ynat-model / README.md
skakak's picture
sj/news-clssifier
49d905a verified
---
library_name: transformers
language:
- ko
license: apache-2.0
base_model: monologg/koelectra-base-v3-discriminator
tags:
- text-classification
- KoELECTRA
- Korean-NLP
- topic-classification
- news-classification
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ynat-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ynat-model
This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue-ynat dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4385
- Accuracy: 0.8590
- Precision: 0.8511
- Recall: 0.8689
- F1: 0.8591
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.2128 | 1.0 | 714 | 0.5046 | 0.8455 | 0.8333 | 0.8607 | 0.8450 |
| 0.2371 | 2.0 | 1428 | 0.4385 | 0.8590 | 0.8511 | 0.8689 | 0.8591 |
| 0.1589 | 3.0 | 2142 | 0.4925 | 0.8574 | 0.8473 | 0.8702 | 0.8581 |
### Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1