metatune-gpt20b-R1.1-qx86-hi-mlx
Metrics aren't everything. The qx86-hi is more fun than q8-hi. Enjoy the quant.
Sample output:
┌───────────────────────┐ ┌───────────────┐ ┌──────────────┐
│ UI / CLI │<------>| Agent |<-------->| Provider │
└───────────────────────┘ ├───────────────┤ └──────────────┘
│ Thread work │
│ HTTP, FILE, │
│ TOOL, etc. │
└───────┬───────┘
│ DB logging (SQLite)
▼
┌───────────────────────┐
│ SQLite LOG DB │
└───────────────────────┘
┌───────────────────────────────┐
│ PostgreSQL (orchestrator) │
└───────────────────────────────┘
+---------------------------+ +--------------------------+
| PL/Perl functions | | Tables & triggers |
+---------------------------+ +--------------------------+
It's really hard to line up ASCII code, but looked good on screen
This model metatune-gpt20b-R1.1-qx86-hi-mlx was converted to MLX format from EpistemeAI/metatune-gpt20b-R1.1 using mlx-lm version 0.28.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("metatune-gpt20b-R1.1-qx86-hi-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 52
Model tree for nightmedia/metatune-gpt20b-R1.1-qx86-hi-mlx
Base model
openai/gpt-oss-20b
Quantized
unsloth/gpt-oss-20b-unsloth-bnb-4bit
Quantized
EpistemeAI/metatune-gpt20b-R1.1