SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| non_math |
- 'Güneş sisteminde kaç gezegen vardır?'
- 'What is the largest ocean on Earth?'
- 'What is the intake of energy and nutrients by living organisms called?'
|
| math |
- "Bir düzensiz çokgenin kenar uzunlukları 5 cm, 8 cm, 7 cm ve 6 cm'dir. Çokgenin çevresi kaç cm'dir?"
- '27 ÷ 3 = ?'
- 'Bir altıgenin bir iç açısının ölçüsü 120° ise, tüm iç açıların toplamı kaç derecedir?'
|
Evaluation
Metrics
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("serdarcaglar/primary-school-math-question-multi-lang")
preds = model("Bir üçgenin tabanı 12 cm, yüksekliği 8 cm'dir. Üçgenin alanı kaç cm²'dir?")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
1 |
10.3435 |
33 |
| Label |
Training Sample Count |
| math |
459 |
| non_math |
129 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0007 |
1 |
0.1982 |
- |
| 0.0340 |
50 |
0.1009 |
- |
| 0.0680 |
100 |
0.0054 |
- |
| 0.1020 |
150 |
0.002 |
- |
| 0.1361 |
200 |
0.001 |
- |
| 0.1701 |
250 |
0.0023 |
- |
| 0.2041 |
300 |
0.0002 |
- |
| 0.2381 |
350 |
0.0013 |
- |
| 0.2721 |
400 |
0.0004 |
- |
| 0.3061 |
450 |
0.0004 |
- |
| 0.3401 |
500 |
0.0002 |
- |
| 0.3741 |
550 |
0.0001 |
- |
| 0.4082 |
600 |
0.0001 |
- |
| 0.4422 |
650 |
0.0002 |
- |
| 0.4762 |
700 |
0.0001 |
- |
| 0.5102 |
750 |
0.0001 |
- |
| 0.5442 |
800 |
0.0002 |
- |
| 0.5782 |
850 |
0.0002 |
- |
| 0.6122 |
900 |
0.0001 |
- |
| 0.6463 |
950 |
0.0005 |
- |
| 0.6803 |
1000 |
0.0001 |
- |
| 0.7143 |
1050 |
0.0001 |
- |
| 0.7483 |
1100 |
0.0001 |
- |
| 0.7823 |
1150 |
0.0001 |
- |
| 0.8163 |
1200 |
0.0001 |
- |
| 0.8503 |
1250 |
0.0001 |
- |
| 0.8844 |
1300 |
0.0 |
- |
| 0.9184 |
1350 |
0.0002 |
- |
| 0.9524 |
1400 |
0.0001 |
- |
| 0.9864 |
1450 |
0.0001 |
- |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}