|
|
--- |
|
|
license: apache-2.0 |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- fp8 |
|
|
- quantized |
|
|
- llm-compressor |
|
|
- compressed-tensors |
|
|
- red hat |
|
|
base_model: |
|
|
- meta-llama/Llama-4-Scout-17B-16E-Instruct |
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
# Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8 |
|
|
|
|
|
## Model Overview |
|
|
- **Model Architecture:** Llama4ForConditionalGeneration |
|
|
- **Input:** Text, Image |
|
|
- **Output:** Text |
|
|
- **Model Optimizations:** |
|
|
- **Weight quantization:** FP8 |
|
|
- **Activation quantization:** FP8 |
|
|
- **Release Date:** |
|
|
- **Version:** 1.0 |
|
|
- **Model Developers:**: Red Hat |
|
|
|
|
|
Quantized version of [meta-llama/Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct). |
|
|
|
|
|
### Model Optimizations |
|
|
|
|
|
This model was obtained by quantizing the weights and activations of [meta-llama/Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP8 data type. |
|
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
Only the weights and activations of the linear operators within transformers blocks of the language model are quantized. |
|
|
|
|
|
|
|
|
|
|
|
## Deployment |
|
|
|
|
|
### Use with vLLM |
|
|
|
|
|
1. Initialize vLLM server: |
|
|
``` |
|
|
vllm serve nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8 --tensor_parallel_size 8 |
|
|
``` |
|
|
|
|
|
2. Send requests to the server: |
|
|
|
|
|
```python |
|
|
from openai import OpenAI |
|
|
|
|
|
# Modify OpenAI's API key and API base to use vLLM's API server. |
|
|
openai_api_key = "EMPTY" |
|
|
openai_api_base = "http://<your-server-host>:8000/v1" |
|
|
|
|
|
client = OpenAI( |
|
|
api_key=openai_api_key, |
|
|
base_url=openai_api_base, |
|
|
) |
|
|
|
|
|
model = "nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8" |
|
|
|
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image_url", |
|
|
"image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"}, |
|
|
}, |
|
|
{"type": "text", "text": "Describe this image."}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
outputs = client.chat.completions.create( |
|
|
model=model, |
|
|
messages=messages, |
|
|
) |
|
|
|
|
|
generated_text = outputs.choices[0].message.content |
|
|
print(generated_text) |
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Creation |
|
|
|
|
|
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below. |
|
|
|
|
|
<details> |
|
|
<summary>Creation details</summary> |
|
|
|
|
|
```python |
|
|
from transformers import AutoProcessor, LlamaForCausalLM, AutoModelForImageTextToText |
|
|
|
|
|
from llmcompressor import oneshot |
|
|
from llmcompressor.modeling import replace_modules_for_calibration |
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
from llmcompressor.utils import dispatch_for_generation |
|
|
|
|
|
MODEL_ID = "meta-llama/Llama-4-Scout-17B-16E-Instruct" |
|
|
|
|
|
# Load model. |
|
|
model = AutoModelForImageTextToText.from_pretrained(MODEL_ID, dtype="auto") |
|
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
|
model = replace_modules_for_calibration(model) |
|
|
|
|
|
# Configure the quantization algorithm and scheme. |
|
|
# In this case, we: |
|
|
# * quantize the weights to fp8 with per-block quantization |
|
|
# * quantize the activations to fp8 with dynamic token activations |
|
|
ecipe = QuantizationModifier( |
|
|
targets="Linear", |
|
|
scheme="FP8_BLOCK", |
|
|
ignore=[ |
|
|
"re:.*lm_head", |
|
|
"re:.*self_attn", |
|
|
"re:.*router", |
|
|
"re:.*vision_model.*", |
|
|
"re:.*multi_modal_projector.*", |
|
|
"Llama4TextAttention", |
|
|
], |
|
|
) |
|
|
|
|
|
# Apply quantization. |
|
|
oneshot(model=model, recipe=recipe |
|
|
dispatch_for_generation(model) |
|
|
|
|
|
|
|
|
# Save to disk in compressed-tensors format. |
|
|
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block" |
|
|
model.save_pretrained(SAVE_DIR) |
|
|
processor.save_pretrained(SAVE_DIR) |
|
|
``` |
|
|
</details> |
|
|
|
|
|
|
|
|
## Evaluation |
|
|
|
|
|
|
|
|
The model was evaluated on the OpenLLMv1 leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), on reasoning tasks using [lighteval](https://github.com/huggingface/lighteval). |
|
|
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations. |
|
|
|
|
|
<details> |
|
|
<summary>Evaluation details</summary> |
|
|
|
|
|
**Openllm V1** |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \ |
|
|
--tasks openllm \ |
|
|
--write_out \ |
|
