|
|
import copy |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.autograd import Variable |
|
|
from .utils import ctx_noparamgrad_and_eval |
|
|
from .base import Attack, LabelMixin |
|
|
from typing import Dict |
|
|
from .utils import batch_multiply |
|
|
from .utils import clamp |
|
|
from .utils import is_float_or_torch_tensor |
|
|
from utils.distributed import DistributedMetric |
|
|
from tqdm import tqdm |
|
|
from torchpack import distributed as dist |
|
|
from utils import accuracy |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
|
|
|
def perturb_deepfool(xvar, yvar, predict, nb_iter=50, overshoot=0.02, ord=np.inf, clip_min=0.0, clip_max=1.0, |
|
|
search_iter=0, device=None): |
|
|
""" |
|
|
Compute DeepFool perturbations (Moosavi-Dezfooli et al, 2016). |
|
|
Arguments: |
|
|
xvar (torch.Tensor): input images. |
|
|
yvar (torch.Tensor): predictions. |
|
|
predict (nn.Module): forward pass function. |
|
|
nb_iter (int): number of iterations. |
|
|
overshoot (float): how much to overshoot the boundary. |
|
|
ord (int): (optional) the order of maximum distortion (inf or 2). |
|
|
clip_min (float): mininum value per input dimension. |
|
|
clip_max (float): maximum value per input dimension. |
|
|
search_iter (int): no of search iterations. |
|
|
device (torch.device): device to work on. |
|
|
Returns: |
|
|
torch.Tensor containing the perturbed input, |
|
|
torch.Tensor containing the perturbation |
|
|
""" |
|
|
|
|
|
x_orig = xvar |
|
|
x = torch.empty_like(xvar).copy_(xvar) |
|
|
x.requires_grad_(True) |
|
|
|
|
|
batch_i = torch.arange(x.shape[0]) |
|
|
r_tot = torch.zeros_like(x.data) |
|
|
for i in range(nb_iter): |
|
|
if x.grad is not None: |
|
|
x.grad.zero_() |
|
|
|
|
|
logits = predict(x) |
|
|
df_inds = np.argsort(logits.detach().cpu().numpy(), axis=-1) |
|
|
df_inds_other, df_inds_orig = df_inds[:, :-1], df_inds[:, -1] |
|
|
df_inds_orig = torch.from_numpy(df_inds_orig) |
|
|
df_inds_orig = df_inds_orig.to(device) |
|
|
not_done_inds = df_inds_orig == yvar |
|
|
if not_done_inds.sum() == 0: |
|
|
break |
|
|
|
|
|
logits[batch_i, df_inds_orig].sum().backward(retain_graph=True) |
|
|
grad_orig = x.grad.data.clone().detach() |
|
|
pert = x.data.new_ones(x.shape[0]) * np.inf |
|
|
w = torch.zeros_like(x.data) |
|
|
|
|
|
for inds in df_inds_other.T: |
|
|
x.grad.zero_() |
|
|
logits[batch_i, inds].sum().backward(retain_graph=True) |
|
|
grad_cur = x.grad.data.clone().detach() |
|
|
with torch.no_grad(): |
|
|
w_k = grad_cur - grad_orig |
|
|
f_k = logits[batch_i, inds] - logits[batch_i, df_inds_orig] |
|
|
if ord == 2: |
|
|
pert_k = torch.abs(f_k) / torch.norm(w_k.flatten(1), 2, -1) |
|
|
elif ord == np.inf: |
|
|
pert_k = torch.abs(f_k) / torch.norm(w_k.flatten(1), 1, -1) |
|
|
else: |
|
|
raise NotImplementedError("Only ord=inf and ord=2 have been implemented") |
|
|
swi = pert_k < pert |
|
|
if swi.sum() > 0: |
|
|
pert[swi] = pert_k[swi] |
|
|
w[swi] = w_k[swi] |
|
|
|
|
|
if ord == 2: |
|
|
r_i = (pert + 1e-6)[:, None, None, None] * w / torch.norm(w.flatten(1), 2, -1)[:, None, None, None] |
|
|
