upernet-convnext-tiny-segments-GFB
This model is a fine-tuned version of openmmlab/upernet-convnext-tiny on the segments/GFB dataset. It achieves the following results on the evaluation set:
- Loss: 0.7882
- Mean Iou: 0.7125
- Mean Accuracy: 0.8017
- Overall Accuracy: 0.9250
- Accuracy Unlabeled: 0.9689
- Accuracy Gbm: 0.8241
- Accuracy Podo: 0.7558
- Accuracy Endo: 0.6579
- Iou Unlabeled: 0.9223
- Iou Gbm: 0.7200
- Iou Podo: 0.6457
- Iou Endo: 0.5619
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Gbm | Accuracy Podo | Accuracy Endo | Iou Unlabeled | Iou Gbm | Iou Podo | Iou Endo |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.3378 | 1.0989 | 100 | 0.3889 | 0.6226 | 0.7114 | 0.9018 | 0.9706 | 0.6929 | 0.7052 | 0.4767 | 0.9011 | 0.6333 | 0.5622 | 0.3936 |
| 0.1929 | 2.1978 | 200 | 0.3725 | 0.6386 | 0.7142 | 0.9080 | 0.9753 | 0.7590 | 0.6493 | 0.4734 | 0.9058 | 0.6620 | 0.5665 | 0.4202 |
| 0.211 | 3.2967 | 300 | 0.3448 | 0.6794 | 0.7742 | 0.9157 | 0.9732 | 0.7392 | 0.7140 | 0.6704 | 0.9153 | 0.6771 | 0.5943 | 0.5310 |
| 0.1732 | 4.3956 | 400 | 0.3507 | 0.6862 | 0.8303 | 0.9114 | 0.9322 | 0.9151 | 0.8061 | 0.6677 | 0.9085 | 0.6941 | 0.6330 | 0.5094 |
| 0.1567 | 5.4945 | 500 | 0.3476 | 0.7074 | 0.8276 | 0.9220 | 0.9573 | 0.8203 | 0.8055 | 0.7274 | 0.9211 | 0.7174 | 0.6420 | 0.5491 |
| 0.148 | 6.5934 | 600 | 0.3502 | 0.7144 | 0.8109 | 0.9260 | 0.9657 | 0.8467 | 0.7628 | 0.6683 | 0.9245 | 0.7288 | 0.6449 | 0.5595 |
| 0.1983 | 7.6923 | 700 | 0.3575 | 0.7204 | 0.8191 | 0.9270 | 0.9651 | 0.8479 | 0.7686 | 0.6948 | 0.9248 | 0.7348 | 0.6498 | 0.5723 |
| 0.1115 | 8.7912 | 800 | 0.4055 | 0.7153 | 0.8242 | 0.9248 | 0.9591 | 0.8677 | 0.7683 | 0.7017 | 0.9233 | 0.7252 | 0.6469 | 0.5656 |
| 0.0935 | 9.8901 | 900 | 0.3961 | 0.7268 | 0.8366 | 0.9275 | 0.9613 | 0.8498 | 0.7884 | 0.7471 | 0.9255 | 0.7353 | 0.6576 | 0.5887 |
| 0.1255 | 10.9890 | 1000 | 0.4276 | 0.7251 | 0.8230 | 0.9280 | 0.9660 | 0.8403 | 0.7779 | 0.7078 | 0.9256 | 0.7352 | 0.6567 | 0.5830 |
| 0.1118 | 12.0879 | 1100 | 0.4431 | 0.7234 | 0.8176 | 0.9282 | 0.9653 | 0.8538 | 0.7817 | 0.6697 | 0.9259 | 0.7353 | 0.6600 | 0.5722 |
| 0.0811 | 13.1868 | 1200 | 0.4577 | 0.7245 | 0.8213 | 0.9281 | 0.9647 | 0.8568 | 0.7774 | 0.6863 | 0.9258 | 0.7373 | 0.6566 | 0.5783 |
