ScoreVision / pitch.py
gloriforge's picture
Upload folder using huggingface_hub
0ed75c0 verified
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import time
from typing import List, Optional, Tuple
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as f
from pydantic import BaseModel
import logging
logger = logging.getLogger(__name__)
class BoundingBox(BaseModel):
x1: int
y1: int
x2: int
y2: int
cls_id: int
conf: float
class TVFrameResult(BaseModel):
frame_id: int
boxes: list[BoundingBox]
keypoints: list[tuple[int, int]]
BatchNorm2d = nn.BatchNorm2d
BN_MOMENTUM = 0.1
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = BatchNorm2d(planes * self.expansion,
momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class HighResolutionModule(nn.Module):
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
num_channels, fuse_method, multi_scale_output=True):
super(HighResolutionModule, self).__init__()
self._check_branches(
num_branches, blocks, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.multi_scale_output = multi_scale_output
self.branches = self._make_branches(
num_branches, blocks, num_blocks, num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=True)
def _check_branches(self, num_branches, blocks, num_blocks,
num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels))
logger.error(error_msg)
raise ValueError(error_msg)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm2d(num_channels[branch_index] * block.expansion,
momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index], stride, downsample))
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index]))
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
num_inchannels = self.num_inchannels
fuse_layers = []
for i in range(num_branches if self.multi_scale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_inchannels[i],
1,
1,
0,
bias=False),
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))
# nn.Upsample(scale_factor=2**(j-i), mode='nearest')))
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i - j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM)))
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
BatchNorm2d(num_outchannels_conv3x3,
momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)))
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
return self.num_inchannels
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
for j in range(1, self.num_branches):
if i == j:
y = y + x[j]
elif j > i:
y = y + F.interpolate(
self.fuse_layers[i][j](x[j]),
size=[x[i].shape[2], x[i].shape[3]],
mode='bilinear')
else:
y = y + self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
blocks_dict = {
'BASIC': BasicBlock,
'BOTTLENECK': Bottleneck
}
class HighResolutionNet(nn.Module):
def __init__(self, config, **kwargs):
self.inplanes = 64
extra = config['MODEL']['EXTRA']
super(HighResolutionNet, self).__init__()
# stem net
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn1 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(self.inplanes, self.inplanes, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn2 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.sf = nn.Softmax(dim=1)
self.layer1 = self._make_layer(Bottleneck, 64, 64, 4)
self.stage2_cfg = extra['STAGE2']
num_channels = self.stage2_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage2_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition1 = self._make_transition_layer(
[256], num_channels)
self.stage2, pre_stage_channels = self._make_stage(
self.stage2_cfg, num_channels)
self.stage3_cfg = extra['STAGE3']
num_channels = self.stage3_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage3_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition2 = self._make_transition_layer(
pre_stage_channels, num_channels)
self.stage3, pre_stage_channels = self._make_stage(
self.stage3_cfg, num_channels)
self.stage4_cfg = extra['STAGE4']
num_channels = self.stage4_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage4_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition3 = self._make_transition_layer(
pre_stage_channels, num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg, num_channels, multi_scale_output=True)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
final_inp_channels = sum(pre_stage_channels) + self.inplanes
self.head = nn.Sequential(nn.Sequential(
nn.Conv2d(
in_channels=final_inp_channels,
out_channels=final_inp_channels,
kernel_size=1),
BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM),
nn.ReLU(inplace=True),
nn.Conv2d(
in_channels=final_inp_channels,
out_channels=config['MODEL']['NUM_JOINTS'],
kernel_size=extra['FINAL_CONV_KERNEL']),
nn.Softmax(dim=1)))
def _make_head(self, x, x_skip):
