πŸš€ Universal Code Refactor 32B

Universal Code Refactor 32B is a complete AI-driven code engineering system designed to automate large-scale refactoring, bug discovery, language-to-language conversion, and code optimization.
The project includes a full toolkit: model, pipelines, refactor engine, bug detector, conversion engine, API, CLI, Gradio UI, datasets, and training scripts.

🌟 Features

πŸ”§ 1. Multi-Language Code Refactoring

Supports intelligent transformations for multiple languages:

  • Python
  • Java
  • JavaScript

Includes:

  • Automatic formatting (Black + isort)
  • Unused import removal
  • Inline simple functions
  • Java loop modernization β†’ for-each syntax
  • JavaScript var β†’ let transformation
  • Structural code cleanup
  • Rule-based + AST-based hybrid refactoring

🐞 2. Static Bug Detection

Real AST-based detection, including:

  • Possible None/null dereferences
  • Unused variables
  • Unsafe JavaScript eval() usage
  • Missing null checks in Java
  • Future support for type-based reasoning

πŸ”„ 3. Multi-Language Code Conversion

Built-in conversions:

  • Python β†’ Java
  • Java β†’ Python

Supports:

  • Function extraction
  • Main() generation
  • Basic block translation
  • Extendable conversion rules

πŸ“„ 4. Patch & Diff Generation

Automated patch engine creates:

  • Unified diffs
  • Patch previews
  • Patch cleanliness scores
  • Complexity reduction metrics

Useful for PR automation and CI pipelines.

🧠 5. Compact Transformer Code Model

The model includes:

  • Token embedding
  • Positional encoding
  • Transformer encoder stack
  • Code-token-aware tokenizer
  • Modular upgrade path to LLaMA / CodeGen / StarCoder models

🌐 6. Deployment Ecosystem

Included ready-to-run components:

βœ” FastAPI REST Server

uvicorn inference.api_server:app --reload

βœ” CLI Tool

python inference/cli.py --mode refactor --file example.py

βœ” Gradio Web UI

python inference/gradio_app.py

βœ” Docker Container

docker build -t universal-refactor .
docker run -p 8000:8000 universal-refactor

βœ” Hugging Face Spaces App

Located inside /deployment/huggingface_spaces/

πŸ“‚ Project Structure

Universal-Code-Refactor-32B/
β”‚
β”œβ”€β”€ README.md
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ MODEL_CARD.md
β”‚
β”œβ”€β”€ src/universal_refactor/
β”‚   β”œβ”€β”€ refactor_engine.py
β”‚   β”œβ”€β”€ bug_detector.py
β”‚   β”œβ”€β”€ code_converter.py
β”‚   β”œβ”€β”€ patch_generator.py
β”‚   β”œβ”€β”€ pipelines.py
β”‚   β”œβ”€β”€ tokenizer.py
β”‚   β”œβ”€β”€ model.py
β”‚   β”œβ”€β”€ long_context_manager.py
β”‚   β”œβ”€β”€ utils.py
β”‚   └── embeddings/
β”‚
β”œβ”€β”€ inference/
β”‚   β”œβ”€β”€ api_server.py
β”‚   β”œβ”€β”€ cli.py
β”‚   └── gradio_app.py
β”‚
β”œβ”€β”€ deployment/
β”‚   β”œβ”€β”€ Dockerfile
β”‚   └── huggingface_spaces/
β”‚
β”œβ”€β”€ training/
β”‚   β”œβ”€β”€ pretrain.py
β”‚   β”œβ”€β”€ finetune_refactor.py
β”‚   β”œβ”€β”€ finetune_bugfix.py
β”‚   β”œβ”€β”€ tokenizer_training.py
β”‚   β”œβ”€β”€ long_context_training.py
β”‚   └── distributed/
β”‚
└── datasets/
    β”œβ”€β”€ code_repo_raw/
    β”œβ”€β”€ multilingual_code_clean/
    β”œβ”€β”€ refactor_pairs/
    β”œβ”€β”€ bugfix_pairs/
    β”œβ”€β”€ conversion_pairs/
    └── metadata.json

πŸ›  Installation

1. Clone Repository

git clone https://github.com/YOUR_USERNAME/universal-code-refactor-32b
cd universal-code-refactor-32b

2. Install Dependencies

pip install -r requirements.txt

πŸš€ Usage Examples

πŸ”§ Refactor Python Code

python inference/cli.py --mode refactor --file sample.py --lang python

πŸ”„ Convert Java β†’ Python

python inference/cli.py --mode convert --file MyClass.java --src java --tgt python

🌐 Run Web UI

python inference/gradio_app.py

πŸ“Š Evaluation Tools

The evaluation pipeline computes:

  • Cyclomatic complexity reduction
  • Patch cleanliness
  • Code change metrics
  • Structural improvement score

Run evaluation:

python evaluation/evaluate.py
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support