ap-jxLlj8Cg75EMClO0ZGP7gX
This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4326
- Model Preparation Time: 0.0053
- Wer: 0.1928
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
|---|---|---|---|---|---|
| 0.8692 | 1.0 | 13 | 1.5918 | 0.0053 | 0.2712 |
| 0.2971 | 2.0 | 26 | 0.5042 | 0.0053 | 0.2033 |
| 0.1803 | 3.0 | 39 | 0.2987 | 0.0053 | 0.1344 |
| 0.0646 | 4.0 | 52 | 0.2941 | 0.0053 | 0.1340 |
| 0.0386 | 5.0 | 65 | 0.3093 | 0.0053 | 0.1471 |
| 0.0102 | 6.0 | 78 | 0.3861 | 0.0053 | 0.1438 |
| 0.0183 | 7.0 | 91 | 0.3980 | 0.0053 | 0.1513 |
| 0.037 | 8.0 | 104 | 0.4312 | 0.0053 | 0.1538 |
| 0.0164 | 9.0 | 117 | 0.4298 | 0.0053 | 0.1699 |
| 0.0132 | 10.0 | 130 | 0.3946 | 0.0053 | 0.1349 |
| 0.018 | 11.0 | 143 | 0.4802 | 0.0053 | 0.3464 |
| 0.0317 | 11.08 | 144 | 0.4326 | 0.0053 | 0.1928 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.1
- Downloads last month
- -
Model tree for mdsingh2024/ap-jxLlj8Cg75EMClO0ZGP7gX
Base model
openai/whisper-base