Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Define custom CSS for background image
|
| 2 |
custom_css = """
|
| 3 |
body {
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import PIL
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
from tensorflow import keras
|
| 8 |
+
from tensorflow.keras import layers
|
| 9 |
+
from tensorflow.keras.models import Sequential
|
| 10 |
+
import gdown
|
| 11 |
+
import zipfile
|
| 12 |
+
import pathlib
|
| 13 |
+
|
| 14 |
+
# Define the Google Drive shareable link
|
| 15 |
+
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 16 |
+
|
| 17 |
+
# Extract the file ID from the URL
|
| 18 |
+
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
| 19 |
+
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
| 20 |
+
|
| 21 |
+
# Define the local filename to save the ZIP file
|
| 22 |
+
local_zip_file = 'file.zip'
|
| 23 |
+
|
| 24 |
+
# Download the ZIP file
|
| 25 |
+
gdown.download(direct_download_url, local_zip_file, quiet=False)
|
| 26 |
+
|
| 27 |
+
# Directory to extract files
|
| 28 |
+
extracted_path = 'extracted_files'
|
| 29 |
+
|
| 30 |
+
# Verify if the downloaded file is a ZIP file and extract it
|
| 31 |
+
try:
|
| 32 |
+
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
|
| 33 |
+
zip_ref.extractall(extracted_path)
|
| 34 |
+
print("Extraction successful!")
|
| 35 |
+
except zipfile.BadZipFile:
|
| 36 |
+
print("Error: The downloaded file is not a valid ZIP file.")
|
| 37 |
+
|
| 38 |
+
# Optionally, you can delete the ZIP file after extraction
|
| 39 |
+
os.remove(local_zip_file)
|
| 40 |
+
|
| 41 |
+
# Convert the extracted directory path to a pathlib.Path object
|
| 42 |
+
data_dir = pathlib.Path(extracted_path)
|
| 43 |
+
|
| 44 |
+
# Print the directory structure to debug
|
| 45 |
+
for root, dirs, files in os.walk(extracted_path):
|
| 46 |
+
level = root.replace(extracted_path, '').count(os.sep)
|
| 47 |
+
indent = ' ' * 4 * (level)
|
| 48 |
+
print(f"{indent}{os.path.basename(root)}/")
|
| 49 |
+
subindent = ' ' * 4 * (level + 1)
|
| 50 |
+
for f in files:
|
| 51 |
+
print(f"{subindent}{f}")
|
| 52 |
+
|
| 53 |
+
# Path to the dataset directory
|
| 54 |
+
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 55 |
+
data_dir = pathlib.Path(data_dir)
|
| 56 |
+
|
| 57 |
+
image_count = len(list(data_dir.glob('*/*.jpg')))
|
| 58 |
+
print(image_count)
|
| 59 |
+
|
| 60 |
+
bees = list(data_dir.glob('bees/*'))
|
| 61 |
+
print(bees[0])
|
| 62 |
+
PIL.Image.open(str(bees[0]))
|
| 63 |
+
|
| 64 |
+
batch_size = 32
|
| 65 |
+
img_height = 180
|
| 66 |
+
img_width = 180
|
| 67 |
+
|
| 68 |
+
train_ds = tf.keras.utils.image_dataset_from_directory(
|
| 69 |
+
data_dir,
|
| 70 |
+
validation_split=0.2,
|
| 71 |
+
subset="training",
|
| 72 |
+
seed=123,
|
| 73 |
+
image_size=(img_height, img_width),
|
| 74 |
+
batch_size=batch_size)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
val_ds = tf.keras.utils.image_dataset_from_directory(
|
| 78 |
+
data_dir,
|
| 79 |
+
validation_split=0.2,
|
| 80 |
+
subset="validation",
|
| 81 |
+
seed=123,
|
| 82 |
+
image_size=(img_height, img_width),
|
| 83 |
+
batch_size=batch_size)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class_names = train_ds.class_names
|
| 87 |
+
print(class_names)
|
| 88 |
+
|
| 89 |
+
plt.figure(figsize=(10, 10))
|
| 90 |
+
for images, labels in train_ds.take(1):
|
| 91 |
+
for i in range(9):
|
| 92 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 93 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
| 94 |
+
plt.title(class_names[labels[i]])
|
| 95 |
+
plt.axis("off")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
for image_batch, labels_batch in train_ds:
|
| 99 |
+
print(image_batch.shape)
|
| 100 |
+
print(labels_batch.shape)
|
| 101 |
+
break
|
| 102 |
+
|
| 103 |
+
AUTOTUNE = tf.data.AUTOTUNE
|
| 104 |
+
|
| 105 |
+
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
| 106 |
+
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
normalization_layer = layers.Rescaling(1./255)
|
| 110 |
+
|
| 111 |
+
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
| 112 |
+
image_batch, labels_batch = next(iter(normalized_ds))
|
| 113 |
+
first_image = image_batch[0]
