add remote code and hf-format "pytorch_model.bin"
#20
by
chuhac
- opened
- config.json +103 -0
- configuration_biomed_clip.py +60 -0
- modeling_biomed_clip.py +938 -0
- preprocessor_config.json +20 -0
- processing_biomed_clip.py +153 -0
- pytorch_model.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BiomedCLIPModel"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_biomed_clip.BiomedCLIPConfig",
|
| 8 |
+
"AutoProcessor": "processing_biomed_clip.BiomedCLIPProcessor",
|
| 9 |
+
"AutoModel": "modeling_biomed_clip.BiomedCLIPModel",
|
| 10 |
+
"AutoModelForImageClassification": "modeling_biomed_clip.BiomedCLIPForImageClassification"
|
| 11 |
+
},
|
| 12 |
+
"initializer_factor": 1.0,
|
| 13 |
+
"logit_scale_init_value": 4.4454,
|
| 14 |
+
"model_type": "clip",
|
| 15 |
+
"projection_dim": 512,
|
| 16 |
+
"text_config": {
|
| 17 |
+
"attention_probs_dropout_prob": 0.1,
|
| 18 |
+
"gradient_checkpointing": false,
|
| 19 |
+
"hidden_act": "gelu",
|
| 20 |
+
"hidden_dropout_prob": 0.1,
|
| 21 |
+
"hidden_size": 768,
|
| 22 |
+
"initializer_range": 0.02,
|
| 23 |
+
"intermediate_size": 3072,
|
| 24 |
+
"layer_norm_eps": 1e-12,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"position_embedding_type": "absolute",
|
| 31 |
+
"transformers_version": "4.6.0.dev0",
|
| 32 |
+
"type_vocab_size": 2,
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 30522
|
| 35 |
+
},
|
| 36 |
+
"text_config_dict": {
|
| 37 |
+
"attention_probs_dropout_prob": 0.1,
|
| 38 |
+
"gradient_checkpointing": false,
|
| 39 |
+
"hidden_act": "gelu",
|
| 40 |
+
"hidden_dropout_prob": 0.1,
|
| 41 |
+
"hidden_size": 768,
|
| 42 |
+
"initializer_range": 0.02,
|
| 43 |
+
"intermediate_size": 3072,
|
| 44 |
+
"layer_norm_eps": 1e-12,
|
| 45 |
+
"max_position_embeddings": 512,
|
| 46 |
+
"model_type": "bert",
|
| 47 |
+
"num_attention_heads": 12,
|
| 48 |
+
"num_hidden_layers": 12,
|
| 49 |
+
"pad_token_id": 0,
|
| 50 |
+
"position_embedding_type": "absolute",
|
| 51 |
+
"transformers_version": "4.6.0.dev0",
|
| 52 |
+
"type_vocab_size": 2,
|
| 53 |
+
"use_cache": true,
|
| 54 |
+
"vocab_size": 30522
|
| 55 |
+
},
|
| 56 |
+
"text_projection_config": {
|
| 57 |
+
"hidden_size": 768,
|
| 58 |
+
"intermediate_size": 640,
|
| 59 |
+
"projection_dim": 512,
|
| 60 |
+
"hidden_act": "gelu"
|
| 61 |
+
},
|
| 62 |
+
"text_projection_config_dict": {
|
| 63 |
+
"hidden_size": 768,
|
| 64 |
+
"intermediate_size": 640,
|
| 65 |
+
"projection_dim": 512,
|
| 66 |
+
"hidden_act": "gelu",
|
| 67 |
+
"num_hidden_layers": 2
|
| 68 |
+
},
|
| 69 |
+
"torch_dtype": "float32",
|
| 70 |
+
"transformers_version": null,
|
| 71 |
+
"vision_config": {
|
| 72 |
+
"attention_probs_dropout_prob": 0.0,
|
| 73 |
+
"hidden_act": "gelu",
|
| 74 |
+
"hidden_dropout_prob": 0.0,
|
| 75 |
+
"hidden_size": 768,
|
| 76 |
+
"image_size": 224,
|
| 77 |
+
"initializer_range": 0.02,
|
| 78 |
+
"intermediate_size": 3072,
|
| 79 |
+
"layer_norm_eps": 1e-12,
|
| 80 |
+
"model_type": "vit",
|
| 81 |
+
"num_attention_heads": 12,
|
| 82 |
+
"num_channels": 3,
|
| 83 |
+
"num_hidden_layers": 12,
|
| 84 |
+
"patch_size": 16,
|
| 85 |
+
"qkv_bias": true
|
| 86 |
+
},
|
| 87 |
+
"vision_config_dict": {
|
| 88 |
+
"attention_probs_dropout_prob": 0.0,
|
| 89 |
+
"hidden_act": "gelu",
|
| 90 |
+
"hidden_dropout_prob": 0.0,
|
| 91 |
+
"hidden_size": 768,
|
| 92 |
+
"image_size": 224,
|
| 93 |
+
"initializer_range": 0.02,
|
| 94 |
+
"intermediate_size": 3072,
|
| 95 |
+
"layer_norm_eps": 1e-12,
|
| 96 |
+
"model_type": "vit",
|
| 97 |
+
"num_attention_heads": 12,
|
| 98 |
+
"num_channels": 3,
|
| 99 |
+
"num_hidden_layers": 12,
|
| 100 |
+
"patch_size": 16,
|
| 101 |
+
"qkv_bias": true
|
| 102 |
+
}
|
| 103 |
+
}
|
configuration_biomed_clip.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import *
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
|
| 5 |
+
|
| 6 |
+
class BiomedCLIPTextProjectionConfig(PretrainedConfig):
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
hidden_size=768,
|
| 10 |
+
intermediate_size=640,
|
| 11 |
+
projection_dim=512,
|
| 12 |
+
num_hidden_layers=2,
|
| 13 |
+
**kwargs,
|
| 14 |
+
):
|
| 15 |
+
super().__init__(**kwargs)
|
| 16 |
+
|
| 17 |
+
self.hidden_size = hidden_size
|
| 18 |
+
self.intermediate_size = intermediate_size
|
| 19 |
+
self.projection_dim = projection_dim
|
| 20 |
+
self.num_hidden_layers = num_hidden_layers
|
| 21 |
+
|
| 22 |
+
@classmethod
|
| 23 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 24 |
+
cls._set_token_in_kwargs(kwargs)
|
| 25 |
+
|
| 26 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 27 |
+
|
| 28 |
+
# get the vision config dict if we are loading from CLIPConfig
|
| 29 |
+
if config_dict.get("model_type") == "clip":
|
| 30 |
+
config_dict = config_dict["text_projection_config"]
|
| 31 |
+
|
| 32 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 33 |
+
logger.warning(
|
| 34 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 35 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 39 |
+
|
| 40 |
+
class BiomedCLIPConfig(CLIPConfig):
|
| 41 |
+
def __init__(
|
| 42 |
+
self, text_config=None, text_projection_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
|
| 43 |
+
):
