File size: 18,112 Bytes
bea6690 5b5bd64 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 fa11e31 bea6690 fa11e31 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 f429f04 bea6690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
from pathlib import Path
from typing import List, Tuple, Dict
import sys
import os
from numpy import ndarray
from pydantic import BaseModel
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ultralytics import YOLO
from team_cluster import TeamClassifier
from utils import (
BoundingBox,
Constants,
)
import time
import torch
import gc
from pitch import process_batch_input, get_cls_net
import yaml
class BoundingBox(BaseModel):
x1: int
y1: int
x2: int
y2: int
cls_id: int
conf: float
class TVFrameResult(BaseModel):
frame_id: int
boxes: List[BoundingBox]
keypoints: List[Tuple[int, int]]
class Miner:
SMALL_CONTAINED_IOA = Constants.SMALL_CONTAINED_IOA
SMALL_RATIO_MAX = Constants.SMALL_RATIO_MAX
SINGLE_PLAYER_HUE_PIVOT = Constants.SINGLE_PLAYER_HUE_PIVOT
CORNER_INDICES = Constants.CORNER_INDICES
KEYPOINTS_CONFIDENCE = Constants.KEYPOINTS_CONFIDENCE
CORNER_CONFIDENCE = Constants.CORNER_CONFIDENCE
GOALKEEPER_POSITION_MARGIN = Constants.GOALKEEPER_POSITION_MARGIN
MIN_SAMPLES_FOR_FIT = 16 # Minimum player crops needed before fitting TeamClassifier
MAX_SAMPLES_FOR_FIT = 600 # Maximum samples to avoid overfitting
def __init__(self, path_hf_repo: Path) -> None:
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = path_hf_repo / "football_object_detection.onnx"
self.bbox_model = YOLO(model_path)
print("BBox Model Loaded")
team_model_path = path_hf_repo / "osnet_model.pth.tar-100"
self.team_classifier = TeamClassifier(
device=device,
batch_size=32,
model_name=str(team_model_path)
)
print("Team Classifier Loaded")
# Team classification state
self.team_classifier_fitted = False
self.player_crops_for_fit = []
model_kp_path = path_hf_repo / 'keypoint'
config_kp_path = path_hf_repo / 'hrnetv2_w48.yaml'
cfg_kp = yaml.safe_load(open(config_kp_path, 'r'))
loaded_state_kp = torch.load(model_kp_path, map_location=device)
model = get_cls_net(cfg_kp)
model.load_state_dict(loaded_state_kp)
model.to(device)
model.eval()
self.keypoints_model = model
self.kp_threshold = 0.1
self.pitch_batch_size = 4
self.health = "healthy"
print("✅ Keypoints Model Loaded")
except Exception as e:
self.health = "❌ Miner initialization failed: " + str(e)
print(self.health)
def __repr__(self) -> str:
if self.health == 'healthy':
return (
f"health: {self.health}\n"
f"BBox Model: {type(self.bbox_model).__name__}\n"
f"Keypoints Model: {type(self.keypoints_model).__name__}"
)
else:
return self.health
def _calculate_iou(self, box1: Tuple[float, float, float, float],
box2: Tuple[float, float, float, float]) -> float:
"""
Calculate Intersection over Union (IoU) between two bounding boxes.
Args:
box1: (x1, y1, x2, y2)
box2: (x1, y1, x2, y2)
Returns:
IoU score (0-1)
"""
x1_1, y1_1, x2_1, y2_1 = box1
x1_2, y1_2, x2_2, y2_2 = box2
# Calculate intersection area
x_left = max(x1_1, x1_2)
y_top = max(y1_1, y1_2)
x_right = min(x2_1, x2_2)
y_bottom = min(y2_1, y2_2)
if x_right < x_left or y_bottom < y_top:
return 0.0
intersection_area = (x_right - x_left) * (y_bottom - y_top)
# Calculate union area
box1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
box2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
union_area = box1_area + box2_area - intersection_area
if union_area == 0:
return 0.0
return intersection_area / union_area
def _detect_objects_batch(self, decoded_images: List[ndarray]) -> Dict[int, List[BoundingBox]]:
batch_size = 16
detection_results = []
n_frames = len(decoded_images)
for frame_number in range(0, n_frames, batch_size):
batch_images = decoded_images[frame_number: frame_number + batch_size]
detections = self.bbox_model(batch_images, verbose=False, save=False)
detection_results.extend(detections)
return detection_results
def _team_classify(self, detection_results, decoded_images, offset):
self.team_classifier_fitted = False
start = time.time()
# Collect player crops from first batch for fitting
fit_sample_size = 600
player_crops_for_fit = []
for frame_id in range(len(detection_results)):
detection_box = detection_results[frame_id].boxes.data
if len(detection_box) < 4:
