krishnateja95's picture
Update README.md
44050b0 verified
---
license: apache-2.0
pipeline_tag: text-generation
tags:
- fp8
- quantized
- llm-compressor
- compressed-tensors
- red hat
base_model:
- meta-llama/Llama-4-Scout-17B-16E-Instruct
---
# Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8
## Model Overview
- **Model Architecture:** Llama4ForConditionalGeneration
- **Input:** Text, Image
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:**
- **Version:** 1.0
- **Model Developers:**: Red Hat
Quantized version of [meta-llama/Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct).
### Model Optimizations
This model was obtained by quantizing the weights and activations of [meta-llama/Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
## Deployment
### Use with vLLM
1. Initialize vLLM server:
```
vllm serve nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8 --tensor_parallel_size 8
```
2. Send requests to the server:
```python
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8"
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
},
{"type": "text", "text": "Describe this image."},
],
}
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
```
## Creation
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.
<details>
<summary>Creation details</summary>
```python
from transformers import AutoProcessor, LlamaForCausalLM, AutoModelForImageTextToText
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
MODEL_ID = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
# Load model.
model = AutoModelForImageTextToText.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-block quantization
# * quantize the activations to fp8 with dynamic token activations
ecipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=[
"re:.*lm_head",
"re:.*self_attn",
"re:.*router",
"re:.*vision_model.*",
"re:.*multi_modal_projector.*",
"Llama4TextAttention",
],
)
# Apply quantization.
oneshot(model=model, recipe=recipe
dispatch_for_generation(model)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
```
</details>
## Evaluation
The model was evaluated on the OpenLLMv1 leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), on reasoning tasks using [lighteval](https://github.com/huggingface/lighteval).
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
<details>
<summary>Evaluation details</summary>
**Openllm V1**
```
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
```
**Openllm V2**
```
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
```
**Coding Benchmarks**
```
evalplus.evaluate --model "nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8" \
--dataset "humaneval" \
--backend vllm \
--tp 4 \
--greedy
evalplus.evaluate --model "nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8" \
--dataset "mbpp" \
--backend vllm \
--tp 4 \
--greedy
```
**Multimodal Evaluation**
```
lm_eval \
--model vllm-vlm \
--model_args pretrained="nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
--tasks mmlu \
--apply_chat_template \
--batch_size auto
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>meta-llama/Llama-4-Scout-17B-16E-Instruct</th>
<th>nm-testing/Llama-4-Scout-17B-16E-Instruct-BLOCK-FP8</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<!-- OpenLLM Leaderboard V1 -->
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
<td>69.62</td>
<td>68.60</td>
<td>98.53</td>
</tr>
<tr>
<td>GSM8K (Strict-Match, 5-shot)</td>
<td>90.52</td>
<td>90.90</td>
<td>100.42</td>
</tr>
<tr>
<td>HellaSwag (Acc-Norm, 10-shot)</td>
<td>85.27</td>
<td>85.24</td>
<td>99.96</td>
</tr>
<tr>
<td>MMLU (Acc, 5-shot)</td>
<td>80.49</td>
<td>80.48</td>
<td>99.99</td>
</tr>
<tr>
<td>TruthfulQA (MC2, 0-shot)</td>
<td>61.28</td>
<td>61.30</td>
<td>100.03</td>
</tr>
<tr>
<td>Winogrande (Acc, 5-shot)</td>
<td>77.82</td>
<td>77.35</td>
<td>99.39</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>77.50</b></td>
<td><b>77.31</b></td>
<td><b>99.75</b></td>
</tr>
<!-- OpenLLM Leaderboard V2 -->
<tr>
<td rowspan="7"><b>OpenLLM V2</b></td>
<td>IFEval (Inst Level Strict Acc, 0-shot)</td>
<td>89.09</td>
<td>89.93</td>
<td>100.94</td>
</tr>
<tr>
<td>BBH (Acc-Norm, 3-shot)</td>
<td>65.02</td>
<td>65.11</td>
<td>100.13</td>
</tr>
<tr>
<td>Math-Hard (Exact-Match, 4-shot)</td>
<td>57.93</td>
<td>57.85</td>
<td>99.87</td>
</tr>
<tr>
<td>GPQA (Acc-Norm, 0-shot)</td>
<td>30.45</td>
<td>30.70</td>
<td>100.83</td>
</tr>
<tr>
<td>MUSR (Acc-Norm, 0-shot)</td>
<td>42.99</td>
<td>43.39</td>
<td>100.92</td>
</tr>
<tr>
<td>MMLU-Pro (Acc, 5-shot)</td>
<td>55.74</td>
<td>55.58</td>
<td>99.70</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>56.87</b></td>
<td><b>57.09</b></td>
<td><b>100.39</b></td>
</tr>
<td rowspan="4" ><strong>Coding</strong>
</td>
<td>HumanEval pass@1
</td>
<td>abc
</td>
<td>84.10
</td>
<td>xyz
</td>
</tr>
<tr>
<td>HumanEval+ pass@1
</td>
<td>abc
</td>
<td>76.80
</td>
<td>xyz
</td>
</tr>
<tr>
<td>MBPP pass@1
</td>
<td>abc
</td>
<td>81.70
</td>
<td>xyz
</td>
</tr>
<tr>
<td>MBPP+ pass@1
</td>
<td>abc
</td>
<td>65.30
</td>
<td>xyz
</td>
</tr>
<tr>
<td rowspan="6" ><strong>Multi-modal</strong>
</td>
<td>MMMU (val)
</td>
<td>70.77
</td>
<td>70.70
</td>
<td>99.99
</td>
</tr>
</tbody>
</table>