File size: 18,112 Bytes
bea6690
 
 
 
 
 
 
5b5bd64
bea6690
 
 
 
 
 
 
 
f429f04
bea6690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f429f04
bea6690
 
 
 
f429f04
 
bea6690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f429f04
fa11e31
bea6690
 
 
 
 
 
fa11e31
 
 
 
 
 
 
 
bea6690
f429f04
 
bea6690
f429f04
 
 
 
bea6690
f429f04
bea6690
f429f04
 
bea6690
f429f04
 
 
 
 
bea6690
f429f04
 
bea6690
f429f04
bea6690
f429f04
 
 
 
bea6690
f429f04
 
bea6690
f429f04
 
 
 
 
 
 
 
 
 
bea6690
f429f04
 
 
 
 
 
 
 
 
 
 
 
bea6690
f429f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea6690
f429f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea6690
f429f04
 
 
 
 
 
 
 
 
bea6690
f429f04
 
bea6690
f429f04
 
 
 
 
 
 
 
bea6690
 
 
 
 
 
f429f04
bea6690
 
 
 
 
 
 
 
 
f429f04
 
bea6690
 
f429f04
 
 
 
 
 
 
 
 
 
bea6690
 
 
f429f04
 
bea6690
 
 
 
 
f429f04
bea6690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f429f04
 
 
bea6690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from pathlib import Path
from typing import List, Tuple, Dict
import sys
import os

from numpy import ndarray
from pydantic import BaseModel
sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from ultralytics import YOLO
from team_cluster import TeamClassifier
from utils import (
    BoundingBox, 
    Constants,
)

import time
import torch
import gc
from pitch import process_batch_input, get_cls_net
import yaml


class BoundingBox(BaseModel):
    x1: int
    y1: int
    x2: int
    y2: int
    cls_id: int
    conf: float


class TVFrameResult(BaseModel):
    frame_id: int
    boxes: List[BoundingBox]
    keypoints: List[Tuple[int, int]]


class Miner:
    SMALL_CONTAINED_IOA = Constants.SMALL_CONTAINED_IOA
    SMALL_RATIO_MAX = Constants.SMALL_RATIO_MAX
    SINGLE_PLAYER_HUE_PIVOT = Constants.SINGLE_PLAYER_HUE_PIVOT
    CORNER_INDICES = Constants.CORNER_INDICES
    KEYPOINTS_CONFIDENCE = Constants.KEYPOINTS_CONFIDENCE
    CORNER_CONFIDENCE = Constants.CORNER_CONFIDENCE
    GOALKEEPER_POSITION_MARGIN = Constants.GOALKEEPER_POSITION_MARGIN
    MIN_SAMPLES_FOR_FIT = 16  # Minimum player crops needed before fitting TeamClassifier
    MAX_SAMPLES_FOR_FIT = 600  # Maximum samples to avoid overfitting

    def __init__(self, path_hf_repo: Path) -> None:
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            model_path = path_hf_repo / "football_object_detection.onnx"
            self.bbox_model = YOLO(model_path)
            
            print("BBox Model Loaded")

            team_model_path = path_hf_repo / "osnet_model.pth.tar-100"
            self.team_classifier = TeamClassifier(
                device=device,
                batch_size=32,
                model_name=str(team_model_path)
            )
            print("Team Classifier Loaded")
            
            # Team classification state
            self.team_classifier_fitted = False
            self.player_crops_for_fit = [] 

            model_kp_path = path_hf_repo / 'keypoint'
            config_kp_path = path_hf_repo / 'hrnetv2_w48.yaml'
            cfg_kp = yaml.safe_load(open(config_kp_path, 'r'))
            
            loaded_state_kp = torch.load(model_kp_path, map_location=device)
            model = get_cls_net(cfg_kp)
            model.load_state_dict(loaded_state_kp)
            model.to(device)
            model.eval()

            self.keypoints_model = model
            self.kp_threshold = 0.1
            self.pitch_batch_size = 4
            self.health = "healthy"
            print("✅ Keypoints Model Loaded")
        except Exception as e:
            self.health = "❌ Miner initialization failed: " + str(e)
            print(self.health)