continue
# Collect player boxes for team classification fitting (first batch only)
if len(player_crops_for_fit) < fit_sample_size:
frame_image = decoded_images[frame_id]
for box in detection_box:
x1, y1, x2, y2, conf, cls_id = box.tolist()
if conf < 0.5:
continue
mapped_cls_id = str(int(cls_id))
# Only collect player crops (cls_id = 2)
if mapped_cls_id == '2':
crop = frame_image[int(y1):int(y2), int(x1):int(x2)]
if crop.size > 0:
player_crops_for_fit.append(crop)
# Fit team classifier after collecting samples
if self.team_classifier and not self.team_classifier_fitted and len(player_crops_for_fit) >= fit_sample_size:
print(f"Fitting TeamClassifier with {len(player_crops_for_fit)} player crops")
self.team_classifier.fit(player_crops_for_fit)
self.team_classifier_fitted = True
break
if not self.team_classifier_fitted and len(player_crops_for_fit) >= 16:
print(f"Fallback: Fitting TeamClassifier with {len(player_crops_for_fit)} player crops")
self.team_classifier.fit(player_crops_for_fit)
self.team_classifier_fitted = True
end = time.time()
print(f"Fitting Kmeans time: {end - start}")
# Second pass: predict teams with configurable frame skipping optimization
start = time.time()
# Get configuration for frame skipping
prediction_interval = 1 # Default: predict every 2 frames
iou_threshold = 0.3
print(f"Team classification - prediction_interval: {prediction_interval}, iou_threshold: {iou_threshold}")
# Storage for predicted frame results: {frame_id: {box_idx: (bbox, team_id)}}
predicted_frame_data = {}
# Step 1: Predict for frames at prediction_interval only
frames_to_predict = []
for frame_id in range(len(detection_results)):
if frame_id % prediction_interval == 0:
frames_to_predict.append(frame_id)
print(f"Predicting teams for {len(frames_to_predict)}/{len(detection_results)} frames "
f"(saving {100 - (len(frames_to_predict) * 100 // len(detection_results))}% compute)")
for frame_id in frames_to_predict:
detection_box = detection_results[frame_id].boxes.data
frame_image = decoded_images[frame_id]
# Collect player crops for this frame
frame_player_crops = []
frame_player_indices = []
frame_player_boxes = []
for idx, box in enumerate(detection_box):
x1, y1, x2, y2, conf, cls_id = box.tolist()
if cls_id == 2 and conf < 0.6:
continue
mapped_cls_id = str(int(cls_id))
# Collect player crops for prediction
if self.team_classifier and self.team_classifier_fitted and mapped_cls_id == '2':
crop = frame_image[int(y1):int(y2), int(x1):int(x2)]
if crop.size > 0:
frame_player_crops.append(crop)
frame_player_indices.append(idx)
frame_player_boxes.append((x1, y1, x2, y2))
# Predict teams for all players in this frame
if len(frame_player_crops) > 0:
team_ids = self.team_classifier.predict(frame_player_crops)
predicted_frame_data[frame_id] = {}
for idx, bbox, team_id in zip(frame_player_indices, frame_player_boxes, team_ids):
# Map team_id (0,1) to cls_id (6,7)
team_cls_id = str(6 + int(team_id))
predicted_frame_data[frame_id][idx] = (bbox, team_cls_id)
# Step 2: Process all frames (interpolate skipped frames)
fallback_count = 0
interpolated_count = 0
bboxes: dict[int, list[BoundingBox]] = {}
for frame_id in range(len(detection_results)):
detection_box = detection_results[frame_id].boxes.data
frame_image = decoded_images[frame_id]
boxes = []
team_predictions = {}
if frame_id % prediction_interval == 0:
# Predicted frame: use pre-computed predictions
if frame_id in predicted_frame_data:
for idx, (bbox, team_cls_id) in predicted_frame_data[frame_id].items():
team_predictions[idx] = team_cls_id
else:
# Skipped frame: interpolate from neighboring predicted frames
# Find nearest predicted frames
prev_predicted_frame = (frame_id // prediction_interval) * prediction_interval
next_predicted_frame = prev_predicted_frame + prediction_interval
# Collect current frame player boxes
for idx, box in enumerate(detection_box):
x1, y1, x2, y2, conf, cls_id = box.tolist()
if cls_id == 2 and conf < 0.6:
continue
mapped_cls_id = str(int(cls_id))
if self.team_classifier and self.team_classifier_fitted and mapped_cls_id == '2':
target_box = (x1, y1, x2, y2)
# Try to match with previous predicted frame
best_team_id = None
best_iou = 0.0
if prev_predicted_frame in predicted_frame_data:
