Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7850
- Qwk: 0.5573
- Mse: 0.7841
- Rmse: 0.8855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 2 | 9.6639 | 0.0 | 9.6642 | 3.1087 |
| No log | 2.0 | 4 | 9.2189 | 0.0 | 9.2191 | 3.0363 |
| No log | 3.0 | 6 | 8.7959 | 0.0 | 8.7960 | 2.9658 |
| No log | 4.0 | 8 | 7.8942 | 0.0 | 7.8943 | 2.8097 |
| No log | 5.0 | 10 | 6.4601 | 0.0 | 6.4603 | 2.5417 |
| No log | 6.0 | 12 | 5.4637 | 0.0039 | 5.4639 | 2.3375 |
| No log | 7.0 | 14 | 4.5712 | 0.0039 | 4.5715 | 2.1381 |
| No log | 8.0 | 16 | 3.7098 | 0.0 | 3.7102 | 1.9262 |
| No log | 9.0 | 18 | 3.1928 | 0.0 | 3.1932 | 1.7870 |
| No log | 10.0 | 20 | 2.7805 | 0.0 | 2.7809 | 1.6676 |
| No log | 11.0 | 22 | 2.3901 | 0.1057 | 2.3905 | 1.5461 |
| No log | 12.0 | 24 | 1.9453 | 0.0307 | 1.9458 | 1.3949 |
| No log | 13.0 | 26 | 1.6168 | 0.0107 | 1.6172 | 1.2717 |
| No log | 14.0 | 28 | 1.3765 | 0.0107 | 1.3770 | 1.1734 |
| No log | 15.0 | 30 | 1.1833 | 0.0 | 1.1838 | 1.0880 |
| No log | 16.0 | 32 | 1.0428 | 0.0 | 1.0432 | 1.0214 |
| No log | 17.0 | 34 | 0.9135 | 0.0 | 0.9139 | 0.9560 |
| No log | 18.0 | 36 | 0.8094 | 0.3650 | 0.8099 | 0.8999 |
| No log | 19.0 | 38 | 0.7714 | 0.1346 | 0.7719 | 0.8786 |
| No log | 20.0 | 40 | 0.6884 | 0.2229 | 0.6887 | 0.8299 |
| No log | 21.0 | 42 | 0.6741 | 0.2304 | 0.6743 | 0.8212 |
| No log | 22.0 | 44 | 0.6671 | 0.2697 | 0.6671 | 0.8168 |
| No log | 23.0 | 46 | 0.5217 | 0.4716 | 0.5213 | 0.7220 |
| No log | 24.0 | 48 | 0.5407 | 0.5894 | 0.5399 | 0.7348 |
| No log | 25.0 | 50 | 0.6517 | 0.5672 | 0.6510 | 0.8068 |
| No log | 26.0 | 52 | 0.6508 | 0.5777 | 0.6497 | 0.8061 |
| No log | 27.0 | 54 | 0.6425 | 0.5737 | 0.6414 | 0.8009 |
| No log | 28.0 | 56 | 0.7087 | 0.5872 | 0.7075 | 0.8411 |
| No log | 29.0 | 58 | 0.7163 | 0.5788 | 0.7154 | 0.8458 |
| No log | 30.0 | 60 | 0.7649 | 0.5789 | 0.7642 | 0.8742 |
| No log | 31.0 | 62 | 0.7301 | 0.5789 | 0.7292 | 0.8539 |
| No log | 32.0 | 64 | 0.7889 | 0.5140 | 0.7887 | 0.8881 |
| No log | 33.0 | 66 | 0.6603 | 0.5825 | 0.6597 | 0.8122 |
| No log | 34.0 | 68 | 1.4520 | 0.4381 | 1.4503 | 1.2043 |
| No log | 35.0 | 70 | 0.7404 | 0.5733 | 0.7394 | 0.8599 |
| No log | 36.0 | 72 | 1.0376 | 0.4026 | 1.0375 | 1.0186 |
| No log | 37.0 | 74 | 0.7596 | 0.5483 | 0.7593 | 0.8714 |
| No log | 38.0 | 76 | 0.8582 | 0.5610 | 0.8570 | 0.9258 |
| No log | 39.0 | 78 | 0.6823 | 0.5886 | 0.6815 | 0.8255 |
| No log | 40.0 | 80 | 0.7736 | 0.5291 | 0.7733 | 0.8794 |
| No log | 41.0 | 82 | 0.6738 | 0.6057 | 0.6731 | 0.8205 |
| No log | 42.0 | 84 | 1.0201 | 0.5433 | 1.0188 | 1.0094 |
| No log | 43.0 | 86 | 0.7886 | 0.5523 | 0.7875 | 0.8874 |
| No log | 44.0 | 88 | 0.6911 | 0.5729 | 0.6905 | 0.8310 |
| No log | 45.0 | 90 | 0.6929 | 0.5631 | 0.6921 | 0.8319 |
| No log | 46.0 | 92 | 0.9959 | 0.5271 | 0.9946 | 0.9973 |
| No log | 47.0 | 94 | 0.7890 | 0.5396 | 0.7879 | 0.8877 |
| No log | 48.0 | 96 | 0.6734 | 0.5759 | 0.6727 | 0.8202 |
| No log | 49.0 | 98 | 0.6742 | 0.5670 | 0.6734 | 0.8206 |
| No log | 50.0 | 100 | 0.8987 | 0.5330 | 0.8976 | 0.9474 |
| No log | 51.0 | 102 | 0.7565 | 0.5578 | 0.7556 | 0.8692 |
| No log | 52.0 | 104 | 0.6999 | 0.5605 | 0.6993 | 0.8362 |
| No log | 53.0 | 106 | 0.7378 | 0.5493 | 0.7370 | 0.8585 |
| No log | 54.0 | 108 | 1.1040 | 0.5075 | 1.1026 | 1.0500 |
| No log | 55.0 | 110 | 1.3060 | 0.4702 | 1.3044 | 1.1421 |
| No log | 56.0 | 112 | 0.9653 | 0.5212 | 0.9641 | 0.9819 |
| No log | 57.0 | 114 | 0.7870 | 0.5465 | 0.7864 | 0.8868 |
| No log | 58.0 | 116 | 0.7084 | 0.5699 | 0.7077 | 0.8412 |
| No log | 59.0 | 118 | 0.8627 | 0.5297 | 0.8618 | 0.9283 |
| No log | 60.0 | 120 | 0.9243 | 0.5156 | 0.9234 | 0.9609 |
| No log | 61.0 | 122 | 0.7850 | 0.5573 | 0.7841 | 0.8855 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold2
Base model
google-bert/bert-base-uncased