1, 1, 2, board2) td.add(board2, 2, 0, board1) td.rotate(3) expected_x = np.array([ [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 4, 0, 0], [0, 2, 0, 0]] ], dtype=np.int) expected_y_digit = np.array([ [0], [1] ], dtype=np.int) expected_reward = np.array([ [2], [0], ], dtype=np.float) expected_next_x = np.array([ [[0, 0, 0, 0], [0, 0, 0, 0], [0, 4, 0, 0], [0, 2, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]] ], dtype=np.int) assert np.array_equal(td.get_x(), expected_x) assert np.array_equal(td.get_y_digit(), expected_y_digit) assert np.allclose(td.get_reward(), expected_reward) assert np.array_equal(td.get_next_x(), expected_next_x) def test_augment(self): td = training_data.training_data() initial_board = np.array([[1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) next_board = np.array([[0, 0, 0, 2], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) td.add(initial_board, 1, 4, next_board) td.augment() assert td.size() == 8 expected_x = np.array([ [[1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], [[1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] ], dtype=np.int) expected_y_digit = np.array([ [1], [3], [2], [0], [3], [1], [0], [2] ], dtype=np.int) expected_reward = np.array([ [4], [4], [4], [4], [4], [4], [4], [4] ], dtype=np.float) expected_next_x = np.array([ [[0, 0, 0, 2], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], # Original [[2, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0], [0, 0, 0, 0]], # Hflip'd [[0, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0], [0, 0, 0, 2]], # Original, rotated 90 degrees [[0, 0, 0, 2], [0, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]], # Hflip, rotated 90 degrees [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 2, 0], [2, 0, 0, 0]], # Original, rotated 180 degrees [[0, 0, 0, 0], [0, 0, 0, 0], [0, 2, 0, 0], [0, 0, 0, 2]], # Hflip, rotated 180 degrees [[2, 0, 0, 0], [0, 0, 0, 0], [0, 2, 0, 0], [0, 0, 0, 0]], # Original, rotate 270 degrees [[0, 0, 0, 0], [0, 2, 0, 0], [0, 0, 0, 0], [2, 0, 0, 0]] # Hflip, rotated 270 degrees ], dtype=np.int) assert np.array_equal(td.get_x(), expected_x) assert np.array_equal(td.get_y_digit(), expected_y_digit) assert np.allclose(td.get_reward(), expected_reward) assert np.array_equal(td.get_next_x(), expected_next_x) def test_merge(self): td = training_data.training_data() td.add(np.ones([1, 4, 4]), 1, 16, np.zeros([1, 4, 4])) td2 = training_data.training_data() td2.add(np.zeros([1, 4, 4]), 2, 0, np.ones([1, 4, 4])) td.merge(td2) expected_x = np.array([ [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] ], dtype=np.int) expected_y_digit = np.array([ [1], [2] ], dtype=np.int) expected_reward = np.array([ [16], [0] ], dtype=np.float) expected_next_x = np.array([ [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]] ], dtype=np.int) assert np.array_equal(td.get_x(), expected_x) assert np.array_equal(td.get_y_digit(), expected_y_digit) assert np.allclose(td.get_reward(), expected_reward) assert np.array_equal(td.get_next_x(), expected_next_x) def test_split(self): td = training_data.training_data() td.add(np.ones([1, 4, 4]), 1, 16, np.zeros([1, 4, 4])) td2 = training_data.training_data() td2.add(np.zeros([1, 4, 4]), 2, 0, np.ones([1, 4, 4])) td.merge(td2) a, b = td.split() assert np.array_equal(a.get_x(), np.ones([1, 4, 4])) assert np.array_equal(a.get_y_digit(), [[1]]) assert np.array_equal(a.get_reward(), [[16]]) assert np.array_equal(a.get_next_x(), np.zeros([1, 4, 4])) assert np.array_equal(b.get_x(), np.zeros([1, 4, 4])) assert np.array_equal(b.get_y_digit(), [[2]]) assert np.array_equal(b.get_reward(), [[0]]) assert np.array_equal(b.get_next_x(), np.ones([1, 4, 4])) def test_sample(self): td = training_data.training_data() td.add(np.zeros([1, 