metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:80
- loss:CoSENTLoss
base_model: abdeljalilELmajjodi/model
widget:
- source_sentence: >-
Two adults, one female in white, with shades and one male, gray clothes,
walking across a street, away from a eatery with a blurred image of a dark
colored red shirted person in the foreground.
sentences:
- Two people ride bicycles into a tunnel.
- There are people just getting on a train
- There are children present
- source_sentence: >-
A man with blond-hair, and a brown shirt drinking out of a public water
fountain.
sentences:
- Some women are hugging on vacation.
- The family is sitting down for dinner.
- >-
A blond man wearing a brown shirt is reading a book on a bench in the
park
- source_sentence: Two women who just had lunch hugging and saying goodbye.
sentences:
- There are two woman in this picture.
- >-
Two adults run across the street to get away from a red shirted person
chasing them.
- The woman is wearing black.
- source_sentence: A woman in a green jacket and hood over her head looking towards a valley.
sentences:
- The woman is wearing green.
- A woman in white.
- A man is drinking juice.
- source_sentence: >-
An older man sits with his orange juice at a small table in a coffee shop
while employees in bright colored shirts smile in the background.
sentences:
- They are protesting outside the capital.
- A couple are playing frisbee with a young child at the beach.
- A boy flips a burger.
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on abdeljalilELmajjodi/model
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pair score evaluator dev
type: pair-score-evaluator-dev
metrics:
- type: pearson_cosine
value: -0.12381534704198764
name: Pearson Cosine
- type: spearman_cosine
value: -0.06398099132915955
name: Spearman Cosine
SentenceTransformer based on abdeljalilELmajjodi/model
This is a sentence-transformers model finetuned from abdeljalilELmajjodi/model on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: abdeljalilELmajjodi/model
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'An older man sits with his orange juice at a small table in a coffee shop while employees in bright colored shirts smile in the background.',
'A boy flips a burger.',
'They are protesting outside the capital.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pair-score-evaluator-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | -0.1238 |
| spearman_cosine | -0.064 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 80 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 80 samples:
sentence1 sentence2 score type string string float details - min: 10 tokens
- mean: 25.34 tokens
- max: 52 tokens
- min: 5 tokens
- mean: 12.2 tokens
- max: 29 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground.Some people board a train.0.0A few people in a restaurant setting, one of them is drinking orange juice.The people are sitting at desks in school.0.0The school is having a special event in order to show the american culture on how other cultures are dealt with in parties.A school hosts a basketball game.0.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 20 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 20 samples:
sentence1 sentence2 score type string string float details - min: 10 tokens
- mean: 27.3 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 11.1 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.The woman is wearing black.0.0A couple play in the tide with their young son.The family is sitting down for dinner.0.0A couple playing with a little boy on the beach.A couple are playing frisbee with a young child at the beach.0.5 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsnum_train_epochs: 1warmup_ratio: 0.05bf16: Truefp16_full_eval: Trueload_best_model_at_end: Truepush_to_hub: Truegradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Truetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | pair-score-evaluator-dev_spearman_cosine |
|---|---|---|---|---|
| 0.1 | 1 | 3.0033 | - | - |
| 0.5 | 5 | 2.987 | - | - |
| 1.0 | 10 | 3.0908 | 2.6311 | -0.064 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}