File size: 26,415 Bytes
f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b 26a38e1 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b f21dc20 1292a2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
import os
import sys
import torch
import pickle
import logging
import tempfile
import requests
import re
import asyncio
import aiohttp
from urllib.parse import quote_plus
from pytube import Search
from PIL import Image
from torchvision import transforms
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, AutoModelForCausalLM
import gradio as gr
import pandas as pd
import plotly.express as px
from reportlab.lib.pagesizes import letter
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage
from reportlab.lib.styles import getSampleStyleSheet
from io import BytesIO
from langchain_huggingface import HuggingFacePipeline
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.chat_history import InMemoryChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from pydub import AudioSegment
from pydub.utils import which
# Local imports (assumed to be available)
from args import get_parser
from model import get_model
from output_utils import prepare_output
# ============== DEVICE CONFIG ==============
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
map_loc = None if torch.cuda.is_available() else "cpu"
logging.getLogger("pytube").setLevel(logging.ERROR)
# ============== LOAD TRANSLATION MODELS ==============
model_envit5_name = "VietAI/envit5-translation"
try:
tokenizer_envit5 = AutoTokenizer.from_pretrained(model_envit5_name)
model_envit5 = AutoModelForSeq2SeqLM.from_pretrained(
model_envit5_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
pipe_envit5 = pipeline(
"text2text-generation",
model=model_envit5,
tokenizer=tokenizer_envit5,
device=0 if torch.cuda.is_available() else -1,
max_new_tokens=512,
do_sample=False
)
except Exception as e:
print(f"Error loading Vietnamese model: {e}")
pipe_envit5 = None
models = {
"Japanese": {"model_name": "Helsinki-NLP/opus-mt-en-jap"},
"Chinese": {"model_name": "Helsinki-NLP/opus-mt-en-zh"}
}
for lang in models:
try:
tokenizer = AutoTokenizer.from_pretrained(models[lang]["model_name"])
model = AutoModelForSeq2SeqLM.from_pretrained(
models[lang]["model_name"],
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
models[lang]["pipe"] = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1,
max_length=512,
batch_size=4 if torch.cuda.is_available() else 1,
truncation=True
)
except Exception as e:
print(f"Error loading {lang} model: {e}")
models[lang]["pipe"] = None
# ============== LOAD CHATBOT MODEL ==============
chatbot_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
chatbot_model = AutoModelForCausalLM.from_pretrained(
"bigscience/bloomz-560m",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
chatbot_pipeline = pipeline(
"text-generation",
model=chatbot_model,
tokenizer=chatbot_tokenizer,
device=0 if torch.cuda.is_available() else -1,
max_new_tokens=100,
do_sample=True,
temperature=0.6,
top_p=0.9,
pad_token_id=chatbot_tokenizer.eos_token_id,
batch_size=1
)
llm = HuggingFacePipeline(pipeline=chatbot_pipeline)
# LangChain Chatbot Setup
prompt = ChatPromptTemplate.from_template("""
You are a professional culinary assistant. You will answer the user's question directly based on the provided recipe.
Do not repeat the recipe or question in your answer. Be concise.
Dish: {title}
Ingredients: {ingredients}
Instructions: {instructions}
User Question: {question}
Answer:
""")
chain = prompt | llm
chat_histories = {}
def get_session_history(session_id):
if session_id not in chat_histories:
chat_histories[session_id] = InMemoryChatMessageHistory()
return chat_histories[session_id]
chatbot_chain = RunnableWithMessageHistory(
chain,
get_session_history,
input_messages_key="question",
history_messages_key="history"
)
# ============== GLOBAL STATE ==============
current_recipe_context = {"context": "", "title": "", "ingredients": [], "instructions": [], "image": None}
# ============== RECIPE FORMAT & TRANSLATE ==============
def format_recipe(title, ingredients, instructions, lang):
emoji = {"title": "π½οΈ", "ingredients": "π§", "instructions": "π"}
titles = {
"en": {"ingredients": "Ingredients", "instructions": "Instructions"},
