Coding without MoEs
Collection
some slower than others
•
62 items
•
Updated
This is the Deckard(qx) formula that uses data stores and most attention paths in low precision(6 bit), enhancing vital attention paths, head, context, and embeddings to 8 bit, and quantized with high precision(group size 32).
I am still evaluating this quant, here is a LinkedIn review of one of my pictures with the unsloth-Qwen3-VL-8B-Instruct-qx86x-hi-mlx
This model unsloth-Qwen3-VL-32B-Instruct-qx86x-hi-mlx was converted to MLX format from unsloth/Qwen3-VL-32B-Instruct using mlx-lm version 0.28.4.
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("unsloth-Qwen3-VL-32B-Instruct-qx86x-hi-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
Base model
Qwen/Qwen3-VL-32B-Instruct