    def __repr__(self) -> str:
        if self.health == 'healthy':
            return (
                f"health: {self.health}\n"
                f"BBox Model: {type(self.bbox_model).__name__}\n"
                f"Keypoints Model: {type(self.keypoints_model).__name__}"
            )
        else:
            return self.health

    def _calculate_iou(self, box1: Tuple[float, float, float, float],
                       box2: Tuple[float, float, float, float]) -> float:
        """
        Calculate Intersection over Union (IoU) between two bounding boxes.
        Args:
            box1: (x1, y1, x2, y2)
            box2: (x1, y1, x2, y2)
        Returns:
            IoU score (0-1)
        """
        x1_1, y1_1, x2_1, y2_1 = box1
        x1_2, y1_2, x2_2, y2_2 = box2

        # Calculate intersection area
        x_left = max(x1_1, x1_2)
        y_top = max(y1_1, y1_2)
        x_right = min(x2_1, x2_2)
        y_bottom = min(y2_1, y2_2)

        if x_right < x_left or y_bottom < y_top:
            return 0.0

        intersection_area = (x_right - x_left) * (y_bottom - y_top)

        # Calculate union area
        box1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
        box2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
        union_area = box1_area + box2_area - intersection_area

        if union_area == 0:
            return 0.0

        return intersection_area / union_area

    def _detect_objects_batch(self, decoded_images: List[ndarray]) -> Dict[int, List[BoundingBox]]:
        batch_size = 16
        detection_results = []
        n_frames = len(decoded_images)
        for frame_number in range(0, n_frames, batch_size):
            batch_images = decoded_images[frame_number: frame_number + batch_size]
            detections = self.bbox_model(batch_images, verbose=False, save=False)
            detection_results.extend(detections)
        
        return detection_results

    def _team_classify(self, detection_results, decoded_images, offset):
        self.team_classifier_fitted = False
        start = time.time()
        # Collect player crops from first batch for fitting
        fit_sample_size = 600
        player_crops_for_fit = []

        for frame_id in range(len(detection_results)):
            detection_box = detection_results[frame_id].boxes.data
            if len(detection_box) < 4:
                continue
            # Collect player boxes for team classification fitting (first batch only)
            if len(player_crops_for_fit) < fit_sample_size:
                frame_image = decoded_images[frame_id]
                for box in detection_box:
                    x1, y1, x2, y2, conf, cls_id = box.tolist()
                    if conf < 0.5:
                        continue
                    mapped_cls_id = str(int(cls_id))
                    # Only collect player crops (cls_id = 2)
                    if mapped_cls_id == '2':
                        crop = frame_image[int(y1):int(y2), int(x1):int(x2)]
                        if crop.size > 0:
                            player_crops_for_fit.append(crop)

            # Fit team classifier after collecting samples
            if self.team_classifier and not self.team_classifier_fitted and len(player_crops_for_fit) >= fit_sample_size:
                print(f"Fitting TeamClassifier with {len(player_crops_for_fit)} player crops")
                self.team_classifier.fit(player_crops_for_fit)
                self.team_classifier_fitted = True
                break
        if not self.team_classifier_fitted and len(player_crops_for_fit) >= 16:
            print(f"Fallback: Fitting TeamClassifier with {len(player_crops_for_fit)} player crops")
            self.team_classifier.fit(player_crops_for_fit)
            self.team_classifier_fitted = True
        end = time.time()
        print(f"Fitting Kmeans time: {end - start}")

        # Second pass: predict teams with configurable frame skipping optimization
        start = time.time()

        # Get configuration for frame skipping
        prediction_interval = 1  # Default: predict every 2 frames
        iou_threshold = 0.3

        print(f"Team classification - prediction_interval: {prediction_interval}, iou_threshold: {iou_threshold}")

        # Storage for predicted frame results: {frame_id: {box_idx: (bbox, team_id)}}
        predicted_frame_data = {}

        # Step 1: Predict for frames at prediction_interval only
        frames_to_predict = []
        for frame_id in range(len(detection_results)):
            if frame_id % prediction_interval == 0:
                frames_to_predict.append(frame_id)

        print(f"Predicting teams for {len(frames_to_predict)}/{len(detection_results)} frames "
                    f"(saving {100 - (len(frames_to_predict) * 100 // len(detection_results))}% compute)")

        for frame_id in frames_to_predict:
            detection_box = detection_results[frame_id].boxes.data
            frame_image = decoded_images[frame_id]