4, 4]), 0, 0, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 1, 1, np.ones([1, 4, 4])) sample = td.sample([1]) assert sample.size() == 1 assert sample.get_y_digit() in [[[0]], [[1]]] if sample.get_y_digit() == 0: assert np.array_equal(sample.get_x(), np.zeros([1, 4, 4])) if sample.get_y_digit() == 1: assert np.array_equal(sample.get_x(), np.ones([1, 4, 4])) def test_size(self): td = training_data.training_data() assert td.size() == 0 td.add(np.ones([1, 4, 4]), 0, 4, np.zeros([1, 4, 4])) assert td.size() == 1 def test_log2_rewards(self): # Set up training data td = training_data.training_data() td.add(np.ones([1, 4, 4]), 0, 0, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 1, 2, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 2, 4, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 3, 16, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 0, 75, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 1, 2048, np.zeros([1, 4, 4])) td.log2_rewards() expected_reward = np.array([ [0], [1], [2], [4], [6.2288], [11] ], dtype=np.float) assert np.allclose(td.get_reward(), expected_reward) expected_action = np.array([ [0], [1], [2], [3], [0], [1] ], dtype=np.int) assert np.allclose(td.get_y_digit(), expected_action) def test_get_discounted_return(self): # Set up training data td = training_data.training_data() td.add(np.ones([1, 4, 4]), 0, 4, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 1, 2, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 2, 16, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 3, 2, np.zeros([1, 4, 4])) # Test using default gamma value of 0.9 td2 = td.copy() discounted_return = td2.get_discounted_return() expected_return = np.array([ [20.218], [18.02], [17.8], [2.0] ], dtype=np.float) assert np.allclose(discounted_return, expected_return) # Test using gamma value of 0, should have no effect on rewards td2 = td.copy() discounted_return = td2.get_discounted_return(gamma=0.0) expected_return = np.array([ [4], [2], [16], [2] ], dtype=np.float) assert np.allclose(discounted_return, expected_return) # Test end of episode td3 = training_data.training_data() td3.add(np.ones([1, 4, 4]), 0, 4, np.zeros([1, 4, 4]), False) td3.add(np.ones([1, 4, 4]), 1, 2, np.zeros([1, 4, 4]), True) td3.add(np.ones([1, 4, 4]), 2, 16, np.zeros([1, 4, 4]), False) td3.add(np.ones([1, 4, 4]), 3, 2, np.zeros([1, 4, 4]), True) discounted_return = td3.get_discounted_return() expected_return = np.array([ [5.8], [2.0], [17.8], [2.0] ], dtype=np.float) assert np.allclose(discounted_return, expected_return) def test_normalize_rewards(self): # Test calculating mean and standard deviation td = training_data.training_data() td.add(np.ones([1, 4, 4]), 1, 4, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 2, 4, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 3, 8, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 0, 16, np.zeros([1, 4, 4])) td.normalize_rewards() expected_reward = np.array([ [-0.8165], [-0.8165], [0.], [1.633], ], dtype=np.float) assert np.allclose(td.get_reward(), expected_reward) # Test specifying mean and standard deviation td = training_data.training_data() td.add(np.ones([1, 4, 4]), 1, 4, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 2, 4, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 3, 8, np.zeros([1, 4, 4])) td.add(np.ones([1, 4, 4]), 0, 16, np.zeros([1, 4, 4])) td.normalize_rewards(mean=8, sd=1) expected_reward = np.array([ [-4.], [-4.], [0.], [8.], ], dtype=np.float) assert np.allclose(td.get_reward(), expected_reward) def test_normalize_boards(self): # Test calculating mean and standard deviation td = training_data.training_data() td.add(np.full((1, 4, 4), 4), 1, 4, np.full((1, 4, 4), 8)) td.add(np.full((1, 