| 0.0783 | 14.2857 | 1300 | 0.5041 | 0.7215 | 0.8105 | 0.9278 | 0.9688 | 0.8259 | 0.7848 | 0.6624 | 0.9250 | 0.7308 | 0.6591 | 0.5713 |
| 0.0984 | 15.3846 | 1400 | 0.5062 | 0.7261 | 0.8201 | 0.9288 | 0.9668 | 0.8508 | 0.7722 | 0.6909 | 0.9266 | 0.7359 | 0.6590 | 0.5828 |
| 0.0755 | 16.4835 | 1500 | 0.5262 | 0.7257 | 0.8279 | 0.9276 | 0.9628 | 0.8513 | 0.7876 | 0.7098 | 0.9253 | 0.7320 | 0.6609 | 0.5848 |
| 0.0824 | 17.5824 | 1600 | 0.5320 | 0.7196 | 0.8075 | 0.9276 | 0.9680 | 0.8450 | 0.7707 | 0.6461 | 0.9250 | 0.7322 | 0.6556 | 0.5659 |
| 0.0657 | 18.6813 | 1700 | 0.5438 | 0.7216 | 0.8137 | 0.9277 | 0.9682 | 0.8346 | 0.7714 | 0.6806 | 0.9253 | 0.7305 | 0.6563 | 0.5744 |
| 0.0808 | 19.7802 | 1800 | 0.5700 | 0.7205 | 0.8109 | 0.9273 | 0.9688 | 0.8262 | 0.7749 | 0.6736 | 0.9245 | 0.7297 | 0.6554 | 0.5725 |
| 0.0602 | 20.8791 | 1900 | 0.5682 | 0.7237 | 0.8168 | 0.9278 | 0.9673 | 0.8404 | 0.7699 | 0.6894 | 0.9251 | 0.7325 | 0.6563 | 0.5809 |
| 0.0621 | 21.9780 | 2000 | 0.5880 | 0.7230 | 0.8190 | 0.9273 | 0.9668 | 0.8393 | 0.7647 | 0.7053 | 0.9248 | 0.7297 | 0.6538 | 0.5838 |
| 0.0691 | 23.0769 | 2100 | 0.6024 | 0.7189 | 0.8108 | 0.9267 | 0.9690 | 0.8110 | 0.7842 | 0.6790 | 0.9243 | 0.7248 | 0.6538 | 0.5725 |
| 0.0628 | 24.1758 | 2200 | 0.6413 | 0.7197 | 0.8077 | 0.9272 | 0.9688 | 0.8354 | 0.7672 | 0.6595 | 0.9243 | 0.7294 | 0.6547 | 0.5705 |
| 0.072 | 25.2747 | 2300 | 0.6427 | 0.7162 | 0.8039 | 0.9264 | 0.9694 | 0.8201 | 0.7741 | 0.6521 | 0.9235 | 0.7255 | 0.6531 | 0.5626 |
| 0.0699 | 26.3736 | 2400 | 0.6491 | 0.7185 | 0.8066 | 0.9270 | 0.9691 | 0.8330 | 0.7650 | 0.6595 | 0.9243 | 0.7280 | 0.6527 | 0.5691 |
| 0.0666 | 27.4725 | 2500 | 0.6501 | 0.7213 | 0.8158 | 0.9268 | 0.9669 | 0.8289 | 0.7778 | 0.6897 | 0.9241 | 0.7276 | 0.6548 | 0.5788 |
| 0.0512 | 28.5714 | 2600 | 0.6661 | 0.7182 | 0.8072 | 0.9269 | 0.9685 | 0.8448 | 0.7528 | 0.6628 | 0.9244 | 0.7297 | 0.6496 | 0.5693 |
| 0.0681 | 29.6703 | 2700 | 0.6934 | 0.7184 | 0.8091 | 0.9267 | 0.9677 | 0.8404 | 0.7619 | 0.6664 | 0.9240 | 0.7284 | 0.6519 | 0.5694 |
| 0.0518 | 30.7692 | 2800 | 0.7065 | 0.7183 | 0.8088 | 0.9265 | 0.9692 | 0.8238 | 0.7631 | 0.6789 | 0.9237 | 0.7250 | 0.6514 | 0.5730 |
| 0.0624 | 31.8681 | 2900 | 0.7146 | 0.7141 | 0.8005 | 0.9258 | 0.9705 | 0.8284 | 0.7439 | 0.6590 | 0.9230 | 0.7230 | 0.6446 | 0.5658 |
| 0.0518 | 32.9670 | 3000 | 0.6993 | 0.7171 | 0.8096 | 0.9261 | 0.9675 | 0.8351 | 0.7605 | 0.6754 | 0.9234 | 0.7252 | 0.6497 | 0.5703 |