            # Collect player crops for this frame
            frame_player_crops = []
            frame_player_indices = []
            frame_player_boxes = []

            for idx, box in enumerate(detection_box):
                x1, y1, x2, y2, conf, cls_id = box.tolist()
                if cls_id == 2 and conf < 0.6:
                    continue
                mapped_cls_id = str(int(cls_id))

                # Collect player crops for prediction
                if self.team_classifier and self.team_classifier_fitted and mapped_cls_id == '2':
                    crop = frame_image[int(y1):int(y2), int(x1):int(x2)]
                    if crop.size > 0:
                        frame_player_crops.append(crop)
                        frame_player_indices.append(idx)
                        frame_player_boxes.append((x1, y1, x2, y2))

            # Predict teams for all players in this frame
            if len(frame_player_crops) > 0:
                team_ids = self.team_classifier.predict(frame_player_crops)
                predicted_frame_data[frame_id] = {}
                for idx, bbox, team_id in zip(frame_player_indices, frame_player_boxes, team_ids):
                    # Map team_id (0,1) to cls_id (6,7)
                    team_cls_id = str(6 + int(team_id))
                    predicted_frame_data[frame_id][idx] = (bbox, team_cls_id)

        # Step 2: Process all frames (interpolate skipped frames)
        fallback_count = 0
        interpolated_count = 0
        bboxes: dict[int, list[BoundingBox]] = {}
        for frame_id in range(len(detection_results)):
            detection_box = detection_results[frame_id].boxes.data
            frame_image = decoded_images[frame_id]
            boxes = []

            team_predictions = {}

            if frame_id % prediction_interval == 0:
                # Predicted frame: use pre-computed predictions
                if frame_id in predicted_frame_data:
                    for idx, (bbox, team_cls_id) in predicted_frame_data[frame_id].items():
                        team_predictions[idx] = team_cls_id
            else:
                # Skipped frame: interpolate from neighboring predicted frames
                # Find nearest predicted frames
                prev_predicted_frame = (frame_id // prediction_interval) * prediction_interval
                next_predicted_frame = prev_predicted_frame + prediction_interval

                # Collect current frame player boxes
                for idx, box in enumerate(detection_box):
                    x1, y1, x2, y2, conf, cls_id = box.tolist()
                    if cls_id == 2 and conf < 0.6:
                        continue
                    mapped_cls_id = str(int(cls_id))

                    if self.team_classifier and self.team_classifier_fitted and mapped_cls_id == '2':
                        target_box = (x1, y1, x2, y2)

                        # Try to match with previous predicted frame
                        best_team_id = None
                        best_iou = 0.0

                        if prev_predicted_frame in predicted_frame_data:
                            team_id, iou = self._find_best_match(
                                target_box,
                                predicted_frame_data[prev_predicted_frame],
                                iou_threshold
                            )
                            if team_id is not None:
                                best_team_id = team_id
                                best_iou = iou

                        # Try to match with next predicted frame if available and no good match yet
                        if best_team_id is None and next_predicted_frame < len(detection_results):
                            if next_predicted_frame in predicted_frame_data:
                                team_id, iou = self._find_best_match(
                                    target_box,
                                    predicted_frame_data[next_predicted_frame],
                                    iou_threshold
                                )
                                if team_id is not None and iou > best_iou:
                                    best_team_id = team_id
                                    best_iou = iou

                        # Track interpolation success
                        if best_team_id is not None:
                            interpolated_count += 1
                        else:
                            # Fallback: if no match found, predict individually
                            crop = frame_image[int(y1):int(y2), int(x1):int(x2)]
                            if crop.size > 0:
                                team_id = self.team_classifier.predict([crop])[0]
                                best_team_id = str(6 + int(team_id))
                                fallback_count += 1

                        if best_team_id is not None:
                            team_predictions[idx] = best_team_id