4, 4), 8), 2, 4, np.full((1, 4, 4), 16)) td.add(np.full((1, 4, 4), 16), 3, 4, np.full((1, 4, 4), 32)) td.add(np.full((1, 4, 4), 32), 4, 4, np.full((1, 4, 4), 64)) td.normalize_boards() mean = 15. sd = 10.7238052947636 a = (4. - mean) / sd b = (8. - mean) / sd c = (16. - mean) / sd d = (32. - mean) / sd e = (64. - mean) / sd expected_x = np.array([ [[a, a, a, a], [a, a, a, a], [a, a, a, a], [a, a, a, a]], [[b, b, b, b], [b, b, b, b], [b, b, b, b], [b, b, b, b]], [[c, c, c, c], [c, c, c, c], [c, c, c, c], [c, c, c, c]], [[d, d, d, d], [d, d, d, d], [d, d, d, d], [d, d, d, d]] ], dtype=np.float) assert np.allclose(td.get_x(), expected_x) expected_next_x = np.array([ [[b, b, b, b], [b, b, b, b], [b, b, b, b], [b, b, b, b]], [[c, c, c, c], [c, c, c, c], [c, c, c, c], [c, c, c, c]], [[d, d, d, d], [d, d, d, d], [d, d, d, d], [d, d, d, d]], [[e, e, e, e], [e, e, e, e], [e, e, e, e], [e, e, e, e]] ], dtype=np.float) assert np.allclose(td.get_next_x(), expected_next_x) def test_save_restore(self): # Set up training data td = training_data.training_data() td.add(np.ones([1, 4, 4]), 0, 4, np.zeros([1, 4, 4])) td.add(np.zeros([1, 4, 4]), 1, 2, np.ones([1, 4, 4])) td.add(np.ones([1, 4, 4]), 2, 16, np.zeros([1, 4, 4])) td.add(np.zeros([1, 4, 4]), 3, 2, np.ones([1, 4, 4])) temp_dir = tempfile.mkdtemp() temp_filename = os.path.join(temp_dir, 'data.csv') td.export_csv(temp_filename) td2 = training_data.training_data() td2.import_csv(temp_filename) expected_x = np.array([ [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] ], dtype=np.int) expected_y_digit = np.array([ [0], [1], [2], [3] ], dtype=np.int) expected_reward = np.array([ [4], [2], [16], [2] ], dtype=np.float) expected_next_x = np.array([ [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]] ], dtype=np.int) assert np.array_equal(td2.get_x(), expected_x) assert np.array_equal(td2.get_y_digit(), expected_y_digit) assert np.allclose(td2.get_reward(), expected_reward) assert np.array_equal(td2.get_next_x(), expected_next_x) os.remove(temp_filename) os.rmdir(temp_dir) def test_shuffle(self): td = training_data.training_data() n = 5 for i in range(n): # Use "is odd" for done td.add(np.full((1, 4, 4), i), i, i, np.full((1, 4, 4), i), (i % 2) == 1) td.shuffle() for i in range(n): # Find where this has been shuffled too index_of_val = np.where(td.get_y_digit() == i)[0].item(0) # Check that all parts of this equal i arrays = td.get_n(index_of_val) for a in arrays: if a.dtype is np.dtype(np.bool): assert((a == ((i % 2) == 1)).all()) else: assert((a == i).all()) def test_make_boards_unique(self): td = training_data.training_data() td.add(np.ones([1, 4, 4]), 0, 4, np.zeros([1, 4, 4])) td.add(np.zeros([1, 4, 4]), 1, 2, np.ones([1, 4, 4])) td.add(np.ones([1, 4, 4]), 2, 16, np.zeros([1, 4, 4])) td.add(np.zeros([1, 4, 4]), 3, 2, np.ones([1, 4, 4])) td.make_boards_unique() expected_x = np.array([ [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] ], dtype=np.int) expected_y_digit = np.array([ [0], [1] ], dtype=np.int) expected_reward = np.array([ [4], [2] ], dtype=np.float) expected_next_x = np.array([ [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]] ], dtype=np.int) assert np.array_equal(td.get_x(), expected_x) assert np.array_equal(td.get_y_digit(), expected_y_digit) assert np.allclose(td.get_reward(), expected_reward) assert np.array_equal(td.get_next_x(), expected_next_x) if __name__ == '__main__': import pytest pytest.main()
44.173077
101
0.428515
4,059
22,970
2.33358
0.043114
0.245988
0.331926
0.395693
0.826541
0.805743
0.75
0.718011
0.677048
0.649916
0
0.151582
0.350631
22,970
519
102
44.258189
0.483441
0.026948
0
0.612632
0
0
0.000717
0
0
0
0
0
0.143158
1
0.042105
false
0
0.016842
0
0.061053
0
0
0
0
null