x = self.upsample(x)
x = torch.cat([x, x_skip], dim=1)
x = self.head(x)
return x
def _make_transition_layer(
self, num_channels_pre_layer, num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(nn.Sequential(
nn.Conv2d(num_channels_pre_layer[i],
num_channels_cur_layer[i],
3,
1,
1,
bias=False),
BatchNorm2d(
num_channels_cur_layer[i], momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)))
else:
transition_layers.append(None)
else:
conv3x3s = []
for j in range(i + 1 - num_branches_pre):
inchannels = num_channels_pre_layer[-1]
outchannels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else inchannels
conv3x3s.append(nn.Sequential(
nn.Conv2d(
inchannels, outchannels, 3, 2, 1, bias=False),
BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv3x3s))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
def _make_stage(self, layer_config, num_inchannels,
multi_scale_output=True):
num_modules = layer_config['NUM_MODULES']
num_branches = layer_config['NUM_BRANCHES']
num_blocks = layer_config['NUM_BLOCKS']
num_channels = layer_config['NUM_CHANNELS']
block = blocks_dict[layer_config['BLOCK']]
fuse_method = layer_config['FUSE_METHOD']
modules = []
for i in range(num_modules):
# multi_scale_output is only used last module
if not multi_scale_output and i == num_modules - 1:
reset_multi_scale_output = False
else:
reset_multi_scale_output = True
modules.append(
HighResolutionModule(num_branches,
block,
num_blocks,
num_inchannels,
num_channels,
fuse_method,
reset_multi_scale_output)
)
num_inchannels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), num_inchannels
def forward(self, x):
# h, w = x.size(2), x.size(3)
x = self.conv1(x)
x_skip = x.clone()
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['NUM_BRANCHES']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_cfg['NUM_BRANCHES']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['NUM_BRANCHES']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
x = self.stage4(x_list)
# Head Part
height, width = x[0].size(2), x[0].size(3)
x1 = F.interpolate(x[1], size=(height, width), mode='bilinear', align_corners=False)
x2 = F.interpolate(x[2], size=(height, width), mode='bilinear', align_corners=False)
x3 = F.interpolate(x[3], size=(height, width), mode='bilinear', align_corners=False)
x = torch.cat([x[0], x1, x2, x3], 1)
x = self._make_head(x, x_skip)
return x
def init_weights(self, pretrained=''):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
#nn.init.normal_(m.weight, std=0.001)
#nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if pretrained != '':
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained)
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
else:
sys.exit(f'Weights {pretrained} not found.')
def get_cls_net(config, pretrained='', **kwargs):
"""Create keypoint detection model with softmax activation"""
model = HighResolutionNet(config, **kwargs)
model.init_weights(pretrained)
return model
def get_cls_net_l(config, pretrained='', **kwargs):
"""Create line detection model with sigmoid activation"""
model = HighResolutionNet(config, **kwargs)
model.init_weights(pretrained)
# After loading weights, replace just the activation function
# The saved model expects the nested Sequential structure
inner_seq = model.head[0]
# Replace softmax (index 4) with sigmoid
model.head[0][4] = nn.Sigmoid()
return model
# Simplified utility functions - removed complex Gaussian generation functions
# These were mainly used for training data generation, not inference
# generate_gaussian_array_vectorized_dist_l function removed - not used in current implementation
@torch.inference_mode()
def run_inference(model, input_tensor: torch.Tensor, device):
input_tensor = input_tensor.to(device).to(memory_format=torch.channels_last)
output = model.module().forward(input_tensor)
return output
def preprocess_batch_fast(frames):
"""Ultra-fast batch preprocessing using optimized tensor operations"""
target_size = (540, 960) # H, W format for model input
batch = []
for i, frame in enumerate(frames):
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(frame_rgb, (target_size[1], target_size[0]))
img = img.astype(np.float32) / 255.0
img = np.transpose(img, (2, 0, 1)) # HWC -> CHW
batch.append(img)
batch = torch.from_numpy(np.stack(batch)).float()
return batch
def extract_keypoints_from_heatmap(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
"""Optimized keypoint extraction from heatmaps"""
batch_size, n_channels, height, width = heatmap.shape
# Find local maxima using max pooling (keep on GPU)
kernel = 3
pad = 1
max_pooled = F.max_pool2d(heatmap, kernel, stride=1, padding=pad)
local_maxima = (max_pooled == heatmap)