|
--batch_size auto \ |
|
|
--show_config |
|
|
``` |
|
|
|
|
|
|
|
|
**Openllm V2** |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \ |
|
|
--tasks leaderboard \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--write_out \ |
|
|
--batch_size auto \ |
|
|
--show_config |
|
|
``` |
|
|
|
|
|
|
|
|
**Coding Benchmarks** |
|
|
|
|
|
``` |
|
|
evalplus.evaluate --model "nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8" \ |
|
|
--dataset "humaneval" \ |
|
|
--backend vllm \ |
|
|
--tp 4 \ |
|
|
--greedy |
|
|
evalplus.evaluate --model "nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8" \ |
|
|
--dataset "mbpp" \ |
|
|
--backend vllm \ |
|
|
--tp 4 \ |
|
|
--greedy |
|
|
``` |
|
|
|
|
|
|
|
|
**Multimodal Evaluation** |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm-vlm \ |
|
|
--model_args pretrained="nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \ |
|
|
--tasks mmlu \ |
|
|
--apply_chat_template \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
</details> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### Accuracy |
|
|
<table> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Category</th> |
|
|
<th>Metric</th> |
|
|
<th>meta-llama/Llama-4-Scout-17B-16E-Instruct</th> |
|
|
<th>nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8</th> |
|
|
<th>Recovery (%)</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<!-- OpenLLM Leaderboard V1 --> |
|
|
<tr> |
|
|
<td rowspan="7"><b>OpenLLM V1</b></td> |
|
|
<td>ARC-Challenge (Acc-Norm, 25-shot)</td> |
|
|
<td>69.62</td> |
|
|
<td>68.60</td> |
|
|
<td>98.53</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>GSM8K (Strict-Match, 5-shot)</td> |
|
|
<td>90.52</td> |
|
|
<td>90.90</td> |
|
|
<td>100.42</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>HellaSwag (Acc-Norm, 10-shot)</td> |
|
|
<td>85.27</td> |
|
|
<td>85.24</td> |
|
|
<td>99.96</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MMLU (Acc, 5-shot)</td> |
|
|
<td>80.49</td> |
|
|
<td>80.48</td> |
|
|
<td>99.99</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>TruthfulQA (MC2, 0-shot)</td> |
|
|
<td>61.28</td> |
|
|
<td>61.30</td> |
|
|
<td>100.03</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Winogrande (Acc, 5-shot)</td> |
|
|
<td>77.82</td> |
|
|
<td>77.35</td> |
|
|
<td>99.39</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average Score</b></td> |
|
|
<td><b>77.50</b></td> |
|
|
<td><b>77.31</b></td> |
|
|
<td><b>99.75</b></td> |
|
|
</tr> |
|
|
<!-- OpenLLM Leaderboard V2 --> |
|
|
<tr> |
|
|
<td rowspan="7"><b>OpenLLM V2</b></td> |
|
|
<td>IFEval (Inst Level Strict Acc, 0-shot)</td> |
|
|
<td>89.09</td> |
|
|
<td>89.93</td> |
|
|
<td>100.94</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>BBH (Acc-Norm, 3-shot)</td> |
|
|
<td>65.02</td> |
|
|
<td>65.11</td> |
|
|
<td>100.13</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Math-Hard (Exact-Match, 4-shot)</td> |
|
|
<td>57.93</td> |
|
|
<td>57.85</td> |
|
|
<td>99.87</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>GPQA (Acc-Norm, 0-shot)</td> |
|
|
<td>30.45</td> |
|
|
<td>30.70</td> |
|
|
<td>100.83</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MUSR (Acc-Norm, 0-shot)</td> |
|
|
<td>42.99</td> |
|
|
<td>43.39</td> |
|
|
<td>100.92</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MMLU-Pro (Acc, 5-shot)</td> |
|
|
<td>55.74</td> |
|
|
<td>55.58</td> |
|
|
<td>99.70</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average Score</b></td> |
|
|
<td><b>56.87</b></td> |
|
|
<td><b>57.09</b></td> |
|
|
<td><b>100.39</b></td> |
|
|
</tr> |
|
|
<td rowspan="4" ><strong>Coding</strong> |
|
|
</td> |
|
|
<td>HumanEval pass@1 |
|
|
</td> |
|
|
<td>abc |
|
|
</td> |
|
|
<td>84.10 |
|
|
</td> |
|
|
<td>xyz |
|
|
</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>HumanEval+ pass@1 |
|
|
</td> |
|
|
<td>abc |
|
|
</td> |
|
|
<td>76.80 |
|
|
</td> |
|
|
<td>xyz |
|
|
</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MBPP pass@1 |
|
|
</td> |
|
|
<td>abc |
|
|
</td> |
|
|
<td>81.70 |
|
|
</td> |
|
|
<td>xyz |
|
|
</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MBPP+ pass@1 |
|
|
</td> |
|
|
<td>abc |
|
|
</td> |
|
|
<td>65.30 |
|
|
</td> |
|
|
<td>xyz |
|
|
</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="6" ><strong>Multi-modal</strong> |
|
|
</td> |
|
|
<td>MMMU (val) |
|
|
</td> |
|
|
<td>70.77 |
|
|
</td> |
|
|
<td>70.70 |
|
|
</td> |
|
|
<td>99.99 |
|
|
</td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |