dvilasuero's picture
dvilasuero HF Staff
Update README.md
185679d
metadata
tags:
  - autotrain
  - text-classification
language:
  - en
widget:
  - text: >
      INSTRUCTION:

      Review the given chart and find the outlier.

      INPUT:

      Data Series A: 0, 5, 8, 10, 11, 10, 9

      OUTPUT:

      The outlier of the given data series is 11, as it is numerically greater
      than the rest of the numbers in the series.
datasets:
  - dvilasuero/autotrain-data-alpaca-bs-detector
co2_eq_emissions:
  emissions: 0.4102361717910936

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 46079114807
  • CO2 Emissions (in grams): 0.4102

Validation Metrics

  • Loss: 0.305
  • Accuracy: 0.891
  • Macro F1: 0.887
  • Micro F1: 0.891
  • Weighted F1: 0.891
  • Macro Precision: 0.890
  • Micro Precision: 0.891
  • Weighted Precision: 0.891
  • Macro Recall: 0.885
  • Micro Recall: 0.891
  • Weighted Recall: 0.891

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dvilasuero/autotrain-alpaca-bs-detector-46079114807

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("dvilasuero/autotrain-alpaca-bs-detector-46079114807", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("dvilasuero/autotrain-alpaca-bs-detector-46079114807", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)