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
9
31d43ead09e1c7effc26eae228b072a20a8b0310
3,261
py
Python
simple_retry/decorators.py
nicolasmota/retry_decorator
65eab450e65fe8c08d07cd213628e655baa5ae55
[ "MIT" ]
11
2018-03-06T17:09:50.000Z
2018-10-26T04:31:50.000Z
simple_retry/decorators.py
nicolasmota/retry_decorator
65eab450e65fe8c08d07cd213628e655baa5ae55
[ "MIT" ]
9
2018-03-06T03:56:44.000Z
2018-10-26T04:48:42.000Z
simple_retry/decorators.py
nicolasmota/retry_decorator
65eab450e65fe8c08d07cd213628e655baa5ae55
[ "MIT" ]
2
2018-03-15T03:11:14.000Z
2018-07-07T17:11:06.000Z
import time from functools import wraps import asyncio from simple_retry.simple_retry.helpers import ( format_retry_message, has_retries_to_go, log_message ) def retry(Except, retries=5, delay=0, logger=None, level='info', multiple=1): def deco_retry(function): @wraps(function) def f_retry(*args, **kwargs): tries = 1 mdelay = delay while has_retries_to_go( tries_performed=tries, retries_limit=retries ): try: return function(*args, **kwargs) except Except as e: log_message( logger=logger, level=level, exception=e, tries_performed=tries, retries_limit=retries, wait_delay_multiple=multiple ) time.sleep(mdelay) mdelay *= multiple tries += 1 return function(*args, **kwargs) return f_retry return deco_retry def coroutine_retry( Except, retries=5, delay=0, logger=None, level='info', multiple=1 ): def deco_retry(function): @asyncio.coroutine @wraps(function) def f_retry(*args, **kwargs): tries = 1 mdelay = delay while has_retries_to_go( tries_performed=tries, retries_limit=retries ): try: return (yield from (function(*args, **kwargs))) except Except as e: log_message( logger=logger, level=level, exception=e, tries_performed=tries, retries_limit=retries, wait_delay_multiple=multiple ) yield from (asyncio.sleep(mdelay)) mdelay *= multiple tries += 1 return (yield from function(*args, **kwargs)) return f_retry return deco_retry def async_retry( Except, retries=5, delay=0, logger=None, level='info', multiple=1 ): def deco_retry(function): @wraps(function) async def f_retry(*args, **kwargs): tries = 1 mdelay = delay while has_retries_to_go( tries_performed=tries, retries_limit=retries ): try: return await (function(*args, **kwargs)) except Except as e: log_message( logger=logger, level=level, exception=e, tries_performed=tries, retries_limit=retries, wait_delay_multiple=multiple ) await (asyncio.sleep(mdelay)) mdelay *= multiple tries += 1 return await (function(*args, **kwargs)) return f_retry return deco_retry
26.512195
77
0.462435
287
3,261
5.073171
0.167247
0.061813
0.078297
0.107143
0.873626
0.866758
0.854396
0.828984
0.768544
0.737637
0
0.008621
0.466421
3,261
122
78
26.729508
0.828161
0
0
0.798077
0
0
0.00368
0
0
0
0
0
0
1
0.076923
false
0
0.038462
0
0.230769
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
7
31d44c5f099da57a280d3e04440215f00f79e111
153
py
Python
environment.py
bopopescu/cbrc-devteam-blog
eb4f7977d112b1ee692dad60ed46802d2ee243f4
[ "Apache-2.0" ]
null
null
null
environment.py
bopopescu/cbrc-devteam-blog
eb4f7977d112b1ee692dad60ed46802d2ee243f4
[ "Apache-2.0" ]
null
null
null
environment.py
bopopescu/cbrc-devteam-blog
eb4f7977d112b1ee692dad60ed46802d2ee243f4
[ "Apache-2.0" ]
1
2020-07-24T03:59:01.000Z
2020-07-24T03:59:01.000Z
# application environment import settings import sys sys.path.append(settings.app_home_dir) sys.path.append(settings.app_settings["app_lib_dir"])
21.857143
54
0.797386
22
153
5.318182
0.5
0.282051
0.222222
0.358974
0.410256
0
0
0
0
0
0
0
0.104575
153
6
55
25.5
0.854015
0.150327
0
0
0
0
0.090164
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
7
730824ac4dba3e614be06b76613a0a6b290846f5
46
py
Python
src/utils.py
sequoia-tree/cs370
47bf7f56d20bd81abbdbd0502477afcd5f62bbbe
