Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1353
  • Qwk: 0.4321
  • Mse: 1.1341
  • Rmse: 1.0649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 4 9.2333 0.0 9.2336 3.0387
No log 2.0 8 6.3422 0.0087 6.3426 2.5185
No log 3.0 12 3.8708 0.0039 3.8711 1.9675
No log 4.0 16 2.3283 0.1027 2.3287 1.5260
No log 5.0 20 1.7155 0.0501 1.7159 1.3099
No log 6.0 24 1.2847 0.0280 1.2851 1.1336
No log 7.0 28 0.9823 0.0174 0.9826 0.9913
No log 8.0 32 0.8225 0.3053 0.8227 0.9070
No log 9.0 36 0.8666 0.3290 0.8667 0.9310
No log 10.0 40 0.8367 0.3964 0.8366 0.9146
No log 11.0 44 0.7933 0.4297 0.7930 0.8905
No log 12.0 48 0.9072 0.4201 0.9068 0.9522
No log 13.0 52 0.8809 0.4290 0.8803 0.9382
No log 14.0 56 0.6916 0.4783 0.6910 0.8312
No log 15.0 60 0.8238 0.4405 0.8228 0.9071
No log 16.0 64 0.8148 0.4654 0.8138 0.9021
No log 17.0 68 0.8538 0.4760 0.8527 0.9234
No log 18.0 72 0.9999 0.4405 0.9986 0.9993
No log 19.0 76 1.0019 0.4554 1.0006 1.0003
No log 20.0 80 1.1618 0.3745 1.1605 1.0773
No log 21.0 84 1.0175 0.4589 1.0164 1.0081
No log 22.0 88 1.1290 0.4834 1.1278 1.0620
No log 23.0 92 1.1970 0.3870 1.1955 1.0934
No log 24.0 96 1.1282 0.4673 1.1269 1.0616
No log 25.0 100 1.1480 0.3714 1.1468 1.0709
No log 26.0 104 1.1077 0.4603 1.1065 1.0519
No log 27.0 108 1.0251 0.4551 1.0237 1.0118
No log 28.0 112 1.1306 0.3928 1.1293 1.0627
No log 29.0 116 1.1263 0.4838 1.1248 1.0605
No log 30.0 120 1.2243 0.3904 1.2227 1.1057
No log 31.0 124 1.2559 0.4217 1.2544 1.1200
No log 32.0 128 1.1514 0.4071 1.1498 1.0723
No log 33.0 132 1.3955 0.3949 1.3941 1.1807
No log 34.0 136 1.3437 0.4097 1.3420 1.1585
No log 35.0 140 1.2856 0.4333 1.2840 1.1331
No log 36.0 144 1.2304 0.4319 1.2289 1.1086
No log 37.0 148 1.2883 0.4315 1.2868 1.1344
No log 38.0 152 1.1758 0.4253 1.1743 1.0836
No log 39.0 156 1.1739 0.4278 1.1722 1.0827
No log 40.0 160 1.2062 0.3665 1.2049 1.0977
No log 41.0 164 1.4454 0.3883 1.4445 1.2019
No log 42.0 168 1.2265 0.3824 1.2252 1.1069
No log 43.0 172 1.3218 0.3864 1.3204 1.1491
No log 44.0 176 1.5018 0.3722 1.5005 1.2249
No log 45.0 180 1.2620 0.4116 1.2605 1.1227
No log 46.0 184 1.2455 0.4269 1.2440 1.1154
No log 47.0 188 1.0308 0.3738 1.0298 1.0148
No log 48.0 192 1.1424 0.4214 1.1413 1.0683
No log 49.0 196 1.1353 0.4321 1.1341 1.0649

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold2

Finetuned
(6032)
this model