|
| 44 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
| 45 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
| 46 |
+
# of confusion!).
|
| 47 |
+
super().__init__(text_config, vision_config, projection_dim, logit_scale_init_value, **kwargs)
|
| 48 |
+
|
| 49 |
+
text_projection_config_dict = kwargs.pop("text_projection_config_dict", None)
|
| 50 |
+
if text_projection_config is None:
|
| 51 |
+
if text_projection_config_dict is not None:
|
| 52 |
+
text_projection_config = {}
|
| 53 |
+
|
| 54 |
+
_text_projection_config_dict = BiomedCLIPTextProjectionConfig(**text_projection_config_dict)
|
| 55 |
+
|
| 56 |
+
text_projection_config.update(_text_projection_config_dict)
|
| 57 |
+
else:
|
| 58 |
+
text_projection_config = BiomedCLIPTextProjectionConfig(**text_projection_config)
|
| 59 |
+
|
| 60 |
+
self.text_projection_config = text_projection_config
|
modeling_biomed_clip.py
ADDED
|
@@ -0,0 +1,938 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Modified by chuhac for a timm-free implementation
|
| 3 |
+
# Model can be directly imported with ``from_pretrained`` and ``trust_remote_code = True`` in the huggingface format
|
| 4 |
+
# Diff from HF CLIP Implementation:
|
| 5 |
+
# 1. pre-norm instead of post-norm in Vision Tower (the original implementation is right but the module registration order is misleading)
|
| 6 |
+
# 2. CLS Pooling with MLP in Text Tower
|
| 7 |
+
# 3. Remove pre norm in Vision Tower
|
| 8 |
+
# 4. CNN bias in Vision Tower
|
| 9 |
+
# 5. Change layer_norm eps from 1e-5 to 1e-12, which introduce a little numerical variations (1e-5 level)
|
| 10 |
+
## ******************************** ##
|
| 11 |
+
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
| 12 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 13 |
+
# you may not use this file except in compliance with the License.
|
| 14 |
+
# You may obtain a copy of the License at
|
| 15 |
+
#
|
| 16 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 17 |
+
#
|
| 18 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 19 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 20 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 21 |
+
# See the License for the specific language governing permissions and
|
| 22 |
+
# limitations under the License.
|
| 23 |
+
""" PyTorch BiomedCLIP model """
|
| 24 |
+
""" No need for timm or open-clip-torch """
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
from typing import Any, Optional, Tuple, Union, List
|
| 29 |
+
|
| 30 |
+
import math
|
| 31 |
+
import torch
|
| 32 |
+
import torch.utils.checkpoint
|
| 33 |
+
from torch import nn
|
| 34 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 35 |
+
|
| 36 |
+
from transformers.activations import ACT2FN
|
| 37 |
+
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
| 38 |
+
from transformers.modeling_outputs import (
|
| 39 |
+
BaseModelOutput,
|
| 40 |
+
BaseModelOutputWithPooling,
|
| 41 |
+
ImageClassifierOutput,
|
| 42 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 43 |
+
BaseModelOutputWithPastAndCrossAttentions
|
| 44 |
+
)
|
| 45 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 46 |
+
from transformers.utils import (
|
| 47 |
+
ModelOutput,
|
| 48 |
+
add_code_sample_docstrings,
|
| 49 |
+
add_start_docstrings,
|
| 50 |
+
add_start_docstrings_to_model_forward,
|
| 51 |
+
logging,
|
| 52 |
+
replace_return_docstrings,
|
| 53 |
+
)
|
| 54 |
+
from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
|
| 55 |
+
from transformers.models.clip.modeling_clip import *
|
| 56 |
+
|
| 57 |
+
from .configuration_biomed_clip import BiomedCLIPTextProjectionConfig, BiomedCLIPConfig
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
logger = logging.get_logger(__name__)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# contrastive loss function, adapted from
|
| 65 |
+
# https://sachinruk.github.io/blog/2021-03-07-clip.html
|
| 66 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
| 67 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
| 71 |
+
caption_loss = contrastive_loss(similarity)
|
| 72 |
+
image_loss = contrastive_loss(similarity.t())
|
| 73 |
+
return (caption_loss + image_loss) / 2.0
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class BiomedCLIPVisionEmbeddings(CLIPVisionEmbeddings):
|
| 77 |
+
def __init__(self, config: CLIPVisionConfig):
|
| 78 |
+
super().__init__(config)
|
| 79 |
+
|
| 80 |
+
self.patch_embedding = nn.Conv2d(
|
| 81 |
+
in_channels=config.num_channels,
|
| 82 |
+
out_channels=self.embed_dim,
|
| 83 |
+
kernel_size=self.patch_size,
|
| 84 |
+
stride=self.patch_size,
|
| 85 |
+
# True in open_clip
|
| 86 |
+
bias=True,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# TODO
|
| 90 |
+
class BiomedCLIPTextEmbeddings(nn.Module):
|
| 91 |
+
def __init__(self, config: CLIPTextConfig):
|
| 92 |
+
super().__init__()
|
| 93 |
+
embed_dim = config.hidden_size
|
| 94 |
+
|
| 95 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
| 96 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
| 97 |
+
self.token_type_embedding = nn.Embedding(config.type_vocab_size, embed_dim)
|
| 98 |
+
|
| 99 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 100 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 101 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 102 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 103 |
+
|
| 104 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 105 |
+
self.register_buffer(
|
| 106 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
| 107 |
+
)
|
| 108 |
+
self.register_buffer(
|
| 109 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
def forward(
|
| 113 |
+
self,
|
| 114 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 115 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 116 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 117 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 118 |
+
