|
|
from __future__ import absolute_import |
|
|
from __future__ import division |
|
|
from __future__ import print_function |
|
|
|
|
|
import os |
|
|
import sys |
|
|
import time |
|
|
from typing import List, Optional, Tuple |
|
|
|
|
|
import cv2 |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import torchvision.transforms as T |
|
|
import torchvision.transforms.functional as f |
|
|
from pydantic import BaseModel |
|
|
|
|
|
import logging |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class BoundingBox(BaseModel): |
|
|
x1: int |
|
|
y1: int |
|
|
x2: int |
|
|
y2: int |
|
|
cls_id: int |
|
|
conf: float |
|
|
|
|
|
|
|
|
class TVFrameResult(BaseModel): |
|
|
frame_id: int |
|
|
boxes: list[BoundingBox] |
|
|
keypoints: list[tuple[int, int]] |
|
|
|
|
|
BatchNorm2d = nn.BatchNorm2d |
|
|
BN_MOMENTUM = 0.1 |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
|
"""3x3 convolution with padding""" |
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, |
|
|
stride=stride, padding=1, bias=False) |
|
|
|
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
expansion = 1 |
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
super(BasicBlock, self).__init__() |
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
|
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.conv2 = conv3x3(planes, planes) |
|
|
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
self.downsample = downsample |
|
|
self.stride = stride |
|
|
|
|
|
def forward(self, x): |
|
|
residual = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.bn1(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.bn2(out) |
|
|
|
|
|
if self.downsample is not None: |
|
|
residual = self.downsample(x) |
|
|
|
|
|
out += residual |
|
|
out = self.relu(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
expansion = 4 |
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
super(Bottleneck, self).__init__() |
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
|
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
|
padding=1, bias=False) |
|
|
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, |
|
|
bias=False) |
|
|
self.bn3 = BatchNorm2d(planes * self.expansion, |
|
|
momentum=BN_MOMENTUM) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.downsample = downsample |
|
|
self.stride = stride |
|
|
|
|
|
def forward(self, x): |
|
|
residual = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.bn1(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.bn2(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv3(out) |
|
|
out = self.bn3(out) |
|
|
|
|
|
if self.downsample is not None: |
|
|
residual = self.downsample(x) |
|
|
|
|
|
out += residual |
|
|
out = self.relu(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
|
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, |
|
|
num_channels, fuse_method, multi_scale_output=True): |
|
|
super(HighResolutionModule, self).__init__() |
|
|
self._check_branches( |
|
|
num_branches, blocks, num_blocks, num_inchannels, num_channels) |
|
|
|
|
|
self.num_inchannels = num_inchannels |
|
|
self.fuse_method = fuse_method |
|
|
self.num_branches = num_branches |
|
|
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
|
|
self.branches = self._make_branches( |
|
|
num_branches, blocks, num_blocks, num_channels) |
|
|
self.fuse_layers = self._make_fuse_layers() |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
