MobileNetV3 Custom Model
Model Description
This is a custom MobileNetV3-based model trained for image classification using TensorFlow/Keras.
Model Details
- Architecture: MobileNetV3 (Custom)
- Number of Classes: 10
- Input Size: 224x224
- Framework: TensorFlow/Keras 2.20.0
- Model Layers: 4 layers (custom architecture)
Usage
Quick Start
import tensorflow as tf
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
# Download the model
model_path = hf_hub_download(
repo_id="shifaazzz/mobilenet-v2-custom",
filename="model.h5"
)
# Load the model
model = tf.keras.models.load_model(model_path, compile=False)
# Recompile if needed
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
# Load and preprocess an image
img = Image.open("your_image.jpg").resize((224, 224))
img_array = np.array(img) / 255.0 # Normalize
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
# Make prediction
predictions = model.predict(img_array)
predicted_class = np.argmax(predictions[0])
confidence = predictions[0][predicted_class]
print(f"Predicted Class: {predicted_class}")
print(f"Confidence: {confidence:.2%}")
Troubleshooting
If you encounter loading errors, try:
# Load without compilation
model = tf.keras.models.load_model(model_path, compile=False)
Or check the LOADING_INSTRUCTIONS.md file in this repository for more details.
Files in this Repository
model.h5- The trained model (recommended)saved_model/- TensorFlow SavedModel format (if available)model_weights.h5- Model weights only (if available)model_architecture.json- Model architecture in JSON format (if available)config.json- Model configurationrequirements.txt- Python dependencies
Training Information
[Add details about your training process, dataset, epochs, etc.]
Performance Metrics
[Add your model's accuracy, loss, validation metrics, etc.]
Class Labels
[List your class names here, e.g.:]
0: Class_Name_0
1: Class_Name_1
2: Class_Name_2
...
Citation
If you use this model, please cite appropriately.
- Downloads last month
- 12