past_key_values_length: int = 0,
|
| 119 |
+
) -> torch.Tensor:
|
| 120 |
+
|
| 121 |
+
if input_ids is not None:
|
| 122 |
+
input_shape = input_ids.size()
|
| 123 |
+
else:
|
| 124 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 125 |
+
|
| 126 |
+
seq_length = input_shape[1]
|
| 127 |
+
|
| 128 |
+
if position_ids is None:
|
| 129 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
| 130 |
+
|
| 131 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 132 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 133 |
+
# issue #5664
|
| 134 |
+
if token_type_ids is None:
|
| 135 |
+
if hasattr(self, "token_type_ids"):
|
| 136 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 137 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
| 138 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 139 |
+
else:
|
| 140 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
| 141 |
+
|
| 142 |
+
if inputs_embeds is None:
|
| 143 |
+
inputs_embeds = self.token_embedding(input_ids)
|
| 144 |
+
token_type_embeddings = self.token_type_embedding(token_type_ids)
|
| 145 |
+
|
| 146 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 147 |
+
if self.position_embedding_type == "absolute":
|
| 148 |
+
position_embeddings = self.position_embedding(position_ids)
|
| 149 |
+
embeddings += position_embeddings
|
| 150 |
+
|
| 151 |
+
embeddings = self.layer_norm(embeddings)
|
| 152 |
+
embeddings = self.dropout(embeddings)
|
| 153 |
+
return embeddings
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class BiomedCLIPAttention(nn.Module):
|
| 157 |
+
def __init__(self, config, position_embedding_type=None):
|
| 158 |
+
super().__init__()
|
| 159 |
+
super().__init__()
|
| 160 |
+
self.config = config
|
| 161 |
+
self.embed_dim = config.hidden_size
|
| 162 |
+
self.num_heads = config.num_attention_heads
|
| 163 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 164 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 167 |
+
f" {self.num_heads})."
|
| 168 |
+
)
|
| 169 |
+
self.scale = self.head_dim**-0.5
|
| 170 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
| 171 |
+
|
| 172 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 173 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 174 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 175 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 176 |
+
|
| 177 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
| 178 |
+
new_x_shape = x.size()[:-1] + (self.num_heads, self.head_dim)
|
| 179 |
+
x = x.view(new_x_shape)
|
| 180 |
+
return x.permute(0, 2, 1, 3)
|
| 181 |
+
|
| 182 |
+
def forward(
|
| 183 |
+
self,
|
| 184 |
+
hidden_states: torch.Tensor,
|
| 185 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 186 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 187 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 188 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 189 |
+
output_attentions: Optional[bool] = False,
|
| 190 |
+
) -> Tuple[torch.Tensor]:
|
| 191 |
+
|
| 192 |
+
mixed_query_layer = self.q_proj(hidden_states)
|
| 193 |
+
|
| 194 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 195 |
+
# and values come from an encoder; the attention mask needs to be
|
| 196 |
+
# such that the encoder's padding tokens are not attended to.
|
| 197 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 198 |
+
|
| 199 |
+
key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
|
| 200 |
+
value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
|
| 201 |
+
|
| 202 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 206 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
attention_scores = attention_scores / math.sqrt(self.head_dim)
|
| 210 |
+
if attention_mask is not None:
|
| 211 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 212 |
+
attention_scores = attention_scores + attention_mask
|
| 213 |
+
|
| 214 |
+
# Normalize the attention scores to probabilities.
|
| 215 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 216 |
+
|
| 217 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 218 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 219 |
+
attention_probs = self.dropout(attention_probs)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 223 |
+
|
| 224 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 225 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
|
| 226 |
+
context_layer = context_layer.view(new_context_layer_shape).contiguous()
|
| 227 |
+
|
| 228 |
+
outputs = self.out_proj(context_layer)
|
| 229 |
+
return outputs, attention_probs
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
class BiomedCLIPEncoderLayer(nn.Module):
|
| 235 |
+
def __init__(self, config: BiomedCLIPConfig, norm='pre'):
|
| 236 |
+
super().__init__()
|
| 237 |
+
self.embed_dim = config.hidden_size
|
| 238 |
+
# pre-norm
|
| 239 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 240 |
+
self.self_attn = BiomedCLIPAttention(config)
|
| 241 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 242 |
+
self.mlp = CLIPMLP(config)
|
| 243 |
+
self.norm = norm
|
| 244 |
+
|
| 245 |
+
if self.norm == 'pre':
|
| 246 |
+
self.forward = self.pre_norm_forward
|
| 247 |
+
elif self.norm == 'post':
|
| 248 |
+
self.forward = self.post_norm_forward
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def pre_norm_forward(
|
| 252 |
+
self,
|
| 253 |
+
hidden_states: torch.Tensor,
|
| 254 |
+
attention_mask: torch.Tensor,
|
| 255 |
+
output_attentions: Optional[bool] = False,
|
| 256 |
+
) -> Tuple[torch.FloatTensor]:
|
| 257 |
+
"""
|
| 258 |
+
Args:
|
| 259 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 260 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 261 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 262 |
+
`(config.encoder_attention_heads,)`.
|
| 263 |
+
output_attentions (`bool`, *optional*):
|
| 264 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 265 |
+
returned tensors for more detail.
