Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7850
  • Qwk: 0.5573
  • Mse: 0.7841
  • Rmse: 0.8855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.6639 0.0 9.6642 3.1087
No log 2.0 4 9.2189 0.0 9.2191 3.0363
No log 3.0 6 8.7959 0.0 8.7960 2.9658
No log 4.0 8 7.8942 0.0 7.8943 2.8097
No log 5.0 10 6.4601 0.0 6.4603 2.5417
No log 6.0 12 5.4637 0.0039 5.4639 2.3375
No log 7.0 14 4.5712 0.0039 4.5715 2.1381
No log 8.0 16 3.7098 0.0 3.7102 1.9262
No log 9.0 18 3.1928 0.0 3.1932 1.7870
No log 10.0 20 2.7805 0.0 2.7809 1.6676
No log 11.0 22 2.3901 0.1057 2.3905 1.5461
No log 12.0 24 1.9453 0.0307 1.9458 1.3949
No log 13.0 26 1.6168 0.0107 1.6172 1.2717
No log 14.0 28 1.3765 0.0107 1.3770 1.1734
No log 15.0 30 1.1833 0.0 1.1838 1.0880
No log 16.0 32 1.0428 0.0 1.0432 1.0214
No log 17.0 34 0.9135 0.0 0.9139 0.9560
No log 18.0 36 0.8094 0.3650 0.8099 0.8999
No log 19.0 38 0.7714 0.1346 0.7719 0.8786
No log 20.0 40 0.6884 0.2229 0.6887 0.8299
No log 21.0 42 0.6741 0.2304 0.6743 0.8212
No log 22.0 44 0.6671 0.2697 0.6671 0.8168
No log 23.0 46 0.5217 0.4716 0.5213 0.7220
No log 24.0 48 0.5407 0.5894 0.5399 0.7348
No log 25.0 50 0.6517 0.5672 0.6510 0.8068
No log 26.0 52 0.6508 0.5777 0.6497 0.8061
No log 27.0 54 0.6425 0.5737 0.6414 0.8009
No log 28.0 56 0.7087 0.5872 0.7075 0.8411
No log 29.0 58 0.7163 0.5788 0.7154 0.8458
No log 30.0 60 0.7649 0.5789 0.7642 0.8742
No log 31.0 62 0.7301 0.5789 0.7292 0.8539
No log 32.0 64 0.7889 0.5140 0.7887 0.8881
No log 33.0 66 0.6603 0.5825 0.6597 0.8122
No log 34.0 68 1.4520 0.4381 1.4503 1.2043
No log 35.0 70 0.7404 0.5733 0.7394 0.8599
No log 36.0 72 1.0376 0.4026 1.0375 1.0186
No log 37.0 74 0.7596 0.5483 0.7593 0.8714
No log 38.0 76 0.8582 0.5610 0.8570 0.9258
No log 39.0 78 0.6823 0.5886 0.6815 0.8255
No log 40.0 80 0.7736 0.5291 0.7733 0.8794
No log 41.0 82 0.6738 0.6057 0.6731 0.8205
No log 42.0 84 1.0201 0.5433 1.0188 1.0094
No log 43.0 86 0.7886 0.5523 0.7875 0.8874
No log 44.0 88 0.6911 0.5729 0.6905 0.8310
No log 45.0 90 0.6929 0.5631 0.6921 0.8319
No log 46.0 92 0.9959 0.5271 0.9946 0.9973
No log 47.0 94 0.7890 0.5396 0.7879 0.8877
No log 48.0 96 0.6734 0.5759 0.6727 0.8202
No log 49.0 98 0.6742 0.5670 0.6734 0.8206
No log 50.0 100 0.8987 0.5330 0.8976 0.9474
No log 51.0 102 0.7565 0.5578 0.7556 0.8692
No log 52.0 104 0.6999 0.5605 0.6993 0.8362
No log 53.0 106 0.7378 0.5493 0.7370 0.8585
No log 54.0 108 1.1040 0.5075 1.1026 1.0500
No log 55.0 110 1.3060 0.4702 1.3044 1.1421
No log 56.0 112 0.9653 0.5212 0.9641 0.9819
No log 57.0 114 0.7870 0.5465 0.7864 0.8868
No log 58.0 116 0.7084 0.5699 0.7077 0.8412
No log 59.0 118 0.8627 0.5297 0.8618 0.9283
No log 60.0 120 0.9243 0.5156 0.9234 0.9609
No log 61.0 122 0.7850 0.5573 0.7841 0.8855

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold2

Finetuned
(6040)
this model