def _check_branches(self, num_branches, blocks, num_blocks, |
|
|
num_inchannels, num_channels): |
|
|
if num_branches != len(num_blocks): |
|
|
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( |
|
|
num_branches, len(num_blocks)) |
|
|
logger.error(error_msg) |
|
|
raise ValueError(error_msg) |
|
|
|
|
|
if num_branches != len(num_channels): |
|
|
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( |
|
|
num_branches, len(num_channels)) |
|
|
logger.error(error_msg) |
|
|
raise ValueError(error_msg) |
|
|
|
|
|
if num_branches != len(num_inchannels): |
|
|
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( |
|
|
num_branches, len(num_inchannels)) |
|
|
logger.error(error_msg) |
|
|
raise ValueError(error_msg) |
|
|
|
|
|
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, |
|
|
stride=1): |
|
|
downsample = None |
|
|
if stride != 1 or \ |
|
|
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: |
|
|
downsample = nn.Sequential( |
|
|
nn.Conv2d(self.num_inchannels[branch_index], |
|
|
num_channels[branch_index] * block.expansion, |
|
|
kernel_size=1, stride=stride, bias=False), |
|
|
BatchNorm2d(num_channels[branch_index] * block.expansion, |
|
|
momentum=BN_MOMENTUM), |
|
|
) |
|
|
|
|
|
layers = [] |
|
|
layers.append(block(self.num_inchannels[branch_index], |
|
|
num_channels[branch_index], stride, downsample)) |
|
|
self.num_inchannels[branch_index] = \ |
|
|
num_channels[branch_index] * block.expansion |
|
|
for i in range(1, num_blocks[branch_index]): |
|
|
layers.append(block(self.num_inchannels[branch_index], |
|
|
num_channels[branch_index])) |
|
|
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
|
branches = [] |
|
|
|
|
|
for i in range(num_branches): |
|
|
branches.append( |
|
|
self._make_one_branch(i, block, num_blocks, num_channels)) |
|
|
|
|
|
return nn.ModuleList(branches) |
|
|
|
|
|
def _make_fuse_layers(self): |
|
|
if self.num_branches == 1: |
|
|
return None |
|
|
|
|
|
num_branches = self.num_branches |
|
|
num_inchannels = self.num_inchannels |
|
|
fuse_layers = [] |
|
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
|
fuse_layer = [] |
|
|
for j in range(num_branches): |
|
|
if j > i: |
|
|
fuse_layer.append(nn.Sequential( |
|
|
nn.Conv2d(num_inchannels[j], |
|
|
num_inchannels[i], |
|
|
1, |
|
|
1, |
|
|
0, |
|
|
bias=False), |
|
|
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM))) |
|
|
|
|
|
elif j == i: |
|
|
fuse_layer.append(None) |
|
|
else: |
|
|
conv3x3s = [] |
|
|
for k in range(i - j): |
|
|
if k == i - j - 1: |
|
|
num_outchannels_conv3x3 = num_inchannels[i] |
|
|
conv3x3s.append(nn.Sequential( |
|
|
nn.Conv2d(num_inchannels[j], |
|
|
num_outchannels_conv3x3, |
|
|
3, 2, 1, bias=False), |
|
|
BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM))) |
|
|
else: |
|
|
num_outchannels_conv3x3 = num_inchannels[j] |
|
|
conv3x3s.append(nn.Sequential( |
|
|
nn.Conv2d(num_inchannels[j], |
|
|
num_outchannels_conv3x3, |
|
|
3, 2, 1, bias=False), |
|
|
BatchNorm2d(num_outchannels_conv3x3, |
|
|
momentum=BN_MOMENTUM), |
|
|
nn.ReLU(inplace=True))) |
|
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
|
|
def get_num_inchannels(self): |
|
|
return self.num_inchannels |
|
|
|
|
|
def forward(self, x): |
|
|
if self.num_branches == 1: |
|
|
return [self.branches[0](x[0])] |
|
|
|
|
|
for i in range(self.num_branches): |
|
|
x[i] = self.branches[i](x[i]) |
|
|
|
|
|
x_fuse = [] |
|