|
| 266 |
+
"""
|
| 267 |
+
residual = hidden_states
|
| 268 |
+
|
| 269 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 270 |
+
hidden_states, attn_weights = self.self_attn(
|
| 271 |
+
hidden_states=hidden_states,
|
| 272 |
+
attention_mask=attention_mask,
|
| 273 |
+
output_attentions=output_attentions,
|
| 274 |
+
)
|
| 275 |
+
hidden_states = residual + hidden_states
|
| 276 |
+
|
| 277 |
+
residual = hidden_states
|
| 278 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 279 |
+
hidden_states = self.mlp(hidden_states)
|
| 280 |
+
hidden_states = residual + hidden_states
|
| 281 |
+
|
| 282 |
+
outputs = (hidden_states,)
|
| 283 |
+
|
| 284 |
+
if output_attentions:
|
| 285 |
+
outputs += (attn_weights,)
|
| 286 |
+
|
| 287 |
+
return outputs
|
| 288 |
+
|
| 289 |
+
def post_norm_forward(
|
| 290 |
+
self,
|
| 291 |
+
hidden_states: torch.Tensor,
|
| 292 |
+
attention_mask: torch.Tensor,
|
| 293 |
+
output_attentions: Optional[bool] = False,
|
| 294 |
+
) -> Tuple[torch.FloatTensor]:
|
| 295 |
+
"""
|
| 296 |
+
Args:
|
| 297 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 298 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 299 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 300 |
+
`(config.encoder_attention_heads,)`.
|
| 301 |
+
output_attentions (`bool`, *optional*):
|
| 302 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 303 |
+
returned tensors for more detail.
|
| 304 |
+
"""
|
| 305 |
+
residual = hidden_states
|
| 306 |
+
|
| 307 |
+
hidden_states, attn_weights = self.self_attn(
|
| 308 |
+
hidden_states=hidden_states,
|
| 309 |
+
attention_mask=attention_mask,
|
| 310 |
+
output_attentions=output_attentions,
|
| 311 |
+
)
|
| 312 |
+
hidden_states = residual + hidden_states
|
| 313 |
+
|
| 314 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 315 |
+
|
| 316 |
+
residual = hidden_states
|
| 317 |
+
hidden_states = self.mlp(hidden_states)
|
| 318 |
+
hidden_states = residual + hidden_states
|
| 319 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 320 |
+
outputs = (hidden_states,)
|
| 321 |
+
|
| 322 |
+
if output_attentions:
|
| 323 |
+
outputs += (attn_weights,)
|
| 324 |
+
|
| 325 |
+
return outputs
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
class BiomedCLIPTextProjection(nn.Module):
|
| 329 |
+
def __init__(self, config):
|
| 330 |
+
super().__init__()
|
| 331 |
+
self.config = config
|
| 332 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 333 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 334 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.projection_dim, bias=False)
|
| 335 |
+
|
| 336 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 337 |
+
hidden_states = self.fc1(hidden_states)
|
| 338 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 339 |
+
hidden_states = self.fc2(hidden_states)
|
| 340 |
+
return hidden_states
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class BiomedCLIPEncoder(nn.Module):
|
| 344 |
+
"""
|
| 345 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 346 |
+
[`BiomedCLIPEncoderLayer`].
|
| 347 |
+
|
| 348 |
+
Args:
|
| 349 |
+
config: BiomedCLIPConfig
|
| 350 |
+
"""
|
| 351 |
+
def __init__(self, config, norm='pre'):
|
| 352 |
+
super().__init__()
|
| 353 |
+
self.config = config
|
| 354 |
+
self.norm = norm
|
| 355 |
+
self.layers = nn.ModuleList([BiomedCLIPEncoderLayer(config, norm) for _ in range(config.num_hidden_layers)])
|
| 356 |
+
self.gradient_checkpointing = False
|
| 357 |
+
|
| 358 |
+
def forward(
|
| 359 |
+
self,
|
| 360 |
+
hidden_states: torch.Tensor,
|
| 361 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 362 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 363 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 364 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 365 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 366 |
+
use_cache: Optional[bool] = None,
|
| 367 |
+
output_attentions: Optional[bool] = False,
|
| 368 |
+
output_hidden_states: Optional[bool] = False,
|
| 369 |
+
return_dict: Optional[bool] = True,
|
| 370 |
+
) :
|
| 371 |
+
all_hidden_states = () if output_hidden_states else None
|
| 372 |
+
all_self_attentions = () if output_attentions else None
|
| 373 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 374 |
+
|
| 375 |
+
if self.gradient_checkpointing and self.training:
|
| 376 |
+
if use_cache:
|
| 377 |
+
logger.warning_once(
|
| 378 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 379 |
+
)
|
| 380 |
+
use_cache = False
|
| 381 |
+
|
| 382 |
+
next_decoder_cache = () if use_cache else None
|
| 383 |
+
for i, layer_module in enumerate(self.layers):
|
| 384 |
+
if output_hidden_states:
|
| 385 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 386 |
+
|
| 387 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 388 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 389 |
+
|
| 390 |
+
if self.gradient_checkpointing and self.training:
|
| 391 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 392 |
+
layer_module.__call__,
|
| 393 |
+
hidden_states,
|
| 394 |
+
attention_mask,
|
| 395 |
+
output_attentions,
|
| 396 |
+
)
|
| 397 |
+
else:
|
| 398 |
+
layer_outputs = layer_module(
|
| 399 |
+
hidden_states,
|
| 400 |
+
attention_mask,
|
| 401 |
+
output_attentions,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
hidden_states = layer_outputs[0]
|
| 405 |
+
if use_cache:
|
| 406 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 407 |
+
if output_attentions:
|
| 408 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 409 |
+
if self.config.add_cross_attention:
|
| 410 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 411 |
+
|
| 412 |
+
if output_hidden_states:
|
| 413 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 414 |
+
|
| 415 |
+
if not return_dict:
|
| 416 |
+
return tuple(
|
| 417 |
+
v
|
| 418 |
+
for v in [
|
| 419 |
+
hidden_states,
|
| 420 |
+
next_decoder_cache,
|
| 421 |
+
all_hidden_states,
|
| 422 |
+
all_self_attentions,
|
| 423 |
+
all_cross_attentions,
|
| 424 |
+
]
|
| 425 |
+
if v is not None
|
| 426 |
+
)
|
| 427 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 428 |
+
last_hidden_state=hidden_states,
|
| 429 |
+
past_key_values=next_decoder_cache,
|
| 430 |
+
hidden_states=all_hidden_states,
|
| 431 |
+
attentions=all_self_attentions,
|
| 432 |
+
cross_attentions=all_cross_attentions,
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
class BiomedCLIPTextTransformer(CLIPPreTrainedModel):
|
| 438 |
+
def __init__(self, config: CLIPTextConfig):
|
| 439 |
+
super().__init__(config)
|
| 440 |
+
self.config = config
|
| 441 |
+
embed_dim = config.hidden_size
|
| 442 |
+
self.embeddings = BiomedCLIPTextEmbeddings(config)
|
| 443 |
+
self.encoder = BiomedCLIPEncoder(config, norm='post')
|
| 444 |
+
# no final_ln
|
| 445 |
+
# self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 446 |
+
|
| 447 |
+
# For `pooled_output` computation
|
| 448 |
+
|
| 449 |
+
def forward(
|
| 450 |
+
self,
|
| 451 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 452 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 453 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 454 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 455 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 456 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 457 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 458 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 459 |
+
use_cache: Optional[bool] = None,
|
| 460 |
+
output_attentions: Optional[bool] = None,
|
| 461 |
+
output_hidden_states: Optional[bool] = None,
|
| 462 |
+
return_dict: Optional[bool] = None,
|
| 463 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 464 |
+
r"""
|
| 465 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 466 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 467 |
+
the model is configured as a decoder.