| 0.0658 | 34.0659 | 3100 | 0.7306 | 0.7162 | 0.8066 | 0.9261 | 0.9686 | 0.8282 | 0.7623 | 0.6674 | 0.9234 | 0.7243 | 0.6502 | 0.5669 |
| 0.0554 | 35.1648 | 3200 | 0.7374 | 0.7144 | 0.8021 | 0.9257 | 0.9696 | 0.8256 | 0.7557 | 0.6577 | 0.9229 | 0.7226 | 0.6475 | 0.5645 |
| 0.0623 | 36.2637 | 3300 | 0.7468 | 0.7151 | 0.8054 | 0.9256 | 0.9688 | 0.8258 | 0.7566 | 0.6705 | 0.9229 | 0.7220 | 0.6475 | 0.5678 |
| 0.057 | 37.3626 | 3400 | 0.7597 | 0.7138 | 0.8034 | 0.9253 | 0.9692 | 0.8206 | 0.7584 | 0.6652 | 0.9225 | 0.7207 | 0.6472 | 0.5647 |
| 0.0644 | 38.4615 | 3500 | 0.7481 | 0.7146 | 0.8049 | 0.9256 | 0.9681 | 0.8303 | 0.7598 | 0.6614 | 0.9228 | 0.7226 | 0.6482 | 0.5647 |
| 0.0593 | 39.5604 | 3600 | 0.7704 | 0.7142 | 0.8040 | 0.9254 | 0.9683 | 0.8289 | 0.7597 | 0.6591 | 0.9227 | 0.7221 | 0.6478 | 0.5640 |
| 0.0519 | 40.6593 | 3700 | 0.7748 | 0.7132 | 0.8020 | 0.9254 | 0.9689 | 0.8275 | 0.7565 | 0.6550 | 0.9226 | 0.7218 | 0.6468 | 0.5618 |
| 0.045 | 41.7582 | 3800 | 0.7814 | 0.7133 | 0.8030 | 0.9252 | 0.9687 | 0.8256 | 0.7577 | 0.6601 | 0.9225 | 0.7212 | 0.6467 | 0.5630 |
| 0.045 | 42.8571 | 3900 | 0.7831 | 0.7125 | 0.8007 | 0.9252 | 0.9693 | 0.8237 | 0.7553 | 0.6546 | 0.9224 | 0.7202 | 0.6460 | 0.5614 |
| 0.0523 | 43.9560 | 4000 | 0.7910 | 0.7125 | 0.8014 | 0.9251 | 0.9690 | 0.8241 | 0.7563 | 0.6564 | 0.9223 | 0.7202 | 0.6460 | 0.5616 |
| 0.0642 | 45.0549 | 4100 | 0.7819 | 0.7129 | 0.8019 | 0.9252 | 0.9689 | 0.8253 | 0.7560 | 0.6573 | 0.9224 | 0.7206 | 0.6462 | 0.5623 |
| 0.0535 | 46.1538 | 4200 | 0.7885 | 0.7125 | 0.8013 | 0.9251 | 0.9690 | 0.8236 | 0.7570 | 0.6554 | 0.9223 | 0.7202 | 0.6461 | 0.5614 |
| 0.0474 | 47.2527 | 4300 | 0.7904 | 0.7123 | 0.8013 | 0.9250 | 0.9690 | 0.8231 | 0.7564 | 0.6566 | 0.9222 | 0.7198 | 0.6457 | 0.5614 |
| 0.0494 | 48.3516 | 4400 | 0.7834 | 0.7124 | 0.8015 | 0.9250 | 0.9689 | 0.8239 | 0.7561 | 0.6570 | 0.9223 | 0.7199 | 0.6458 | 0.5615 |
| 0.0663 | 49.4505 | 4500 | 0.7882 | 0.7125 | 0.8017 | 0.9250 | 0.9689 | 0.8241 | 0.7558 | 0.6579 | 0.9223 | 0.7200 | 0.6457 | 0.5619 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu130
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 17
Model tree for luoyun75579/upernet-convnext-tiny-segments-GFB
Base model
openmmlab/upernet-convnext-tiny