| # Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models | |
| [[paper](https://arxiv.org/abs/2410.10733)] [[GitHub](https://github.com/mit-han-lab/efficientvit)] | |
|  | |
| <p align="center"> | |
| <b> Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders. | |
| </p> | |
|  | |
| <p align="center"> | |
| <b> Figure 2: DC-AE delivers significant training and inference speedup without performance drop. | |
| </p> | |
|  | |
| <p align="center"> | |
| <img src="assets/dc_ae_sana.jpg" width="1200"> | |
| </p> | |
| <p align="center"> | |
| <b> Figure 3: DC-AE enables efficient text-to-image generation on the laptop. | |
| </p> | |
| ## Abstract | |
| We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. | |
| ## Usage | |
| ### Deep Compression Autoencoder | |
| ```python | |
| # build DC-AE models | |
| # full DC-AE model list: https://huggingface.co/collections/mit-han-lab/dc-ae-670085b9400ad7197bb1009b | |
| from efficientvit.ae_model_zoo import DCAE_HF | |
| dc_ae = DCAE_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0") | |
| # encode | |
| from PIL import Image | |
| import torch | |
| import torchvision.transforms as transforms | |
| from torchvision.utils import save_image | |
| from efficientvit.apps.utils.image import DMCrop | |
| device = torch.device("cuda") | |
| dc_ae = dc_ae.to(device).eval() | |
| transform = transforms.Compose([ | |
| DMCrop(512), # resolution | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
| ]) | |
| image = Image.open("assets/fig/girl.png") | |
| x = transform(image)[None].to(device) | |
| latent = dc_ae.encode(x) | |
| print(latent.shape) | |
| # decode | |
| y = dc_ae.decode(latent) | |
| save_image(y * 0.5 + 0.5, "demo_dc_ae.png") | |
| ``` | |
| ### Efficient Diffusion Models with DC-AE | |
| ```python | |
| # build DC-AE-Diffusion models | |
| # full DC-AE-Diffusion model list: https://huggingface.co/collections/mit-han-lab/dc-ae-diffusion-670dbb8d6b6914cf24c1a49d | |
| from efficientvit.diffusion_model_zoo import DCAE_Diffusion_HF | |
| dc_ae_diffusion = DCAE_Diffusion_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0-uvit-h-in-512px-train2000k") | |
| # denoising on the latent space | |
| import torch | |
| import numpy as np | |
| from torchvision.utils import save_image | |
| torch.set_grad_enabled(False) | |
| device = torch.device("cuda") | |
| dc_ae_diffusion = dc_ae_diffusion.to(device).eval() | |
| seed = 0 | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| eval_generator = torch.Generator(device=device) | |
| eval_generator.manual_seed(seed) | |
| prompts = torch.tensor( | |
| [279, 333, 979, 936, 933, 145, 497, 1, 248, 360, 793, 12, 387, 437, 938, 978], dtype=torch.int, device=device | |
| ) | |
| num_samples = prompts.shape[0] | |
| prompts_null = 1000 * torch.ones((num_samples,), dtype=torch.int, device=device) | |
| latent_samples = dc_ae_diffusion.diffusion_model.generate(prompts, prompts_null, 6.0, eval_generator) | |
| latent_samples = latent_samples / dc_ae_diffusion.scaling_factor | |
| # decode | |
| image_samples = dc_ae_diffusion.autoencoder.decode(latent_samples) | |
| save_image(image_samples * 0.5 + 0.5, "demo_dc_ae_diffusion.png", nrow=int(np.sqrt(num_samples))) | |
| ``` | |
| ## Reference | |
| If DC-AE is useful or relevant to your research, please kindly recognize our contributions by citing our papers: | |
| ``` | |
| @article{chen2024deep, | |
| title={Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models}, | |
| author={Chen, Junyu and Cai, Han and Chen, Junsong and Xie, Enze and Yang, Shang and Tang, Haotian and Li, Muyang and Lu, Yao and Han, Song}, | |
| journal={arXiv preprint arXiv:2410.10733}, | |
| year={2024} | |
| } | |
| ``` | |