"ja": {"ingredients": "Ingredients (ζζ)", "instructions": "Instructions (δ½γζΉ)"},
"zh": {"ingredients": "Ingredients (ι£ζ)", "instructions": "Instructions (ζ₯ιͺ€)"},
"vi": {"ingredients": "Ingredients (NguyΓͺn liα»u)", "instructions": "Instructions (CΓ‘ch lΓ m)"},
}
code_mapping = {
"English (original)": "en",
"Japanese": "ja",
"Chinese": "zh",
"Vietnamese": "vi",
}
code = code_mapping.get(lang, "en")
result = [f"### {emoji['title']} {title}", f"**{emoji['ingredients']} {titles[code]['ingredients']}:**"]
result.extend([f"- {i}" for i in ingredients])
result.append(f"\n**{emoji['instructions']} {titles[code]['instructions']}:**")
result.extend([f"{i+1}. {step}" for i, step in enumerate(instructions)])
return "\n".join(result)
def translate_section(text, lang):
if lang == "English (original)":
return text
if lang == "Vietnamese":
if pipe_envit5 is None:
return f"β Vietnamese translation model not available"
try:
max_chunk_length = 400
if len(text) > max_chunk_length:
sentences = text.split('. ')
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < max_chunk_length:
current_chunk += sentence + ". "
else:
chunks.append(current_chunk)
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk)
else:
chunks = [text]
translated_chunks = []
for chunk in chunks:
chunk = f"en-vi: {chunk}"
translated = pipe_envit5(chunk, max_new_tokens=512)[0]["generated_text"]
translated = translated.replace("vi: vi: ", "").replace("vi: Vi: ", "").replace("vi: ", "").strip()
translated_chunks.append(translated)
return " ".join(translated_chunks)
except Exception as e:
print(f"Vietnamese translation error: {e}")
return text
if models.get(lang, {}).get("pipe") is None:
return f"β Translation model for {lang} not available"
try:
max_chunk_length = 400
if len(text) > max_chunk_length:
sentences = text.split('. ')
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < max_chunk_length:
current_chunk += sentence + ". "
else:
chunks.append(current_chunk)
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk)
else:
chunks = [text]
translated_chunks = []
for chunk in chunks:
translated = models[lang]["pipe"](chunk, max_length=512)[0]["translation_text"]
translated_chunks.append(translated)
return " ".join(translated_chunks)
except Exception as e:
print(f"Translation error ({lang}): {e}")
return text
def translate_recipe(lang):
if not current_recipe_context["title"]:
return "β Please generate a recipe from an image first."
title = translate_section(current_recipe_context["title"], lang)
ingrs = [translate_section(i, lang) for i in current_recipe_context["ingredients"]]
instrs = [translate_section(s, lang) for s in current_recipe_context["instructions"]]
return format_recipe(title, ingrs, instrs, lang)
# ============== NUTRITION ANALYSIS ==============
def nutrition_analysis(ingredient_input):
ingredients = " ".join(ingredient_input.strip().split())
api_url = f'https://api.api-ninjas.com/v1/nutrition?query={ingredients}'
headers = {'X-Api-Key': 'AHVy+tpkUoueBNdaFs9nCg==sFZTMRn8ikZVzx6E'}
response = requests.get(api_url, headers=headers)
if response.status_code != 200:
return "β API error or quota exceeded.", None, None, None
data = response.json()
df = pd.DataFrame(data)
numeric_cols = []
for col in df.columns:
if col == "name":
continue
df[col] = pd.to_numeric(df[col], errors="coerce")
if df[col].notna().sum() > 0:
numeric_cols.append(col)
if df.empty or len(numeric_cols) < 3:
return "β οΈ Insufficient numerical data for charts (need at least 3 metrics).", None, None, None
draw_cols = numeric_cols[:3]
fig_bar = px.bar(df, x="name", y=draw_cols[0], title=f"Bar Chart: {draw_cols[0]}", text_auto=True)
pie_data = df[[draw_cols[1], "name"]].dropna()
if pie_data[draw_cols[1]].sum() > 0:
fig_pie = px.pie(pie_data, names="name", values=draw_cols[1], title=f"Pie Chart: {draw_cols[1]}")
else:
fig_pie = px.bar(title="β οΈ Insufficient data for pie chart")
fig_line = px.line(df, x="name", y=draw_cols[2], markers=True, title=f"Line Chart: {draw_cols[2]}")
return "β
Analysis successful!", fig_bar, fig_pie, fig_line
def load_recipe_ingredients():
if not current_recipe_context["ingredients"]:
return "β οΈ No ingredients available. Generate a recipe first."