|
| 468 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 469 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 470 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 471 |
+
|
| 472 |
+
- 1 for tokens that are **not masked**,
|
| 473 |
+
- 0 for tokens that are **masked**.
|
| 474 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 475 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 476 |
+
|
| 477 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 478 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 479 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 480 |
+
use_cache (`bool`, *optional*):
|
| 481 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 482 |
+
`past_key_values`).
|
| 483 |
+
"""
|
| 484 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 485 |
+
output_hidden_states = (
|
| 486 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 487 |
+
)
|
| 488 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 489 |
+
|
| 490 |
+
if self.config.is_decoder:
|
| 491 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 492 |
+
else:
|
| 493 |
+
use_cache = False
|
| 494 |
+
|
| 495 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 496 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 497 |
+
elif input_ids is not None:
|
| 498 |
+
input_shape = input_ids.size()
|
| 499 |
+
elif inputs_embeds is not None:
|
| 500 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 501 |
+
else:
|
| 502 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 503 |
+
|
| 504 |
+
batch_size, seq_length = input_shape
|
| 505 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 506 |
+
|
| 507 |
+
# past_key_values_length
|
| 508 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 509 |
+
|
| 510 |
+
if token_type_ids is None:
|
| 511 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 512 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 513 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
| 514 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 515 |
+
else:
|
| 516 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 517 |
+
|
| 518 |
+
embedding_output = self.embeddings(
|
| 519 |
+
input_ids=input_ids,
|
| 520 |
+
position_ids=position_ids,
|
| 521 |
+
token_type_ids=token_type_ids,
|
| 522 |
+
inputs_embeds=inputs_embeds,
|
| 523 |
+
past_key_values_length=past_key_values_length,
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
if attention_mask is None:
|
| 527 |
+
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device)
|
| 528 |
+
|
| 529 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 530 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 531 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 532 |
+
|
| 533 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 534 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 535 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 536 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 537 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 538 |
+
if encoder_attention_mask is None:
|
| 539 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 540 |
+
|
| 541 |
+
if use_sdpa_attention_masks:
|
| 542 |
+
# Expand the attention mask for SDPA.
|
| 543 |
+
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
| 544 |
+
encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 545 |
+
encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length
|
| 546 |
+
)
|
| 547 |
+
else:
|
| 548 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 549 |
+
else:
|
| 550 |
+
encoder_extended_attention_mask = None
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
encoder_outputs = self.encoder(
|
| 554 |
+
embedding_output,
|
| 555 |
+
attention_mask=extended_attention_mask,
|
| 556 |
+
output_attentions=output_attentions,
|
| 557 |
+
output_hidden_states=output_hidden_states,
|
| 558 |
+
return_dict=return_dict,
|
| 559 |
+
)
|
| 560 |
+
sequence_output = encoder_outputs[0]
|
| 561 |
+
|
| 562 |
+
return (sequence_output, sequence_output[:, 0, :])
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
class BiomedCLIPVisionTransformer(nn.Module):
|
| 567 |
+
def __init__(self, config: CLIPVisionConfig):
|
| 568 |
+
super().__init__()
|
| 569 |
+
self.config = config
|
| 570 |
+
embed_dim = config.hidden_size
|
| 571 |
+
|
| 572 |
+
self.embeddings = BiomedCLIPVisionEmbeddings(config)
|
| 573 |
+
# No pre_norm in open_clip Vision Tower
|
| 574 |
+
# self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 575 |
+
self.encoder = BiomedCLIPEncoder(config)
|
| 576 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 577 |
+
|
| 578 |
+
def forward(
|
| 579 |
+
self,
|
| 580 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 581 |
+
output_attentions: Optional[bool] = None,
|
| 582 |
+
output_hidden_states: Optional[bool] = None,
|
| 583 |
+
return_dict: Optional[bool] = None,
|
| 584 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 585 |
+
r"""
|
| 586 |
+
Returns:
|
| 587 |
+
|
| 588 |
+
"""
|
| 589 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 590 |
+
output_hidden_states = (
|
| 591 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 592 |
+
)
|
| 593 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 594 |
+
|
| 595 |
+
if pixel_values is None:
|
| 596 |
+
raise ValueError("You have to specify pixel_values")
|
| 597 |
+
|
| 598 |
+
hidden_states = self.embeddings(pixel_values)
|
| 599 |
+
# hidden_states = self.pre_layrnorm(hidden_states)
|
| 600 |
+
|
| 601 |
+
encoder_outputs = self.encoder(
|
| 602 |
+
hidden_states=hidden_states,
|
| 603 |
+
output_attentions=output_attentions,
|
| 604 |
+
output_hidden_states=output_hidden_states,
|
| 605 |
+
return_dict=return_dict,
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
last_hidden_state = encoder_outputs[0]
|
| 609 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 610 |
+
pooled_output = self.post_layernorm(pooled_output)
|
| 611 |
+
|
| 612 |
+
if not return_dict:
|
| 613 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 614 |
+
|
| 615 |
+
return BaseModelOutputWithPooling(
|
| 616 |
+
last_hidden_state=last_hidden_state,
|
| 617 |
+
pooler_output=pooled_output,
|
| 618 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 619 |
+
attentions=encoder_outputs.attentions,
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
class BiomedCLIPModel(CLIPPreTrainedModel):
|
| 624 |
+
config_class = BiomedCLIPConfig
|
| 625 |
+
_no_split_modules = ["BiomedCLIPTextEmbeddings", "BiomedCLIPEncoderLayer"]
|
| 626 |
+
|
| 627 |
+
def __init__(self, config: BiomedCLIPConfig):
|
| 628 |
+
super().__init__(config)
|
| 629 |
+
|
| 630 |
+
if not isinstance(config.text_config, CLIPTextConfig):
|
| 631 |
+
raise ValueError(
|
| 632 |
+
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
| 633 |
+
f" {type(config.text_config)}."