|
for i in range(len(self.fuse_layers)): |
|
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) |
|
|
for j in range(1, self.num_branches): |
|
|
if i == j: |
|
|
y = y + x[j] |
|
|
elif j > i: |
|
|
y = y + F.interpolate( |
|
|
self.fuse_layers[i][j](x[j]), |
|
|
size=[x[i].shape[2], x[i].shape[3]], |
|
|
mode='bilinear') |
|
|
else: |
|
|
y = y + self.fuse_layers[i][j](x[j]) |
|
|
x_fuse.append(self.relu(y)) |
|
|
|
|
|
return x_fuse |
|
|
|
|
|
|
|
|
blocks_dict = { |
|
|
'BASIC': BasicBlock, |
|
|
'BOTTLENECK': Bottleneck |
|
|
} |
|
|
|
|
|
|
|
|
class HighResolutionNet(nn.Module): |
|
|
|
|
|
def __init__(self, config, **kwargs): |
|
|
self.inplanes = 64 |
|
|
extra = config['MODEL']['EXTRA'] |
|
|
super(HighResolutionNet, self).__init__() |
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=2, padding=1, |
|
|
bias=False) |
|
|
self.bn1 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM) |
|
|
self.conv2 = nn.Conv2d(self.inplanes, self.inplanes, kernel_size=3, stride=2, padding=1, |
|
|
bias=False) |
|
|
self.bn2 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.sf = nn.Softmax(dim=1) |
|
|
self.layer1 = self._make_layer(Bottleneck, 64, 64, 4) |
|
|
|
|
|
self.stage2_cfg = extra['STAGE2'] |
|
|
num_channels = self.stage2_cfg['NUM_CHANNELS'] |
|
|
block = blocks_dict[self.stage2_cfg['BLOCK']] |
|
|
num_channels = [ |
|
|
num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
|
self.transition1 = self._make_transition_layer( |
|
|
[256], num_channels) |
|
|
self.stage2, pre_stage_channels = self._make_stage( |
|
|
self.stage2_cfg, num_channels) |
|
|
|
|
|
self.stage3_cfg = extra['STAGE3'] |
|
|
num_channels = self.stage3_cfg['NUM_CHANNELS'] |
|
|
block = blocks_dict[self.stage3_cfg['BLOCK']] |
|
|
num_channels = [ |
|
|
num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
|
self.transition2 = self._make_transition_layer( |
|
|
pre_stage_channels, num_channels) |
|
|
self.stage3, pre_stage_channels = self._make_stage( |
|
|
self.stage3_cfg, num_channels) |
|
|
|
|
|
self.stage4_cfg = extra['STAGE4'] |
|
|
num_channels = self.stage4_cfg['NUM_CHANNELS'] |
|
|
block = blocks_dict[self.stage4_cfg['BLOCK']] |
|
|
num_channels = [ |
|
|
num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
|
self.transition3 = self._make_transition_layer( |
|
|
pre_stage_channels, num_channels) |
|
|
self.stage4, pre_stage_channels = self._make_stage( |
|
|
self.stage4_cfg, num_channels, multi_scale_output=True) |
|
|
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
|
final_inp_channels = sum(pre_stage_channels) + self.inplanes |
|
|
|
|
|
self.head = nn.Sequential(nn.Sequential( |
|
|
nn.Conv2d( |
|
|
in_channels=final_inp_channels, |
|
|
out_channels=final_inp_channels, |
|
|
kernel_size=1), |
|
|
BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.Conv2d( |
|
|
in_channels=final_inp_channels, |
|
|
out_channels=config['MODEL']['NUM_JOINTS'], |
|
|
kernel_size=extra['FINAL_CONV_KERNEL']), |
|
|
nn.Softmax(dim=1))) |
|
|
|
|
|
|
|
|
|
|
|
def _make_head(self, x, x_skip): |
|
|
x = self.upsample(x) |
|
|
x = torch.cat([x, x_skip], dim=1) |
|
|
x = self.head(x) |
|
|
|
|
|
return x |
|
|
|
|
|
def _make_transition_layer( |
|
|
self, num_channels_pre_layer, num_channels_cur_layer): |
|
|
num_branches_cur = len(num_channels_cur_layer) |
|
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
|
|
transition_layers = [] |
|
|
