Superpositional Gradient Descent: Harnessing Quantum Principles for Model Training
Paper
•
2511.01918
•
Published
•
4
Building interactive demos to scikit-learn examples 🧡
Obsidian_Vault. I'd argue it's far more context-efficient than any other Obsidian MCP I've seen, and doesn't require any plugins. Also some big improvements to the Web_Search and Web_Fetch tools.File_System tool, but it works so well for navigating Obsidian without unnecessary context. It supports recursive (full-text) search across the entire vault, and supports offset so the agent can "scroll" through a document without re-consuming tokens.OBSIDIAN_VAULT_ROOT environment variable to your vault's root path. If you don't use Obsidian, this is perfectly usable as simply a read-only filesystem.Web_Search tool previously just used DuckDuckGo as a backend search engine, but now it also supports Bing, Brave, Yahoo, and Wikipedia. Default engine is auto which provides results from all backends in recommended order. Still doesn't require any kind of API or auth for Web_Search.off by default :)Web_Fetch tool that basically executes a cURL request on the URL, returning the full HTML page if necessary.File_System and Shell_Command tools. Using Claude Skills doesn't currently work in the public HF space because of environment restrictions, but using Skills works perfectly well running locally.File_System and Shell_Exec. You can theoretically do basically anything with these two tools, and it should enable support for many Claude Skills. Filesystem, that's the agent's "root". It can perform the following actions : list, read, write, append, mkdir, move, copy, delete, info, help. It's able to keep this all within the scope of one tool call by making the Action field required and all other fields optional. Using a filesystem shouldn't require 15 different tools.File_System and Shell_Exec tools aren't super polished yet, I'll continue to improve the agent's instructions and UX of using the new tools. Most of my testing was done with gpt-oss-20b and if it messes up, it gets the gist after one failed tool call. It should work perfectly fine for the GPU poor.
Qwen3-235B), with only a little bit of context shown from each page.Qwen3-235B) gets the query summary and the original 50 pages with low context, and decides which pages are most relevant to the research topic. The Filterer then outputs the URLs to the relevant pages, which are then re-fetched (with more context) and sent to the Researcher.Qwen3-235B-A22B-Thinking-2507). The researcher sees the summary, searched queries, and fetched links, then writes a thorough research report. The agent using the tool provides the user with a summary of the report and a link to download research_report.txt. The researcher's instructions are similar to some leaked Perplexity sys prompts.HF_READ_TOKEN for inference. Search_DuckDuckGo tool has been further enhanced. It now allows the agent to browse through all pages of results. The results also now include published date (if detected). It also now supports every DDG search types! Default DDG search is called text, but it can also now search by news, images, videos, and books. Fetch_Webpage tool now specifies how much of the page has been truncated, and cursor index, allowing it to pickup where it left off without re-consuming tokens. The model can now also choose to strip CSS selectors to remove excess noise, and there's a new URL Scraper mode that only returns URLs found on the full page.