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
if not isinstance(config.vision_config, CLIPVisionConfig):
|
| 637 |
+
raise ValueError(
|
| 638 |
+
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
| 639 |
+
f" {type(config.vision_config)}."
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
text_config = config.text_config
|
| 643 |
+
text_projection_config = config.text_projection_config
|
| 644 |
+
vision_config = config.vision_config
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
self.projection_dim = config.projection_dim
|
| 648 |
+
self.text_embed_dim = text_config.hidden_size
|
| 649 |
+
self.vision_embed_dim = vision_config.hidden_size
|
| 650 |
+
|
| 651 |
+
self.text_model = BiomedCLIPTextTransformer(text_config)
|
| 652 |
+
self.vision_model = BiomedCLIPVisionTransformer(vision_config)
|
| 653 |
+
|
| 654 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
| 655 |
+
|
| 656 |
+
self.text_projection = BiomedCLIPTextProjection(text_projection_config)
|
| 657 |
+
|
| 658 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
| 659 |
+
|
| 660 |
+
# Initialize weights and apply final processing
|
| 661 |
+
self.post_init()
|
| 662 |
+
|
| 663 |
+
def get_text_features(
|
| 664 |
+
self,
|
| 665 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 666 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 667 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 668 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 669 |
+
output_attentions: Optional[bool] = None,
|
| 670 |
+
output_hidden_states: Optional[bool] = None,
|
| 671 |
+
return_dict: Optional[bool] = None,
|
| 672 |
+
) -> torch.FloatTensor:
|
| 673 |
+
r"""
|
| 674 |
+
Returns:
|
| 675 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
| 676 |
+
applying the projection layer to the pooled output of [`CLIPTextModel`].
|
| 677 |
+
|
| 678 |
+
Examples:
|
| 679 |
+
|
| 680 |
+
```python
|
| 681 |
+
>>> from transformers import AutoTokenizer, CLIPModel
|
| 682 |
+
|
| 683 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 684 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
| 685 |
+
|
| 686 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
| 687 |
+
>>> text_features = model.get_text_features(**inputs)
|
| 688 |
+
```"""
|
| 689 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 690 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 691 |
+
output_hidden_states = (
|
| 692 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 693 |
+
)
|
| 694 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 695 |
+
|
| 696 |
+
text_outputs = self.text_model(
|
| 697 |
+
input_ids=input_ids,
|
| 698 |
+
attention_mask=attention_mask,
|
| 699 |
+
token_type_ids=token_type_ids,
|
| 700 |
+
position_ids=position_ids,
|
| 701 |
+
output_attentions=output_attentions,
|
| 702 |
+
output_hidden_states=output_hidden_states,
|
| 703 |
+
return_dict=return_dict,
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
pooled_output = text_outputs[1]
|
| 707 |
+
text_features = self.text_projection(pooled_output)
|
| 708 |
+
|
| 709 |
+
return text_features
|
| 710 |
+
|
| 711 |
+
def get_image_features(
|
| 712 |
+
self,
|
| 713 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 714 |
+
output_attentions: Optional[bool] = None,
|
| 715 |
+
output_hidden_states: Optional[bool] = None,
|
| 716 |
+
return_dict: Optional[bool] = None,
|
| 717 |
+
) -> torch.FloatTensor:
|
| 718 |
+
r"""
|
| 719 |
+
Returns:
|
| 720 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
| 721 |
+
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
| 722 |
+
|
| 723 |
+
Examples:
|
| 724 |
+
|
| 725 |
+
```python
|
| 726 |
+
>>> from PIL import Image
|
| 727 |
+
>>> import requests
|
| 728 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
| 729 |
+
|
| 730 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 731 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 732 |
+
|
| 733 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 734 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 735 |
+
|
| 736 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 737 |
+
|
| 738 |
+
>>> image_features = model.get_image_features(**inputs)
|
| 739 |
+
```"""
|
| 740 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 741 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 742 |
+
output_hidden_states = (
|
| 743 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 744 |
+
)
|
| 745 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 746 |
+
|
| 747 |
+
vision_outputs = self.vision_model(
|
| 748 |
+
pixel_values=pixel_values,
|
| 749 |
+
output_attentions=output_attentions,
|
| 750 |
+
output_hidden_states=output_hidden_states,
|
| 751 |
+
return_dict=return_dict,
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
pooled_output = vision_outputs[1] # pooled_output
|
| 755 |
+
image_features = self.visual_projection(pooled_output)
|
| 756 |
+
|
| 757 |
+
return image_features
|
| 758 |
+
|
| 759 |
+
def forward(
|
| 760 |
+
self,
|
| 761 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 762 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 763 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 764 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 765 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 766 |
+
return_loss: Optional[bool] = None,
|
| 767 |
+
output_attentions: Optional[bool] = None,
|
| 768 |
+
output_hidden_states: Optional[bool] = None,
|
| 769 |
+
return_dict: Optional[bool] = None,
|
| 770 |
+
) -> Union[Tuple, CLIPOutput]:
|
| 771 |
+
r"""
|
| 772 |
+
Returns:
|
| 773 |
+
|
| 774 |
+
Examples:
|
| 775 |
+
|
| 776 |
+
```python
|
| 777 |
+
>>> from PIL import Image
|
| 778 |
+
>>> import requests
|
| 779 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
| 780 |
+
|
| 781 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 782 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 783 |
+
|
| 784 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 785 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 786 |
+
|
| 787 |
+
>>> inputs = processor(