elif ord == np.inf: |
|
|
r_i = (pert + 1e-6)[:, None, None, None] * w.sign() |
|
|
|
|
|
r_tot += r_i * not_done_inds[:, None, None, None].float() |
|
|
x.data = x_orig + (1. + overshoot) * r_tot |
|
|
x.data = torch.clamp(x.data, clip_min, clip_max) |
|
|
|
|
|
x = x.detach() |
|
|
if search_iter > 0: |
|
|
dx = x - x_orig |
|
|
dx_l_low, dx_l_high = torch.zeros_like(dx), torch.ones_like(dx) |
|
|
for i in range(search_iter): |
|
|
dx_l = (dx_l_low + dx_l_high) / 2. |
|
|
dx_x = x_orig + dx_l * dx |
|
|
dx_y = predict(dx_x).argmax(-1) |
|
|
label_stay = dx_y == yvar |
|
|
label_change = dx_y != yvar |
|
|
dx_l_low[label_stay] = dx_l[label_stay] |
|
|
dx_l_high[label_change] = dx_l[label_change] |
|
|
x = dx_x |
|
|
|
|
|
|
|
|
r_tot = x.data - x_orig |
|
|
return x, r_tot |
|
|
|
|
|
|
|
|
|
|
|
class DeepFoolAttack(Attack, LabelMixin): |
|
|
""" |
|
|
DeepFool attack. |
|
|
[Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard, |
|
|
"DeepFool: a simple and accurate method to fool deep neural networks"] |
|
|
Arguments: |
|
|
predict (nn.Module): forward pass function. |
|
|
overshoot (float): how much to overshoot the boundary. |
|
|
nb_iter (int): number of iterations. |
|
|
search_iter (int): no of search iterations. |
|
|
clip_min (float): mininum value per input dimension. |
|
|
clip_max (float): maximum value per input dimension. |
|
|
ord (int): (optional) the order of maximum distortion (inf or 2). |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, predict, overshoot=0.02, nb_iter=50, search_iter=50, clip_min=0., clip_max=1., ord=np.inf): |
|
|
super(DeepFoolAttack, self).__init__(predict, None, clip_min, clip_max) |
|
|
self.overshoot = overshoot |
|
|
self.nb_iter = nb_iter |
|
|
self.search_iter = search_iter |
|
|
self.targeted = False |
|
|
|
|
|
self.ord = ord |
|
|
assert is_float_or_torch_tensor(self.overshoot) |
|
|
|
|
|
def perturb(self, x, y=None): |
|
|
""" |
|
|
Given examples x, returns their adversarial counterparts. |
|
|
Arguments: |
|
|
x (torch.Tensor): input tensor. |
|
|
y (torch.Tensor): label tensor. |
|
|
- if None and self.targeted=False, compute y as predicted labels. |
|
|
Returns: |
|
|
torch.Tensor containing perturbed inputs, |
|
|
torch.Tensor containing the perturbation |
|
|
""" |
|
|
|
|
|
x, y = self._verify_and_process_inputs(x, None) |
|
|
x_adv, r_adv = perturb_deepfool(x, y, self.predict, self.nb_iter, self.overshoot, ord=self.ord, |
|
|
clip_min=self.clip_min, clip_max=self.clip_max, search_iter=self.search_iter, |
|
|
device=device) |
|
|
return x_adv, r_adv |
|
|
def eval_deepfool(self,data_loader_dict: Dict)-> Dict: |
|
|
|
|
|
test_criterion = nn.CrossEntropyLoss().cuda() |
|
|
val_loss = DistributedMetric() |
|
|
val_top1 = DistributedMetric() |
|
|
val_top5 = DistributedMetric() |
|
|
val_advloss = DistributedMetric() |
|
|
val_advtop1 = DistributedMetric() |
|
|
val_advtop5 = DistributedMetric() |
|
|
self.predict.eval() |
|
|
with tqdm( |
|
|
total=len(data_loader_dict["val"]), |
|
|
desc="Eval", |
|
|
disable=not dist.is_master(), |
|
|
) as t: |
|
|
for images, labels in data_loader_dict["val"]: |
