Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

adapter: lora
base_model: Qwen/Qwen2.5-72B-Instruct
load_in_4bit: true
bnb_4bit_compute_dtype: bfloat16
bnb_4bit_use_double_quant: true
bnb_4bit_quant_type: nf4

datasets:
  - path: ./patched_dataset/data.jsonl
    type: alpaca

val_set_size: 0.05
output_dir: ./outputs/qwen80b_qlora_run

micro_batch_size: 1
gradient_accumulation_steps: 8
num_epochs: 3
learning_rate: 2e-4

lora_alpha: 16
lora_r: 8
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj
  - gate_proj
  - down_proj
  - up_proj

sequence_len: 1024
train_on_inputs: false
optimizer: paged_adamw_8bit

bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false

warmup_ratio: 0.03
weight_decay: 0.01
logging_steps: 10
saves_per_epoch: 1
evals_per_epoch: 1
save_total_limit: 2

device_map: "auto"
low_cpu_mem_usage: true
torch_dtype: bfloat16


outputs/qwen80b_qlora_run

This model is a fine-tuned version of Qwen/Qwen2.5-72B-Instruct on the ./patched_dataset/data.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8941
  • Memory/max Active (gib): 43.77
  • Memory/max Allocated (gib): 43.77
  • Memory/device Reserved (gib): 45.94

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • training_steps: 90

Training results

Training Loss Epoch Step Validation Loss Active (gib) Allocated (gib) Reserved (gib)
No log 0 0 2.5724 43.65 43.65 52.31
2.0549 1.0 30 1.8877 43.77 43.77 45.94
1.6302 2.0 60 1.8321 43.77 43.77 45.94
1.3038 3.0 90 1.8941 43.77 43.77 45.94

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.0
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for htarikk/qwen80b-style-lora

Base model

Qwen/Qwen2.5-72B
Adapter
(19)
this model