for i in range(num_branches_cur): |
|
|
if i < num_branches_pre: |
|
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
|
transition_layers.append(nn.Sequential( |
|
|
nn.Conv2d(num_channels_pre_layer[i], |
|
|
num_channels_cur_layer[i], |
|
|
3, |
|
|
1, |
|
|
1, |
|
|
bias=False), |
|
|
BatchNorm2d( |
|
|
num_channels_cur_layer[i], momentum=BN_MOMENTUM), |
|
|
nn.ReLU(inplace=True))) |
|
|
else: |
|
|
transition_layers.append(None) |
|
|
else: |
|
|
conv3x3s = [] |
|
|
for j in range(i + 1 - num_branches_pre): |
|
|
inchannels = num_channels_pre_layer[-1] |
|
|
outchannels = num_channels_cur_layer[i] \ |
|
|
if j == i - num_branches_pre else inchannels |
|
|
conv3x3s.append(nn.Sequential( |
|
|
nn.Conv2d( |
|
|
inchannels, outchannels, 3, 2, 1, bias=False), |
|
|
BatchNorm2d(outchannels, momentum=BN_MOMENTUM), |
|
|
nn.ReLU(inplace=True))) |
|
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
|
|
def _make_layer(self, block, inplanes, planes, blocks, stride=1): |
|
|
downsample = None |
|
|
if stride != 1 or inplanes != planes * block.expansion: |
|
|
downsample = nn.Sequential( |
|
|
nn.Conv2d(inplanes, planes * block.expansion, |
|
|
kernel_size=1, stride=stride, bias=False), |
|
|
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), |
|
|
) |
|
|
|
|
|
layers = [] |
|
|
layers.append(block(inplanes, planes, stride, downsample)) |
|
|
inplanes = planes * block.expansion |
|
|
for i in range(1, blocks): |
|
|
layers.append(block(inplanes, planes)) |
|
|
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def _make_stage(self, layer_config, num_inchannels, |
|
|
multi_scale_output=True): |
|
|
num_modules = layer_config['NUM_MODULES'] |
|
|
num_branches = layer_config['NUM_BRANCHES'] |
|
|
num_blocks = layer_config['NUM_BLOCKS'] |
|
|
num_channels = layer_config['NUM_CHANNELS'] |
|
|
block = blocks_dict[layer_config['BLOCK']] |
|
|
fuse_method = layer_config['FUSE_METHOD'] |
|
|
|
|
|
modules = [] |
|
|
for i in range(num_modules): |
|
|
|
|
|
if not multi_scale_output and i == num_modules - 1: |
|
|
reset_multi_scale_output = False |
|
|
else: |
|
|
reset_multi_scale_output = True |
|
|
modules.append( |
|
|
HighResolutionModule(num_branches, |
|
|
block, |
|
|
num_blocks, |
|
|
num_inchannels, |
|
|
num_channels, |
|
|
fuse_method, |
|
|
reset_multi_scale_output) |
|
|
) |
|
|
num_inchannels = modules[-1].get_num_inchannels() |
|
|
|
|
|
return nn.Sequential(*modules), num_inchannels |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
x = self.conv1(x) |
|
|
x_skip = x.clone() |
|
|
x = self.bn1(x) |
|
|
x = self.relu(x) |
|
|
x = self.conv2(x) |
|
|
x = self.bn2(x) |
|
|
x = self.relu(x) |
|
|
x = self.layer1(x) |
|
|
|
|
|
x_list = [] |
|
|
for i in range(self.stage2_cfg['NUM_BRANCHES']): |
|
|
if self.transition1[i] is not None: |
|
|
x_list.append(self.transition1[i](x)) |
|
|
else: |
|
|
x_list.append(x) |
|
|
y_list = self.stage2(x_list) |
|
|
|
|
|
x_list = [] |
|
|
for i in range(self.stage3_cfg['NUM_BRANCHES']): |
|
|
if self.transition2[i] is not None: |
|
|
x_list.append(self.transition2[i](y_list[-1])) |
|
|
else: |
|
|
x_list.append(y_list[i]) |
|
|
y_list = self.stage3(x_list) |
|
|
|
|
|
x_list = [] |
|
|
for i in range(self.stage4_cfg['NUM_BRANCHES']): |
|
|
if self.transition3[i] is not None: |
|
|
x_list.append(self.transition3[i](y_list[-1])) |
|
|
else: |
|
|
x_list.append(y_list[i]) |
|
|
x = self.stage4(x_list) |
|
|
|
