|
|
--- |
|
|
library_name: transformers |
|
|
tags: |
|
|
- autotrain |
|
|
- text-generation-inference |
|
|
base_model: |
|
|
- meta-llama/Llama-4-Scout-17B-16E-Instruct |
|
|
- openai-community/gpt2 |
|
|
widget: |
|
|
- source_sentence: 'search_query: i love autotrain' |
|
|
sentences: |
|
|
- 'search_query: huggingface auto train' |
|
|
- 'search_query: hugging face auto train' |
|
|
- 'search_query: i love autotrain' |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- narendra0892/ai-product-crc-training |
|
|
- narendra0892/crc-ai-csv |
|
|
--- |
|
|
|
|
|
# Model Trained Using AutoTrain |
|
|
|
|
|
- Problem type: Sentence Transformers |
|
|
|
|
|
## Validation Metrics |
|
|
No validation metrics available |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the Hugging Face Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'search_query: autotrain', |
|
|
'search_query: auto train', |
|
|
'search_query: i love autotrain', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
``` |