[ "CC-BY-4.0" ]
1
2019-01-14T08:31:45.000Z
2019-01-14T08:31:45.000Z
src/utils.py
sequoia-tree/teaching-cs
47bf7f56d20bd81abbdbd0502477afcd5f62bbbe
[ "CC-BY-4.0" ]
null
null
null
src/utils.py
sequoia-tree/teaching-cs
47bf7f56d20bd81abbdbd0502477afcd5f62bbbe
[ "CC-BY-4.0" ]
null
null
null
from md_utils import * from py_utils import *
15.333333
22
0.782609
8
46
4.25
0.625
0.647059
0
0
0
0
0
0
0
0
0
0
0.173913
46
2
23
23
0.894737
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
7317deb1560647aa925ec2a580d6d0908f2796af
155
py
Python
GasBotty/models/utils.py
GreenCUBIC/GasBotty
158f5991201c80bf4cbbbb9deabc9954ff19bbb1
[ "MIT" ]
353
2020-12-10T10:47:17.000Z
2022-03-31T23:08:29.000Z
GasBotty/models/utils.py
GreenCUBIC/GasBotty
158f5991201c80bf4cbbbb9deabc9954ff19bbb1
[ "MIT" ]
80
2020-12-10T09:54:22.000Z
2022-03-30T22:08:45.000Z
GasBotty/models/utils.py
GreenCUBIC/GasBotty
158f5991201c80bf4cbbbb9deabc9954ff19bbb1
[ "MIT" ]
63
2020-12-10T17:10:34.000Z
2022-03-28T16:27:07.000Z
try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url
31
75
0.806452
26
155
4.423077
0.576923
0.156522
0.226087
0.295652
0.347826
0
0
0
0
0
0
0
0.16129
155
4
76
38.75
0.884615
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.75
0
0.75
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
7
73425bf1b2ce90f77e267345bd3b090b0208b790
16,334
py
Python
tests/service/ai/test_not_killing_itself_ai.py
jonashellmann/informaticup21-team-chillow
f2e519af0a5d9a9368d62556703cfb1066ebb58f
[ "MIT" ]
3
2021-01-17T23:32:07.000Z
2022-01-30T14:49:16.000Z
tests/service/ai/test_not_killing_itself_ai.py
jonashellmann/informaticup21-team-chillow
f2e519af0a5d9a9368d62556703cfb1066ebb58f
[ "MIT" ]
2
2021-01-17T13:37:56.000Z
2021-04-14T12:28:49.000Z
tests/service/ai/test_not_killing_itself_ai.py
jonashellmann/informaticup21-team-chillow
f2e519af0a5d9a9368d62556703cfb1066ebb58f
[ "MIT" ]
2
2021-04-02T14:53:38.000Z
2021-04-20T11:10:17.000Z
import unittest from datetime import datetime, timezone from typing import List from chillow.service.ai.not_killing_itself_ai import NotKillingItselfAI from chillow.model.action import Action from chillow.model.cell import Cell from chillow.model.direction import Direction from chillow.model.game import Game from chillow.model.player import Player from chillow.service.game_service import GameService class NotKillingItselfAITest(unittest.TestCase): def test_ai_should_choose_the_own_non_killing_itself_action(self): player1 = Player(1, 0, 0, Direction.up, 1, True, "") player2 = Player(2, 4, 4, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell([player1]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell([player2])]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself(self): player1 = Player(1, 0, 1, Direction.up, 1, True, "") player2 = Player(2, 4, 4, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell([player2])]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.change_nothing in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself2(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell([player2]), Cell(), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.turn_left in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself_in_turn_6(self): player1 = Player(1, 0, 4, Direction.up, 3, True, "") player2 = Player(2, 0, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) game_service.turn.turn_ctr = 6 sut = NotKillingItselfAI(player1, [], 4, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 1) self.assertTrue(Action.slow_down in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(Action.speed_up in actions) self.assertTrue(len(actions) == 3) def test_ai_should_not_choose_speed_up_if_max_speed_is_allready_reached(self): MAX_SPEED = 3 player1 = Player(1, 0, 