return "\n".join(current_recipe_context["ingredients"])
# ============== CHATBOT ==============
def clean_response(response):
# Remove everything before "Answer:" if present
if "Answer:" in response:
response = response.split("Answer:")[-1]
# Remove potential repetitions of Dish, Ingredients, Instructions
response = re.sub(r"Dish:.*?(Ingredients:|Instructions:).*?", "", response, flags=re.DOTALL)
response = re.sub(r"Ingredients:.*?(Instructions:).*?", "", response, flags=re.DOTALL)
response = re.sub(r"Instructions:.*", "", response, flags=re.DOTALL)
# Remove redundant system info
response = re.sub(r"You are a professional culinary assistant.*?Answer:", "", response, flags=re.DOTALL)
# Remove duplicate user question inside response (very common in these LLM outputs)
response = re.sub(r"User Question:.*", "", response, flags=re.DOTALL)
# Final strip + cleanup
return response.strip()
def validate_cooking_time(question, instructions):
# Extract cooking times from instructions
time_pattern = r"(\d+)\s*(minutes|minute)"
total_time = 0
for instr in instructions:
matches = re.findall(time_pattern, instr)
for match in matches:
total_time += int(match[0])
# Check if user question contains a time
user_time = re.search(time_pattern, question)
if user_time:
user_minutes = int(user_time.group(1))
if user_minutes != total_time:
return f"The recipe takes about {total_time} minutes to cook, not {user_minutes} minutes."
return None
def generate_chat_response(message, session_id="default"):
if not current_recipe_context["title"]:
return "Please generate a recipe from an image before asking about the dish."
# Validate cooking time if relevant
correction = validate_cooking_time(message, current_recipe_context["instructions"])
response = chatbot_chain.invoke(
{
"title": current_recipe_context["title"],
"ingredients": ", ".join(current_recipe_context["ingredients"]),
"instructions": " ".join(current_recipe_context["instructions"]),
"question": message
},
config={"configurable": {"session_id": session_id}}
)
response = clean_response(response)
if correction:
response = f"{correction} {response}"
return response.strip()
def chat_with_bot(message, chat_history, session_id="default"):
if not message.strip():
return "", chat_history
response = generate_chat_response(message, session_id)
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
return "", chat_history
# ============== IMAGE TO RECIPE ==============
with open("ingr_vocab.pkl", 'rb') as f:
ingrs_vocab = pickle.load(f)
with open("instr_vocab.pkl", 'rb') as f:
vocab = pickle.load(f)
args = get_parser()
args.maxseqlen = 15
args.ingrs_only = False
model_ic = get_model(args, len(ingrs_vocab), len(vocab))
model_ic.load_state_dict(torch.load("modelbest.ckpt", map_location=map_loc, weights_only=True))
model_ic.to(device).eval()
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
def generate_recipe(image):
if image is None:
return "β Please upload an image."
current_recipe_context["image"] = image
image = transform(image.convert("RGB")).unsqueeze(0).to(device)
with torch.no_grad():
outputs = model_ic.sample(image, greedy=True, temperature=1.0, beam=-1, true_ingrs=None)
ids = (outputs['ingr_ids'].cpu().numpy(), outputs['recipe_ids'].cpu().numpy())
outs, valid = prepare_output(ids[1][0], ids[0][0], ingrs_vocab, vocab)
if not valid['is_valid']:
return f"β Invalid recipe: {valid['reason']}"
current_recipe_context.update({
"title": outs['title'],
"ingredients": outs['ingrs'],
"instructions": outs['recipe']
})
return format_recipe(outs['title'], outs['ingrs'], outs['recipe'], "English (original)")
# ============== GOOGLE TTS ==============
languages_tts = {
"English": "en",
"Chinese": "zh-CN",
"Japanese": "ja",
"Vietnamese": "vi",
}
async def fetch_tts_audio_async(session, chunk, lang_code):
url = f"https://translate.google.com/translate_tts?ie=UTF-8&q={quote_plus(chunk)}&tl={lang_code}&client=tw-ob"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Referer": "https://translate.google.com/",
}
try:
async with session.get(url, headers=headers, timeout=10) as response:
response.raise_for_status()
return await response.read()
except Exception as e:
print(f"TTS Error for chunk: {e}")
return None
async def fetch_all_tts_audio(chunks, lang_code):
async with aiohttp.ClientSession() as session:
tasks = [fetch_tts_audio_async(session, chunk, lang_code) for chunk in chunks]
return await asyncio.gather(*tasks)
def google_tts(text, lang):
if not text or text.startswith("β"):
return None, gr.update(visible=False)
# Clean text for TTS
clean_text = text.replace("**", "").replace("###", "").replace("- ", "")
for emoji in ["π½οΈ", "π§", "π"]:
clean_text = clean_text.replace(emoji, "")
# Split into chunks (Google TTS max ~200 chars)
max_chunk_length = 200
chunks = [clean_text[i:i+max_chunk_length] for i in range(0, len(clean_text), max_chunk_length)]
if not chunks:
return None, gr.update(visible=False)
# Fetch audio chunks asynchronously
lang_code = languages_tts.get(lang, "en")
audio_contents = asyncio.run(fetch_all_tts_audio(chunks, lang_code))
# Filter out failed requests
audio_files = []
for i, content in enumerate(audio_contents):
if content:
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
f.write(content)
audio_files.append(f.name)
if not audio_files:
return None, gr.update(visible=False)
# Combine audio if FFmpeg is available
if len(audio_files) == 1:
return audio_files[0], gr.update(visible=True)
if which("ffmpeg"):
try:
combined = AudioSegment.empty()
for file in audio_files:
combined += AudioSegment.from_mp3(file)
output_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
combined.export(output_file, format="mp3")
for file in audio_files:
os.unlink(file)
return output_file, gr.update(visible=True)
except Exception as e:
print(f"Error combining audio files: {e}")
# Fallback to first chunk
for i in range(1, len(audio_files)):
os.unlink(audio_files[i])
return audio_files[0], gr.update(visible=True)
else:
print("FFmpeg not found, returning first audio chunk.")
