low low cpu Granite 4.0 ?
#2
by
AniOoh
- opened
README.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: bsl-1.0
|
| 3 |
+
datasets:
|
| 4 |
+
- JDhruv14/Bhagavad-Gita_Dataset
|
| 5 |
+
metrics:
|
| 6 |
+
- character
|
| 7 |
+
base_model:
|
| 8 |
+
- ibm-granite/granite-docling-258M
|
| 9 |
+
new_version: ibm-granite/granite-docling-258M
|
| 10 |
+
pipeline_tag: summarization
|
| 11 |
+
library_name: fastai
|
| 12 |
+
tags:
|
| 13 |
+
- art
|
| 14 |
+
---
|
| 15 |
+
import torch
|
| 16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 17 |
+
|
| 18 |
+
device = "cuda"
|
| 19 |
+
model_path = "ibm-granite/granite-4.0-micro"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 21 |
+
# drop device_map if running on CPU
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
| 23 |
+
model.eval()
|
| 24 |
+
|
| 25 |
+
tools = [
|
| 26 |
+
{
|
| 27 |
+
"type": "function",
|
| 28 |
+
"function": {
|
| 29 |
+
"name": "get_current_weather",
|
| 30 |
+
"description": "Get the current weather for a specified city.",
|
| 31 |
+
"parameters": {
|
| 32 |
+
"type": "object",
|
| 33 |
+
"properties": {
|
| 34 |
+
"city": {
|
| 35 |
+
"type": "string",
|
| 36 |
+
"description": "Name of the city"
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
"required": ["city"]
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
}
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
# change input text as desired
|
| 46 |
+
chat = [
|
| 47 |
+
{ "role": "user", "content": "What's the weather like in Boston right now?" },
|
| 48 |
+
]
|
| 49 |
+
chat = tokenizer.apply_chat_template(chat, \
|
| 50 |
+
tokenize=False, \
|
| 51 |
+
tools=tools, \
|
| 52 |
+
add_generation_prompt=True)
|
| 53 |
+
# tokenize the text
|
| 54 |
+
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
| 55 |
+
# generate output tokens
|
| 56 |
+
output = model.generate(**input_tokens,
|
| 57 |
+
max_new_tokens=100)
|
| 58 |
+
# decode output tokens into text
|
| 59 |
+
output = tokenizer.batch_decode(output)
|
| 60 |
+
# print output
|
| 61 |
+
print(output[0])
|