|
|
images, labels = images.cuda(), labels.cuda() |
|
|
|
|
|
output = self.predict(images) |
|
|
loss = test_criterion(output, labels) |
|
|
val_loss.update(loss, images.shape[0]) |
|
|
acc1, acc5 = accuracy(output, labels, topk=(1, 5)) |
|
|
val_top5.update(acc5[0], images.shape[0]) |
|
|
val_top1.update(acc1[0], images.shape[0]) |
|
|
with ctx_noparamgrad_and_eval(self.predict): |
|
|
images_adv,_ = self.perturb(images, labels) |
|
|
output_adv = self.predict(images_adv) |
|
|
loss_adv = test_criterion(output_adv,labels) |
|
|
val_advloss.update(loss_adv, images.shape[0]) |
|
|
acc1_adv, acc5_adv = accuracy(output_adv, labels, topk=(1, 5)) |
|
|
val_advtop1.update(acc1_adv[0], images.shape[0]) |
|
|
val_advtop5.update(acc5_adv[0], images.shape[0]) |
|
|
t.set_postfix( |
|
|
{ |
|
|
"loss": val_loss.avg.item(), |
|
|
"top1": val_top1.avg.item(), |
|
|
"top5": val_top5.avg.item(), |
|
|
"adv_loss": val_advloss.avg.item(), |
|
|
"adv_top1": val_advtop1.avg.item(), |
|
|
"adv_top5": val_advtop5.avg.item(), |
|
|
"#samples": val_top1.count.item(), |
|
|
"batch_size": images.shape[0], |
|
|
"img_size": images.shape[2], |
|
|
} |
|
|
) |
|
|
t.update() |
|
|
|
|
|
val_results = { |
|
|
"val_top1": val_top1.avg.item(), |
|
|
"val_top5": val_top5.avg.item(), |
|
|
"val_loss": val_loss.avg.item(), |
|
|
"val_advtop1": val_advtop1.avg.item(), |
|
|
"val_advtop5": val_advtop5.avg.item(), |
|
|
"val_advloss": val_advloss.avg.item(), |
|
|
} |
|
|
return val_results |
|
|
|
|
|
|
|
|
class LinfDeepFoolAttack(DeepFoolAttack): |
|
|
""" |
|
|
DeepFool Attack with order=Linf. |
|
|
Arguments: |
|
|
Arguments: |
|
|
predict (nn.Module): forward pass function. |
|
|
overshoot (float): how much to overshoot the boundary. |
|
|
nb_iter (int): number of iterations. |
|
|
search_iter (int): no of search iterations. |
|
|
clip_min (float): mininum value per input dimension. |
|
|
clip_max (float): maximum value per input dimension. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, predict, overshoot=0.02, nb_iter=50, search_iter=50, clip_min=0., clip_max=1.): |
|
|
|
|
|
ord = np.inf |
|
|
super(LinfDeepFoolAttack, self).__init__( |
|
|
predict=predict, overshoot=overshoot, nb_iter=nb_iter, search_iter=search_iter, clip_min=clip_min, |
|
|
clip_max=clip_max, ord=ord) |
|
|
|
|
|
|
|
|
|
|
|
class L2DeepFoolAttack(DeepFoolAttack): |
|
|
""" |
|
|
DeepFool Attack with order=L2. |
|
|
Arguments: |
|
|
predict (nn.Module): forward pass function. |
|
|
overshoot (float): how much to overshoot the boundary. |
|
|
nb_iter (int): number of iterations. |
|
|
search_iter (int): no of search iterations. |
|
|
clip_min (float): mininum value per input dimension. |
|
|
clip_max (float): maximum value per input dimension. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, predict, overshoot=0.02, nb_iter=50, search_iter=50, clip_min=0., clip_max=1.): |
|
|
|
|
|
ord = 2 |
|
|
super(L2DeepFoolAttack, self).__init__( |
|
|
predict=predict, overshoot=overshoot, nb_iter=nb_iter, search_iter=search_iter, clip_min=clip_min, |
|
|
clip_max=clip_max, ord=ord) |