for i in range(1, len(audio_files)):
os.unlink(audio_files[i])
return audio_files[0], gr.update(visible=True)
# ============== VIDEO SEARCH ==============
def search_top_3_videos(keyword):
if not keyword.strip():
return ["", "", ""] * 3
try:
search = Search(f"How to make {keyword}")
results = search.results[:3]
embeds, titles, urls = [], [], []
for video in results:
embed_html = f'''
<iframe width="520" height="320"
src="https://www.youtube.com/embed/{video.video_id}"
frameborder="0" allowfullscreen></iframe>
'''
embeds.append(embed_html)
titles.append(video.title)
urls.append(f"https://www.youtube.com/watch?v={video.video_id}")
while len(embeds) < 3:
embeds.append("No video found")
titles.append("")
urls.append("")
return embeds + titles + urls
except Exception as e:
print(f"Video search error: {e}")
return ["", "", ""] * 3
# ============== RESTAURANT SEARCH ==============
def get_google_maps_search_url(dish_name, city="Ho Chi Minh City"):
query = f"{dish_name} in {city}"
url = f"https://www.google.com/maps/search/{query.replace(' ', '+')}"
return url
def search_and_show_link(dish):
if not dish.strip():
return "Go to Google Maps", gr.update(visible=False)
url = get_google_maps_search_url(dish)
return url, gr.update(visible=True)
# ============== PDF GENERATION ==============
def generate_pdf_recipe():
if not current_recipe_context["title"]:
return None, "β Please generate a recipe from an image first."
output_file = "recipe.pdf"
doc = SimpleDocTemplate(output_file, pagesize=letter)
styles = getSampleStyleSheet()
story = []
if current_recipe_context["image"]:
try:
img_buffer = BytesIO()
current_recipe_context["image"].save(img_buffer, format="PNG")
img_buffer.seek(0)
img = ReportLabImage(img_buffer, width=200, height=200)
story.append(img)
story.append(Spacer(1, 12))
except Exception as e:
print(f"Error adding image to PDF: {e}")
story.append(Paragraph(current_recipe_context["title"], styles['Title']))
story.append(Spacer(1, 12))
story.append(Paragraph("Ingredients:", styles['Heading2']))
for ingr in current_recipe_context["ingredients"]:
story.append(Paragraph(f"- {ingr}", styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("Instructions:", styles['Heading2']))
for i, instr in enumerate(current_recipe_context["instructions"], 1):
story.append(Paragraph(f"{i}. {instr}", styles['Normal']))
doc.build(story)
return output_file, "β
Recipe saved as recipe.pdf"
# ============== GRADIO UI ==============
with gr.Blocks(theme=gr.themes.Soft(), title="AI Recipe Generator") as demo:
gr.Markdown("""
# π³ AI Recipe Generator & Multilingual Cooking Assistant
Generate recipes from images, translate to multiple languages, get cooking videos, chat with a culinary assistant, analyze nutrition, and find restaurants!