|
| 114 |
+
# Notice the pixel values are now in `[0,1]`.
|
| 115 |
+
print(np.min(first_image), np.max(first_image))
|
| 116 |
+
|
| 117 |
+
data_augmentation = keras.Sequential(
|
| 118 |
+
[
|
| 119 |
+
layers.RandomFlip("horizontal",
|
| 120 |
+
input_shape=(img_height,
|
| 121 |
+
img_width,
|
| 122 |
+
3)),
|
| 123 |
+
layers.RandomRotation(0.1),
|
| 124 |
+
layers.RandomZoom(0.1),
|
| 125 |
+
]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
plt.figure(figsize=(10, 10))
|
| 129 |
+
for images, _ in train_ds.take(1):
|
| 130 |
+
for i in range(9):
|
| 131 |
+
augmented_images = data_augmentation(images)
|
| 132 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 133 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 134 |
+
plt.axis("off")
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
from tensorflow.keras.applications import EfficientNetB0
|
| 138 |
+
|
| 139 |
+
base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
|
| 140 |
+
|
| 141 |
+
# Freeze the pre-trained weights
|
| 142 |
+
base_model.trainable = False
|
| 143 |
+
|
| 144 |
+
# Create new model on top
|
| 145 |
+
inputs = keras.Input(shape=(img_height, img_width, 3))
|
| 146 |
+
x = data_augmentation(inputs) # Apply data augmentation
|
| 147 |
+
x = base_model(x, training=False)
|
| 148 |
+
x = keras.layers.GlobalAveragePooling2D()(x)
|
| 149 |
+
x = keras.layers.Dropout(0.2)(x)
|
| 150 |
+
outputs = keras.layers.Dense(len(class_names), activation='softmax')(x)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Compile the model
|
| 154 |
+
model = keras.Model(inputs, outputs)
|
| 155 |
+
model.compile(optimizer='adam',
|
| 156 |
+
loss='sparse_categorical_crossentropy',
|
| 157 |
+
metrics=['accuracy'])
|
| 158 |
+
|
| 159 |
+
model.summary()
|
| 160 |
+
|
| 161 |
+
# Train the model
|
| 162 |
+
epochs = 10
|
| 163 |
+
history = model.fit(
|
| 164 |
+
train_ds,
|
| 165 |
+
validation_data=val_ds,
|
| 166 |
+
epochs=epochs
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
# Plot training history
|
| 171 |
+
acc = history.history['accuracy']
|
| 172 |
+
val_acc = history.history['val_accuracy']
|
| 173 |
+
|
| 174 |
+
loss = history.history['loss']
|
| 175 |
+
val_loss = history.history['val_loss']
|
| 176 |
+
|
| 177 |
+
epochs_range = range(epochs)
|
| 178 |
+
|
| 179 |
+
plt.figure(figsize=(8, 8))
|
| 180 |
+
plt.subplot(1, 2, 1)
|
| 181 |
+
plt.plot(epochs_range, acc, label='Training Accuracy')
|
| 182 |
+
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
|
| 183 |
+
plt.legend(loc='lower right')
|
| 184 |
+
plt.title('Training and Validation Accuracy')
|
| 185 |
+
|
| 186 |
+
plt.subplot(1, 2, 2)
|
| 187 |
+
plt.plot(epochs_range, loss, label='Training Loss')
|
| 188 |
+
plt.plot(epochs_range, val_loss, label='Validation Loss')
|
| 189 |
+
plt.legend(loc='upper right')
|
| 190 |
+
plt.title('Training and Validation Loss')
|
| 191 |
+
plt.show()
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
# Evaluate the model on the validation dataset
|
| 195 |
+
results = model.evaluate(val_ds, verbose=0)
|
| 196 |
+
|
| 197 |
+
print("Validation Loss: {:.5f}".format(results[0]))
|
| 198 |
+
print("Validation Accuracy: {:.2f}%".format(results[1] * 100))
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
import gradio as gr
|
| 202 |
+
import numpy as np
|
| 203 |
+
import tensorflow as tf
|
| 204 |
+
|
| 205 |
+
def predict_image(img):
|
| 206 |
+
img = np.array(img)
|
| 207 |
+
img_resized = tf.image.resize(img, (180, 180))
|
| 208 |
+
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 209 |
+
prediction = model.predict(img_4d)[0]
|
| 210 |
+
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
| 211 |
+
|
| 212 |
+
image = gr.Image()
|
| 213 |
+
label = gr.Label(num_top_classes=1)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
# Define custom CSS for background image
|
| 217 |
custom_css = """
|
| 218 |
body {
|