|
|
|
|
|
height, width = x[0].size(2), x[0].size(3) |
|
|
x1 = F.interpolate(x[1], size=(height, width), mode='bilinear', align_corners=False) |
|
|
x2 = F.interpolate(x[2], size=(height, width), mode='bilinear', align_corners=False) |
|
|
x3 = F.interpolate(x[3], size=(height, width), mode='bilinear', align_corners=False) |
|
|
x = torch.cat([x[0], x1, x2, x3], 1) |
|
|
x = self._make_head(x, x_skip) |
|
|
|
|
|
return x |
|
|
|
|
|
def init_weights(self, pretrained=''): |
|
|
for m in self.modules(): |
|
|
if isinstance(m, nn.Conv2d): |
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
|
|
|
|
|
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
|
nn.init.constant_(m.weight, 1) |
|
|
nn.init.constant_(m.bias, 0) |
|
|
if pretrained != '': |
|
|
if os.path.isfile(pretrained): |
|
|
pretrained_dict = torch.load(pretrained) |
|
|
model_dict = self.state_dict() |
|
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() |
|
|
if k in model_dict.keys()} |
|
|
model_dict.update(pretrained_dict) |
|
|
self.load_state_dict(model_dict) |
|
|
else: |
|
|
sys.exit(f'Weights {pretrained} not found.') |
|
|
|
|
|
|
|
|
def get_cls_net(config, pretrained='', **kwargs): |
|
|
"""Create keypoint detection model with softmax activation""" |
|
|
model = HighResolutionNet(config, **kwargs) |
|
|
model.init_weights(pretrained) |
|
|
return model |
|
|
|
|
|
|
|
|
def get_cls_net_l(config, pretrained='', **kwargs): |
|
|
"""Create line detection model with sigmoid activation""" |
|
|
model = HighResolutionNet(config, **kwargs) |
|
|
model.init_weights(pretrained) |
|
|
|
|
|
|
|
|
|
|
|
inner_seq = model.head[0] |
|
|
|
|
|
model.head[0][4] = nn.Sigmoid() |
|
|
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
|
def run_inference(model, input_tensor: torch.Tensor, device): |
|
|
input_tensor = input_tensor.to(device).to(memory_format=torch.channels_last) |
|
|
output = model.module().forward(input_tensor) |
|
|
return output |
|
|
|
|
|
def preprocess_batch_fast(frames): |
|
|
"""Ultra-fast batch preprocessing using optimized tensor operations""" |
|
|
target_size = (540, 960) |
|
|
batch = [] |
|
|
for i, frame in enumerate(frames): |
|
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
img = cv2.resize(frame_rgb, (target_size[1], target_size[0])) |
|
|
img = img.astype(np.float32) / 255.0 |
|
|
img = np.transpose(img, (2, 0, 1)) |
|
|
batch.append(img) |
|
|
batch = torch.from_numpy(np.stack(batch)).float() |
|
|
|
|
|
return batch |
|
|
|
|
|
def extract_keypoints_from_heatmap(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1): |
|
|
"""Optimized keypoint extraction from heatmaps""" |
|
|
batch_size, n_channels, height, width = heatmap.shape |
|
|
|
|
|
|
|
|
kernel = 3 |
|
|
pad = 1 |
|
|
max_pooled = F.max_pool2d(heatmap, kernel, stride=1, padding=pad) |
|
|
local_maxima = (max_pooled == heatmap) |
|
|
heatmap = heatmap * local_maxima |
|
|
|
|
|
|
|
|
scores, indices = torch.topk(heatmap.view(batch_size, n_channels, -1), max_keypoints, sorted=False) |
|
|
y_coords = torch.div(indices, width, rounding_mode="floor") |
|
|
x_coords = indices % width |
|
|
|
|
|
|
|
|
x_coords = x_coords * scale |
|
|
y_coords = y_coords * scale |
|
|
|
|
|
|
|
|
results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1) |
|
|
|
|
|
return results |
|
|
|
|
|
|
|
|
def extract_keypoints_from_heatmap_fast(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1): |