heatmap = heatmap * local_maxima
# Get top keypoints (keep on GPU longer)
scores, indices = torch.topk(heatmap.view(batch_size, n_channels, -1), max_keypoints, sorted=False)
y_coords = torch.div(indices, width, rounding_mode="floor")
x_coords = indices % width
# Optimized tensor operations
x_coords = x_coords * scale
y_coords = y_coords * scale
# Create result tensor directly on GPU
results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
return results
def extract_keypoints_from_heatmap_fast(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
"""Ultra-fast keypoint extraction optimized for speed"""
batch_size, n_channels, height, width = heatmap.shape
# Simplified local maxima detection (faster but slightly less accurate)
max_pooled = F.max_pool2d(heatmap, 3, stride=1, padding=1)
local_maxima = (max_pooled == heatmap)
# Apply mask and get top keypoints in one go
masked_heatmap = heatmap * local_maxima
flat_heatmap = masked_heatmap.view(batch_size, n_channels, -1)
scores, indices = torch.topk(flat_heatmap, max_keypoints, dim=-1, sorted=False)
# Vectorized coordinate calculation
y_coords = torch.div(indices, width, rounding_mode="floor") * scale
x_coords = (indices % width) * scale
# Stack results efficiently
results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
return results
def process_keypoints_vectorized(kp_coords, kp_threshold, w, h, batch_size):
"""Ultra-fast vectorized keypoint processing"""
batch_results = []
# Convert to numpy once for faster CPU operations
kp_np = kp_coords.cpu().numpy()
for batch_idx in range(batch_size):
kp_dict = {}
# Vectorized threshold check
valid_kps = kp_np[batch_idx, :, 0, 2] > kp_threshold
valid_indices = np.where(valid_kps)[0]
for ch_idx in valid_indices:
x = float(kp_np[batch_idx, ch_idx, 0, 0]) / w
y = float(kp_np[batch_idx, ch_idx, 0, 1]) / h
p = float(kp_np[batch_idx, ch_idx, 0, 2])
kp_dict[ch_idx + 1] = {'x': x, 'y': y, 'p': p}
batch_results.append(kp_dict)
return batch_results
def inference_batch(frames, model, kp_threshold, device, batch_size=8):
"""Optimized batch inference for multiple frames"""
results = []
num_frames = len(frames)
# Get the device from the model itself
model_device = next(model.parameters()).device
# Process all frames in optimally-sized batches
for i in range(0, num_frames, batch_size):
current_batch_size = min(batch_size, num_frames - i)
batch_frames = frames[i:i + current_batch_size]
# Fast preprocessing - create on CPU first
batch = preprocess_batch_fast(batch_frames)
b, c, h, w = batch.size()
# Move batch to model device
batch = batch.to(model_device)
with torch.no_grad():
heatmaps = model(batch)
# Ultra-fast keypoint extraction
kp_coords = extract_keypoints_from_heatmap_fast(heatmaps[:,:-1,:,:], scale=2, max_keypoints=1)
# Vectorized batch processing - no loops
batch_results = process_keypoints_vectorized(kp_coords, kp_threshold, 960, 540, current_batch_size)
results.extend(batch_results)
# Minimal cleanup
del heatmaps, kp_coords, batch
return results
# Keypoint mapping from detection indices to standard football pitch keypoint IDs
map_keypoints = {
1: 1, 2: 14, 3: 25, 4: 2, 5: 10, 6: 18, 7: 26, 8: 3, 9: 7, 10: 23,
11: 27, 20: 4, 21: 8, 22: 24, 23: 28, 24: 5, 25: 13, 26: 21, 27: 29,
28: 6, 29: 17, 30: 30, 31: 11, 32: 15, 33: 19, 34: 12, 35: 16, 36: 20,
45: 9, 50: 31, 52: 32, 57: 22
}
def get_mapped_keypoints(kp_points):
"""Apply keypoint mapping to detection results"""
mapped_points = {}
for key, value in kp_points.items():
if key in map_keypoints:
mapped_key = map_keypoints[key]
mapped_points[mapped_key] = value
# else:
# Keep unmapped keypoints with original key
# mapped_points[key] = value
return mapped_points
def process_batch_input(frames, model, kp_threshold, device, batch_size=8):
"""Process multiple input images in batch"""
# Batch inference
kp_results = inference_batch(frames, model, kp_threshold, device, batch_size)
kp_results = [get_mapped_keypoints(kp) for kp in kp_results]
# Draw results and save
# for i, (frame, kp_points, input_path) in enumerate(zip(frames, kp_results, valid_paths)):
# height, width = frame.shape[:2]
# # Apply mapping to get standard keypoint IDs
# mapped_kp_points = get_mapped_keypoints(kp_points)
# for key, value in mapped_kp_points.items():
# x = int(value['x'] * width)
# y = int(value['y'] * height)
# cv2.circle(frame, (x, y), 5, (0, 255, 0), -1) # Green circles
# cv2.putText(frame, str(key), (x+10, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# # Save result
# output_path = input_path.replace('.png', '_result.png').replace('.jpg', '_result.jpg')
# cv2.imwrite(output_path, frame)
# print(f"Batch processing complete. Processed {len(frames)} images.")
return kp_results