4, Direction.up, MAX_SPEED, True, "") player2 = Player(2, 0, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], MAX_SPEED, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 1) self.assertTrue(Action.slow_down in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2) def test_ai_should_calc_action_with_max_distance(self): player1 = Player(1, 0, 4, Direction.up, 1, True, "") player2 = Player(2, 0, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.calc_action_with_max_distance_to_visited_cells(game_service, [Action.speed_up, Action.change_nothing, Action.turn_right]) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_calc_all_action_with_max_distance_with_max_worse_distance(self): MAX_WORSE_DISTANCE = 1 player1 = Player(1, 0, 4, Direction.up, 1, True, "") player2 = Player(2, 4, 4, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell([player2])]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, MAX_WORSE_DISTANCE, 3) actions: List[Action] = sut.calc_action_with_max_distance_to_visited_cells(game_service, [Action.speed_up, Action.change_nothing, Action.turn_right]) self.assertTrue(Action.speed_up in actions) self.assertTrue(Action.change_nothing in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 3) def test_get_information(self): player = Player(1, 0, 4, Direction.up, 1, True, "") sut = NotKillingItselfAI(player, [], 3, 1, 3) expected = "max_speed=3, max_worse_distance=1, depth=3" result = sut.get_information() self.assertEqual(expected, result) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself_with_depth_greater_than_one(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell(), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 2) actions: List[Action] = sut.find_surviving_actions(game_service, 2) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_empty_list_with_depth_greater_than_one_and_no_surviving_action(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell([player2]), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 2) actions: List[Action] = sut.find_surviving_actions(game_service, 2) self.assertTrue(len(actions) == 0) def test_ai_should_choose_correct_list_with_depth_three_and_surviving_action(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_empty_list_with_depth_three_and_no_surviving_action(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell([player2]), Cell(), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(len(actions) == 0) def test_ai_should_choose_best_list_of_actions_by_depth_from_lower_depth(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell([player2]), Cell(), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 5) actions: List[Action] = sut.find_surviving_actions_with_best_depth(game_service) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_best_list_of_actions_by_depth(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell(), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 5) actions: List[Action] = sut.find_surviving_actions_with_best_depth(game_service) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_best_list_of_actions_in_lowest_possible_depth(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell([player2]), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 5) actions: List[Action] = sut.find_surviving_actions_with_best_depth(game_service) self.assertTrue(Action.turn_left in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2)
52.185304
120
0.53355
1,846
16,334
4.568797
0.054171
0.258952
0.303059
0.328195
0.903486
0.887361
0.884515
0.881314
0.8742
0.864951
0
0.048528
0.307396
16,334
312
121
52.352564
0.696986
0
0
0.807087
0
0
0.002571
0.001286
0
0
0
0
0.137795
1
0.059055
false
0
0.03937
0
0.102362
0
0
0
0
null
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
10