|
|
"""Ultra-fast keypoint extraction optimized for speed""" |
|
|
batch_size, n_channels, height, width = heatmap.shape |
|
|
|
|
|
|
|
|
max_pooled = F.max_pool2d(heatmap, 3, stride=1, padding=1) |
|
|
local_maxima = (max_pooled == heatmap) |
|
|
|
|
|
|
|
|
masked_heatmap = heatmap * local_maxima |
|
|
flat_heatmap = masked_heatmap.view(batch_size, n_channels, -1) |
|
|
scores, indices = torch.topk(flat_heatmap, max_keypoints, dim=-1, sorted=False) |
|
|
|
|
|
|
|
|
y_coords = torch.div(indices, width, rounding_mode="floor") * scale |
|
|
x_coords = (indices % width) * scale |
|
|
|
|
|
|
|
|
results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1) |
|
|
return results |
|
|
|
|
|
|
|
|
def process_keypoints_vectorized(kp_coords, kp_threshold, w, h, batch_size): |
|
|
"""Ultra-fast vectorized keypoint processing""" |
|
|
batch_results = [] |
|
|
|
|
|
|
|
|
kp_np = kp_coords.cpu().numpy() |
|
|
|
|
|
for batch_idx in range(batch_size): |
|
|
kp_dict = {} |
|
|
|
|
|
valid_kps = kp_np[batch_idx, :, 0, 2] > kp_threshold |
|
|
valid_indices = np.where(valid_kps)[0] |
|
|
|
|
|
for ch_idx in valid_indices: |
|
|
x = float(kp_np[batch_idx, ch_idx, 0, 0]) / w |
|
|
y = float(kp_np[batch_idx, ch_idx, 0, 1]) / h |
|
|
p = float(kp_np[batch_idx, ch_idx, 0, 2]) |
|
|
kp_dict[ch_idx + 1] = {'x': x, 'y': y, 'p': p} |
|
|
|
|
|
batch_results.append(kp_dict) |
|
|
|
|
|
return batch_results |
|
|
|
|
|
def inference_batch(frames, model, kp_threshold, device, batch_size=8): |
|
|
"""Optimized batch inference for multiple frames""" |
|
|
results = [] |
|
|
num_frames = len(frames) |
|
|
|
|
|
|
|
|
model_device = next(model.parameters()).device |
|
|
|
|
|
|
|
|
for i in range(0, num_frames, batch_size): |
|
|
current_batch_size = min(batch_size, num_frames - i) |
|
|
batch_frames = frames[i:i + current_batch_size] |
|
|
|
|
|
|
|
|
batch = preprocess_batch_fast(batch_frames) |
|
|
b, c, h, w = batch.size() |
|
|
|
|
|
|
|
|
batch = batch.to(model_device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
heatmaps = model(batch) |
|
|
|
|
|
|
|
|
kp_coords = extract_keypoints_from_heatmap_fast(heatmaps[:,:-1,:,:], scale=2, max_keypoints=1) |
|
|
|
|
|
|
|
|
batch_results = process_keypoints_vectorized(kp_coords, kp_threshold, 960, 540, current_batch_size) |
|
|
results.extend(batch_results) |
|
|
|
|
|
|
|
|
del heatmaps, kp_coords, batch |
|
|
|
|
|
return results |
|
|
|
|
|
|
|
|
map_keypoints = { |
|
|
1: 1, 2: 14, 3: 25, 4: 2, 5: 10, 6: 18, 7: 26, 8: 3, 9: 7, 10: 23, |
|
|
11: 27, 20: 4, 21: 8, 22: 24, 23: 28, 24: 5, 25: 13, 26: 21, 27: 29, |
|
|
28: 6, 29: 17, 30: 30, 31: 11, 32: 15, 33: 19, 34: 12, 35: 16, 36: 20, |
|
|
45: 9, 50: 31, 52: 32, 57: 22 |
|
|
} |
|
|
|
|
|
def get_mapped_keypoints(kp_points): |
|
|
"""Apply keypoint mapping to detection results""" |
|
|
mapped_points = {} |
|
|
for key, value in kp_points.items(): |
|
|
if key in map_keypoints: |
|
|
mapped_key = map_keypoints[key] |
|
|
mapped_points[mapped_key] = value |
|
|
|
|
|
|
|
|
|
|
|
return mapped_points |
|
|
|
|
|
def process_batch_input(frames, model, kp_threshold, device, batch_size=8): |
|
|
"""Process multiple input images in batch""" |
|
|
|
|
|
kp_results = inference_batch(frames, model, kp_threshold, device, batch_size) |
|
|
kp_results = [get_mapped_keypoints(kp) for kp in kp_results] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return kp_results |