team_id, iou = self._find_best_match(
target_box,
predicted_frame_data[prev_predicted_frame],
iou_threshold
)
if team_id is not None:
best_team_id = team_id
best_iou = iou
# Try to match with next predicted frame if available and no good match yet
if best_team_id is None and next_predicted_frame < len(detection_results):
if next_predicted_frame in predicted_frame_data:
team_id, iou = self._find_best_match(
target_box,
predicted_frame_data[next_predicted_frame],
iou_threshold
)
if team_id is not None and iou > best_iou:
best_team_id = team_id
best_iou = iou
# Track interpolation success
if best_team_id is not None:
interpolated_count += 1
else:
# Fallback: if no match found, predict individually
crop = frame_image[int(y1):int(y2), int(x1):int(x2)]
if crop.size > 0:
team_id = self.team_classifier.predict([crop])[0]
best_team_id = str(6 + int(team_id))
fallback_count += 1
if best_team_id is not None:
team_predictions[idx] = best_team_id
# Parse boxes with team classification
for idx, box in enumerate(detection_box):
x1, y1, x2, y2, conf, cls_id = box.tolist()
if cls_id == 2 and conf < 0.6:
continue
# Check overlap with staff box
overlap_staff = False
for idy, boxy in enumerate(detection_box):
s_x1, s_y1, s_x2, s_y2, s_conf, s_cls_id = boxy.tolist()
if cls_id == 2 and s_cls_id == 4:
staff_iou = self._calculate_iou(box[:4], boxy[:4])
if staff_iou >= 0.8:
overlap_staff = True
break
if overlap_staff:
continue
mapped_cls_id = str(int(cls_id))
# Override cls_id for players with team prediction
if idx in team_predictions:
mapped_cls_id = team_predictions[idx]
if mapped_cls_id != '4':
if int(mapped_cls_id) == 3 and conf < 0.5:
continue
boxes.append(
BoundingBox(
x1=int(x1),
y1=int(y1),
x2=int(x2),
y2=int(y2),
cls_id=int(mapped_cls_id),
conf=float(conf),
)
)
# Handle footballs - keep only the best one
footballs = [bb for bb in boxes if int(bb.cls_id) == 0]
if len(footballs) > 1:
best_ball = max(footballs, key=lambda b: b.conf)
boxes = [bb for bb in boxes if int(bb.cls_id) != 0]
boxes.append(best_ball)
bboxes[offset + frame_id] = boxes
return bboxes
def predict_batch(self, batch_images: List[ndarray], offset: int, n_keypoints: int) -> List[TVFrameResult]:
start = time.time()
detection_results = self._detect_objects_batch(batch_images)
end = time.time()
print(f"Detection time: {end - start}")
start = time.time()
bboxes = self._team_classify(detection_results, batch_images, offset)
end = time.time()
print(f"Team classify time: {end - start}")
pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
keypoints: Dict[int, List[Tuple[int, int]]] = {}
start = time.time()
while True:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
device_str = "cuda"
keypoints_result = process_batch_input(
batch_images,
self.keypoints_model,
self.kp_threshold,
device_str,
batch_size=pitch_batch_size,
)
if keypoints_result is not None and len(keypoints_result) > 0:
for frame_number_in_batch, kp_dict in enumerate(keypoints_result):
if frame_number_in_batch >= len(batch_images):
break
frame_keypoints: List[Tuple[int, int]] = []
try:
height, width = batch_images[frame_number_in_batch].shape[:2]
if kp_dict is not None and isinstance(kp_dict, dict):
for idx in range(32):
x, y = 0, 0
kp_idx = idx + 1
if kp_idx in kp_dict:
try:
kp_data = kp_dict[kp_idx]
if isinstance(kp_data, dict) and "x" in kp_data and "y" in kp_data:
x = int(kp_data["x"] * width)
y = int(kp_data["y"] * height)
except (KeyError, TypeError, ValueError):
pass
frame_keypoints.append((x, y))
except (IndexError, ValueError, AttributeError):
frame_keypoints = [(0, 0)] * 32
if len(frame_keypoints) < n_keypoints:
frame_keypoints.extend([(0, 0)] * (n_keypoints - len(frame_keypoints)))
else:
frame_keypoints = frame_keypoints[:n_keypoints]
keypoints[offset + frame_number_in_batch] = frame_keypoints
break
end = time.time()
print(f"Keypoint time: {end - start}")
results: List[TVFrameResult] = []
for frame_number in range(offset, offset + len(batch_images)):
frame_boxes = bboxes.get(frame_number, [])
frame_keypoints = keypoints.get(frame_number, [(0, 0) for _ in range(n_keypoints)])
result = TVFrameResult(
frame_id=frame_number,
boxes=frame_boxes,
keypoints=frame_keypoints,
)
results.append(result)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
return results |