""")
with gr.Tab("π· Generate Recipe"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Dish Image", height=300)
gen_btn = gr.Button("Generate Recipe", variant="primary", elem_id="action-btn")
save_pdf_btn = gr.Button("Save as PDF", variant="secondary", elem_id="action-btn")
pdf_output = gr.File(label="Download Recipe PDF", interactive=False)
recipe_output = gr.Markdown("### Your recipe will appear here", elem_classes="recipe-box")
gen_btn.click(generate_recipe, inputs=image_input, outputs=recipe_output)
save_pdf_btn.click(fn=generate_pdf_recipe, outputs=[pdf_output, recipe_output])
with gr.Tab("π Translate & TTS"):
with gr.Row():
with gr.Column():
lang_dropdown = gr.Dropdown(
choices=["English (original)", "Japanese", "Chinese", "Vietnamese"],
value="Japanese",
label="Select Language"
)
with gr.Row():
trans_btn = gr.Button("Translate Recipe", variant="primary", elem_id="action-btn")
tts_btn = gr.Button("π Listen to Recipe", variant="secondary", elem_id="action-btn")
with gr.Column():
translation_output = gr.Markdown("### Translated recipe will appear here", elem_classes="recipe-box")
tts_audio = gr.Audio(interactive=False, label="Audio Output", visible=False)
trans_btn.click(fn=translate_recipe, inputs=lang_dropdown, outputs=translation_output)
tts_btn.click(fn=google_tts, inputs=[translation_output, lang_dropdown], outputs=[tts_audio, tts_audio])
with gr.Tab("π₯ Cooking Videos"):
with gr.Row():
with gr.Column():
video_keyword = gr.Textbox(label="Search Cooking Videos", placeholder="e.g. beef pho")
search_btn = gr.Button("Search Videos", variant="primary", elem_id="action-btn")
with gr.Column():
video_embeds, video_titles, video_urls = [], [], []
for i in range(3):
with gr.Column():
video_embeds.append(gr.HTML(label=f"π¬ Video {i+1}"))
video_titles.append(gr.Textbox(label=f"π Title {i+1}", interactive=False))
video_urls.append(gr.Textbox(label=f"π URL {i+1}", interactive=False, visible=False))
search_btn.click(fn=search_top_3_videos, inputs=video_keyword, outputs=video_embeds + video_titles + video_urls)
with gr.Tab("π¬ Culinary Chatbot"):
chatbot = gr.Chatbot(height=400, type="messages")
with gr.Row():
chat_input = gr.Textbox(placeholder="Ask about the dish...", scale=4)
chat_btn = gr.Button("Send", variant="primary", scale=1, elem_id="action-btn")
chat_btn.click(chat_with_bot, inputs=[chat_input, chatbot], outputs=[chat_input, chatbot])
chat_input.submit(chat_with_bot, inputs=[chat_input, chatbot], outputs=[chat_input, chatbot])
with gr.Tab("π₯ Nutrition Analysis"):
with gr.Row():
with gr.Column():
ingredient_input = gr.Textbox(
label="π§Ύ Enter Ingredients (one per line or space-separated)",
lines=10,
placeholder="cheese\npepper\negg\n..."
)
with gr.Row():
load_ingredients_btn = gr.Button("Load Recipe Ingredients", variant="secondary", elem_id="action-btn")
analyze_btn = gr.Button("Analyze Nutrition", variant="primary", elem_id="action-btn")
with gr.Column():
nutrition_message = gr.Textbox(label="π Message", interactive=False)
bar_chart = gr.Plot(label="π Bar Chart")
pie_chart = gr.Plot(label="π₯§ Pie Chart")
line_chart = gr.Plot(label="π Line Chart")
load_ingredients_btn.click(fn=load_recipe_ingredients, outputs=ingredient_input)
analyze_btn.click(
fn=nutrition_analysis,
inputs=ingredient_input,
outputs=[nutrition_message, bar_chart, pie_chart, line_chart]
)
with gr.Tab("π½οΈ Find Restaurants"):
with gr.Row():
with gr.Column():
dish_input = gr.Textbox(label="Enter Dish Name", placeholder="e.g. beef pho", interactive=True)
search_restaurant_btn = gr.Button("Find Restaurants", variant="primary", elem_id="action-btn")
open_maps_btn = gr.Button("Go to Google Maps", visible=True, variant="secondary", elem_id="open-maps-btn")
search_restaurant_btn.click(fn=search_and_show_link, inputs=dish_input, outputs=[open_maps_btn, open_maps_btn])
open_maps_btn.click(
fn=lambda url: url,
inputs=open_maps_btn,
outputs=None,
js="(url) => { if(url) window.open(url, '_blank'); }"
)
demo.css = """
.recipe-box {
padding: 20px;
border-radius: 10px;
background: #f9f9f9;
border: 1px solid #e0e0e0;
}
.dark .recipe-box {
background: #2a2a2a;
border-color: #444;
}
.gr-box {
margin-bottom: 20px;
}
#action-btn {
max-width: 220px;
margin: 10px auto;
font-weight: 600;
font-size: 16px;
border-radius: 8px;
}
#open-maps-btn {
max-width: 220px;
margin: 10px auto;
font-weight: 600;
font-size: 16px;
border-radius: 8px;
}
"""
if __name__ == "__main__":
demo.launch()
|