|
| 788 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
| 789 |
+
... )
|
| 790 |
+
|
| 791 |
+
>>> outputs = model(**inputs)
|
| 792 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 793 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
| 794 |
+
```"""
|
| 795 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 796 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 797 |
+
output_hidden_states = (
|
| 798 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 799 |
+
)
|
| 800 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 801 |
+
|
| 802 |
+
vision_outputs = self.vision_model(
|
| 803 |
+
pixel_values=pixel_values,
|
| 804 |
+
output_attentions=output_attentions,
|
| 805 |
+
output_hidden_states=output_hidden_states,
|
| 806 |
+
return_dict=return_dict,
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
text_outputs = self.text_model(
|
| 810 |
+
input_ids=input_ids,
|
| 811 |
+
token_type_ids=token_type_ids,
|
| 812 |
+
attention_mask=attention_mask,
|
| 813 |
+
position_ids=position_ids,
|
| 814 |
+
output_attentions=output_attentions,
|
| 815 |
+
output_hidden_states=output_hidden_states,
|
| 816 |
+
return_dict=return_dict,
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
image_embeds = vision_outputs[1]
|
| 820 |
+
image_embeds = self.visual_projection(image_embeds)
|
| 821 |
+
|
| 822 |
+
text_embeds = text_outputs[1]
|
| 823 |
+
text_embeds = self.text_projection(text_embeds)
|
| 824 |
+
|
| 825 |
+
# normalized features
|
| 826 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 827 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 828 |
+
|
| 829 |
+
# cosine similarity as logits
|
| 830 |
+
logit_scale = self.logit_scale.exp()
|
| 831 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
| 832 |
+
logits_per_image = logits_per_text.t()
|
| 833 |
+
|
| 834 |
+
loss = None
|
| 835 |
+
if return_loss:
|
| 836 |
+
loss = clip_loss(logits_per_text)
|
| 837 |
+
|
| 838 |
+
if not return_dict:
|
| 839 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
| 840 |
+
return ((loss,) + output) if loss is not None else output
|
| 841 |
+
|
| 842 |
+
return CLIPOutput(
|
| 843 |
+
loss=loss,
|
| 844 |
+
logits_per_image=logits_per_image,
|
| 845 |
+
logits_per_text=logits_per_text,
|
| 846 |
+
text_embeds=text_embeds,
|
| 847 |
+
image_embeds=image_embeds,
|
| 848 |
+
text_model_output=text_outputs,
|
| 849 |
+
vision_model_output=vision_outputs,
|
| 850 |
+
)
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
class BiomedCLIPForImageClassification(CLIPPreTrainedModel):
|
| 854 |
+
main_input_name = "pixel_values"
|
| 855 |
+
|
| 856 |
+
def __init__(self, config: BiomedCLIPConfig) -> None:
|
| 857 |
+
super().__init__(config)
|
| 858 |
+
|
| 859 |
+
self.num_labels = config.num_labels
|
| 860 |
+
self.vision_model = BiomedCLIPVisionTransformer(config.vision_config)
|
| 861 |
+
|
| 862 |
+
# Classifier head
|
| 863 |
+
self.classifier = (
|
| 864 |
+
nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
# Initialize weights and apply final processing
|
| 868 |
+
self.post_init()
|
| 869 |
+
|
| 870 |
+
def forward(
|
| 871 |
+
self,
|
| 872 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 873 |
+
labels: Optional[torch.Tensor] = None,
|
| 874 |
+
output_attentions: Optional[bool] = None,
|
| 875 |
+
output_hidden_states: Optional[bool] = None,
|
| 876 |
+
return_dict: Optional[bool] = None,
|
| 877 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
| 878 |
+
r"""
|
| 879 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 880 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
| 881 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 882 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 883 |
+
"""
|
| 884 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 885 |
+
output_hidden_states = (
|
| 886 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 887 |
+
)
|
| 888 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 889 |
+
|
| 890 |
+
outputs = self.vision_model(
|
| 891 |
+
pixel_values,
|
| 892 |
+
output_attentions=output_attentions,
|
| 893 |
+
output_hidden_states=output_hidden_states,
|
| 894 |
+
return_dict=return_dict,
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
sequence_output = outputs[0]
|
| 898 |
+
|
| 899 |
+
# average pool the patch tokens
|
| 900 |
+
sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
|
| 901 |
+
# apply classifier
|
| 902 |
+
logits = self.classifier(sequence_output)
|
| 903 |
+
|
| 904 |
+
loss = None
|
| 905 |
+
if labels is not None:
|
| 906 |
+
# move labels to correct device to enable model parallelism
|
| 907 |
+
labels = labels.to(logits.device)
|
| 908 |
+
if self.config.problem_type is None:
|
| 909 |
+
if self.num_labels == 1:
|
| 910 |
+
self.config.problem_type = "regression"
|
| 911 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 912 |
+
self.config.problem_type = "single_label_classification"
|
| 913 |
+
else:
|
| 914 |
+
self.config.problem_type = "multi_label_classification"
|
| 915 |
+
|
| 916 |
+
if self.config.problem_type == "regression":
|
| 917 |
+
loss_fct = MSELoss()
|
| 918 |
+
if self.num_labels == 1:
|
| 919 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 920 |
+
else:
|
| 921 |
+
loss = loss_fct(logits, labels)
|
| 922 |
+
elif self.config.problem_type == "single_label_classification":
|
| 923 |
+
loss_fct = CrossEntropyLoss()
|
| 924 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 925 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 926 |
+
loss_fct = BCEWithLogitsLoss()
|
| 927 |
+
loss = loss_fct(logits, labels)
|
| 928 |
+
|
| 929 |
+
if not return_dict:
|
| 930 |
+
output = (logits,) + outputs[2:]
|
| 931 |
+
return ((loss,) + output) if loss is not None else output
|
| 932 |
+
|
| 933 |
+
return ImageClassifierOutput(
|
| 934 |
+
loss=loss,
|
| 935 |
+
logits=logits,
|
| 936 |
+
hidden_states=outputs.hidden_states,
|
| 937 |
+
attentions=outputs.attentions,
|
| 938 |
+
)
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": 224,
|
| 3 |
+
"do_center_crop": true,
|
| 4 |
+