            # Parse boxes with team classification
            for idx, box in enumerate(detection_box):
                x1, y1, x2, y2, conf, cls_id = box.tolist()
                if cls_id == 2 and conf < 0.6:
                    continue

                # Check overlap with staff box
                overlap_staff = False
                for idy, boxy in enumerate(detection_box):
                    s_x1, s_y1, s_x2, s_y2, s_conf, s_cls_id = boxy.tolist()
                    if cls_id == 2 and s_cls_id == 4:
                        staff_iou = self._calculate_iou(box[:4], boxy[:4])
                        if staff_iou >= 0.8:
                            overlap_staff = True
                            break
                if overlap_staff:
                    continue

                mapped_cls_id = str(int(cls_id))

                # Override cls_id for players with team prediction
                if idx in team_predictions:
                    mapped_cls_id = team_predictions[idx]
                if mapped_cls_id != '4':
                    if int(mapped_cls_id) == 3 and conf < 0.5:
                        continue
                    boxes.append(
                        BoundingBox(
                            x1=int(x1),
                            y1=int(y1),
                            x2=int(x2),
                            y2=int(y2),
                            cls_id=int(mapped_cls_id),
                            conf=float(conf),
                        )
                    )
            # Handle footballs - keep only the best one
            footballs = [bb for bb in boxes if int(bb.cls_id) == 0]
            if len(footballs) > 1:
                best_ball = max(footballs, key=lambda b: b.conf)
                boxes = [bb for bb in boxes if int(bb.cls_id) != 0]
                boxes.append(best_ball)
        
            bboxes[offset + frame_id] = boxes
        return bboxes


    def predict_batch(self, batch_images: List[ndarray], offset: int, n_keypoints: int) -> List[TVFrameResult]:        
        start = time.time()
        detection_results = self._detect_objects_batch(batch_images)
        end = time.time()
        print(f"Detection time: {end - start}")
        start = time.time()
        bboxes = self._team_classify(detection_results, batch_images, offset)
        end = time.time()
        print(f"Team classify time: {end - start}")

        pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
        keypoints: Dict[int, List[Tuple[int, int]]] = {}

        start = time.time()
        while True:
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
            device_str = "cuda"
            keypoints_result = process_batch_input(
                batch_images,
                self.keypoints_model,
                self.kp_threshold,
                device_str,
                batch_size=pitch_batch_size,
            )
            if keypoints_result is not None and len(keypoints_result) > 0:
                for frame_number_in_batch, kp_dict in enumerate(keypoints_result):
                    if frame_number_in_batch >= len(batch_images):
                        break
                    frame_keypoints: List[Tuple[int, int]] = []
                    try:
                        height, width = batch_images[frame_number_in_batch].shape[:2]
                        if kp_dict is not None and isinstance(kp_dict, dict):
                            for idx in range(32):
                                x, y = 0, 0
                                kp_idx = idx + 1
                                if kp_idx in kp_dict:
                                    try:
                                        kp_data = kp_dict[kp_idx]
                                        if isinstance(kp_data, dict) and "x" in kp_data and "y" in kp_data:
                                            x = int(kp_data["x"] * width)
                                            y = int(kp_data["y"] * height)
                                    except (KeyError, TypeError, ValueError):
                                        pass
                                frame_keypoints.append((x, y))
                    except (IndexError, ValueError, AttributeError):
                        frame_keypoints = [(0, 0)] * 32
                    if len(frame_keypoints) < n_keypoints:
                        frame_keypoints.extend([(0, 0)] * (n_keypoints - len(frame_keypoints)))
                    else:
                        frame_keypoints = frame_keypoints[:n_keypoints]
                    keypoints[offset + frame_number_in_batch] = frame_keypoints
            break
        end = time.time()
        print(f"Keypoint time: {end - start}")


        results: List[TVFrameResult] = []
        for frame_number in range(offset, offset + len(batch_images)):
            frame_boxes = bboxes.get(frame_number, [])
            frame_keypoints = keypoints.get(frame_number, [(0, 0) for _ in range(n_keypoints)])
            result = TVFrameResult(
                frame_id=frame_number,
                boxes=frame_boxes,
                keypoints=frame_keypoints,
            )
            results.append(result)

        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()

        return results