Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1353
- Qwk: 0.4321
- Mse: 1.1341
- Rmse: 1.0649
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 4 | 9.2333 | 0.0 | 9.2336 | 3.0387 |
| No log | 2.0 | 8 | 6.3422 | 0.0087 | 6.3426 | 2.5185 |
| No log | 3.0 | 12 | 3.8708 | 0.0039 | 3.8711 | 1.9675 |
| No log | 4.0 | 16 | 2.3283 | 0.1027 | 2.3287 | 1.5260 |
| No log | 5.0 | 20 | 1.7155 | 0.0501 | 1.7159 | 1.3099 |
| No log | 6.0 | 24 | 1.2847 | 0.0280 | 1.2851 | 1.1336 |
| No log | 7.0 | 28 | 0.9823 | 0.0174 | 0.9826 | 0.9913 |
| No log | 8.0 | 32 | 0.8225 | 0.3053 | 0.8227 | 0.9070 |
| No log | 9.0 | 36 | 0.8666 | 0.3290 | 0.8667 | 0.9310 |
| No log | 10.0 | 40 | 0.8367 | 0.3964 | 0.8366 | 0.9146 |
| No log | 11.0 | 44 | 0.7933 | 0.4297 | 0.7930 | 0.8905 |
| No log | 12.0 | 48 | 0.9072 | 0.4201 | 0.9068 | 0.9522 |
| No log | 13.0 | 52 | 0.8809 | 0.4290 | 0.8803 | 0.9382 |
| No log | 14.0 | 56 | 0.6916 | 0.4783 | 0.6910 | 0.8312 |
| No log | 15.0 | 60 | 0.8238 | 0.4405 | 0.8228 | 0.9071 |
| No log | 16.0 | 64 | 0.8148 | 0.4654 | 0.8138 | 0.9021 |
| No log | 17.0 | 68 | 0.8538 | 0.4760 | 0.8527 | 0.9234 |
| No log | 18.0 | 72 | 0.9999 | 0.4405 | 0.9986 | 0.9993 |
| No log | 19.0 | 76 | 1.0019 | 0.4554 | 1.0006 | 1.0003 |
| No log | 20.0 | 80 | 1.1618 | 0.3745 | 1.1605 | 1.0773 |
| No log | 21.0 | 84 | 1.0175 | 0.4589 | 1.0164 | 1.0081 |
| No log | 22.0 | 88 | 1.1290 | 0.4834 | 1.1278 | 1.0620 |
| No log | 23.0 | 92 | 1.1970 | 0.3870 | 1.1955 | 1.0934 |
| No log | 24.0 | 96 | 1.1282 | 0.4673 | 1.1269 | 1.0616 |
| No log | 25.0 | 100 | 1.1480 | 0.3714 | 1.1468 | 1.0709 |
| No log | 26.0 | 104 | 1.1077 | 0.4603 | 1.1065 | 1.0519 |
| No log | 27.0 | 108 | 1.0251 | 0.4551 | 1.0237 | 1.0118 |
| No log | 28.0 | 112 | 1.1306 | 0.3928 | 1.1293 | 1.0627 |
| No log | 29.0 | 116 | 1.1263 | 0.4838 | 1.1248 | 1.0605 |
| No log | 30.0 | 120 | 1.2243 | 0.3904 | 1.2227 | 1.1057 |
| No log | 31.0 | 124 | 1.2559 | 0.4217 | 1.2544 | 1.1200 |
| No log | 32.0 | 128 | 1.1514 | 0.4071 | 1.1498 | 1.0723 |
| No log | 33.0 | 132 | 1.3955 | 0.3949 | 1.3941 | 1.1807 |
| No log | 34.0 | 136 | 1.3437 | 0.4097 | 1.3420 | 1.1585 |
| No log | 35.0 | 140 | 1.2856 | 0.4333 | 1.2840 | 1.1331 |
| No log | 36.0 | 144 | 1.2304 | 0.4319 | 1.2289 | 1.1086 |
| No log | 37.0 | 148 | 1.2883 | 0.4315 | 1.2868 | 1.1344 |
| No log | 38.0 | 152 | 1.1758 | 0.4253 | 1.1743 | 1.0836 |
| No log | 39.0 | 156 | 1.1739 | 0.4278 | 1.1722 | 1.0827 |
| No log | 40.0 | 160 | 1.2062 | 0.3665 | 1.2049 | 1.0977 |
| No log | 41.0 | 164 | 1.4454 | 0.3883 | 1.4445 | 1.2019 |
| No log | 42.0 | 168 | 1.2265 | 0.3824 | 1.2252 | 1.1069 |
| No log | 43.0 | 172 | 1.3218 | 0.3864 | 1.3204 | 1.1491 |
| No log | 44.0 | 176 | 1.5018 | 0.3722 | 1.5005 | 1.2249 |
| No log | 45.0 | 180 | 1.2620 | 0.4116 | 1.2605 | 1.1227 |
| No log | 46.0 | 184 | 1.2455 | 0.4269 | 1.2440 | 1.1154 |
| No log | 47.0 | 188 | 1.0308 | 0.3738 | 1.0298 | 1.0148 |
| No log | 48.0 | 192 | 1.1424 | 0.4214 | 1.1413 | 1.0683 |
| No log | 49.0 | 196 | 1.1353 | 0.4321 | 1.1341 | 1.0649 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold2
Base model
google-bert/bert-base-uncased