"do_normalize": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 7 |
+
"tokenizer_type": "BertTokenizer",
|
| 8 |
+
"image_mean": [
|
| 9 |
+
0.48145466,
|
| 10 |
+
0.4578275,
|
| 11 |
+
0.40821073
|
| 12 |
+
],
|
| 13 |
+
"image_std": [
|
| 14 |
+
0.26862954,
|
| 15 |
+
0.26130258,
|
| 16 |
+
0.27577711
|
| 17 |
+
],
|
| 18 |
+
"resample": 3,
|
| 19 |
+
"size": 224
|
| 20 |
+
}
|
processing_biomed_clip.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Image/Text processor class for CLIP
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import warnings
|
| 20 |
+
|
| 21 |
+
from transformers.processing_utils import ProcessorMixin
|
| 22 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class BiomedCLIPProcessor(ProcessorMixin):
|
| 26 |
+
r"""
|
| 27 |
+
Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor.
|
| 28 |
+
|
| 29 |
+
[`CLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`CLIPTokenizerFast`]. See the
|
| 30 |
+
[`~CLIPProcessor.__call__`] and [`~CLIPProcessor.decode`] for more information.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
image_processor ([`CLIPImageProcessor`], *optional*):
|
| 34 |
+
The image processor is a required input.
|
| 35 |
+
tokenizer ([`CLIPTokenizerFast`], *optional*):
|
| 36 |
+
The tokenizer is a required input.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
attributes = ["image_processor", "tokenizer"]
|
| 40 |
+
image_processor_class = "CLIPImageProcessor"
|
| 41 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
| 42 |
+
|
| 43 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
| 44 |
+
feature_extractor = None
|
| 45 |
+
if "feature_extractor" in kwargs:
|
| 46 |
+
warnings.warn(
|
| 47 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
| 48 |
+
" instead.",
|
| 49 |
+
FutureWarning,
|
| 50 |
+
)
|
| 51 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
| 52 |
+
|
| 53 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
| 54 |
+
if image_processor is None:
|
| 55 |
+
raise ValueError("You need to specify an `image_processor`.")
|
| 56 |
+
if tokenizer is None:
|
| 57 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
| 58 |
+
|
| 59 |
+
super().__init__(image_processor, tokenizer)
|
| 60 |
+
|
| 61 |
+
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
| 62 |
+
"""
|
| 63 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 64 |
+
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 65 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 66 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 67 |
+
of the above two methods for more information.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 71 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 72 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 73 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 74 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 75 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 76 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 77 |
+
|
| 78 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 79 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 80 |
+
|
| 81 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 82 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 83 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 84 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
| 88 |
+
|
| 89 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 90 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 91 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 92 |
+
`None`).
|
| 93 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 94 |
+
"""
|
| 95 |
+
tokenizer_kwargs, image_processor_kwargs = {}, {}
|
| 96 |
+
if kwargs:
|
| 97 |
+
tokenizer_kwargs = {k: v for k, v in kwargs.items() if k not in self.image_processor._valid_processor_keys}
|
| 98 |
+
image_processor_kwargs = {
|
| 99 |
+
k: v for k, v in kwargs.items() if k in self.image_processor._valid_processor_keys
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
if text is None and images is None:
|
| 103 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
| 104 |
+
|
| 105 |
+
if text is not None:
|
| 106 |
+
encoding = self.tokenizer(text, return_tensors=return_tensors, **tokenizer_kwargs)
|
| 107 |
+
|
| 108 |
+
if images is not None:
|
| 109 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **image_processor_kwargs)
|
| 110 |
+
|
| 111 |
+
if text is not None and images is not None:
|
| 112 |
+
encoding["pixel_values"] = image_features.pixel_values
|
| 113 |
+
return encoding
|
| 114 |
+
elif text is not None:
|
| 115 |
+
return encoding
|
| 116 |
+
else:
|
| 117 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
| 118 |
+
|
| 119 |
+
def batch_decode(self, *args, **kwargs):
|
| 120 |
+
"""
|
| 121 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 122 |
+
refer to the docstring of this method for more information.
|
| 123 |
+
"""
|
| 124 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 125 |
+
|
| 126 |
+
def decode(self, *args, **kwargs):
|
| 127 |
+
"""
|
| 128 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 129 |
+
the docstring of this method for more information.
|
| 130 |
+
"""
|
| 131 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 132 |
+
|
| 133 |
+
@property
|
| 134 |
+
def model_input_names(self):
|
| 135 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 136 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 137 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def feature_extractor_class(self):
|
| 141 |
+
warnings.warn(
|
| 142 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
| 143 |
+
FutureWarning,
|
| 144 |
+
)
|
| 145 |
+
return self.image_processor_class
|
| 146 |
+
|
| 147 |
+
@property
|
| 148 |
+
def feature_extractor(self):
|
| 149 |
+
warnings.warn(
|
| 150 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
| 151 |
+
FutureWarning,
|
| 152 |
+
)
|
| 153 |
+
return self.image_processor
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5bdc400de59a85620ddc7584d06913dc901c47f22647899c6addec71b9a5c9a2
|
| 3 |
+
size 783733062
|