Agnuxo's picture
Update README.md
3249a2d verified
|
raw
history blame
2.71 kB
metadata
title: NEBULA-X-DEMO
emoji: 🧠
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.43.1
app_file: app.py
pinned: false
license: mit

🌌 NEBULA-X: Enhanced Unified Holographic Neural Network

Optimized for Open LLM Leaderboard v2 Evaluation

NEBULA-X is a revolutionary AI architecture that combines holographic memory, quantum computing, and optical neural networks to create the world's first production-ready photonic neural network system.

πŸ† Leaderboard Benchmarks

This model is optimized for evaluation on:

  • IFEval: Instruction following capability
  • BBH: Complex reasoning tasks
  • MATH: Advanced mathematical problem solving
  • GPQA: Graduate-level question answering
  • MuSR: Multi-step reasoning
  • MMLU-PRO: Professional multitask understanding

πŸ”¬ Model Architecture

Core Technologies

  • Holographic Memory: 3D interference pattern storage
  • Quantum Processing: 4 qubits per neuron for enhanced computation
  • Optical Raytracing: GPU-accelerated light-based processing
  • Advanced Attention: Multi-dimensional attention mechanisms

Technical Specifications

  • Parameters: ~85M (768 hidden size, 12 layers)
  • Context Length: 2048 tokens
  • Precision: float16 optimized
  • Vocabulary: 50,257 tokens (GPT-2 compatible)

πŸš€ Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X")
tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")

# Generate text
inputs = tokenizer("The future of AI is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, do_sample=True)
text = tokenizer.decode(outputs[0])

πŸ”¬ Research Innovation

NEBULA-X introduces groundbreaking concepts:

  1. Holographic Neural Networks: Information stored as interference patterns
  2. Quantum-Enhanced Processing: Superposition and entanglement for parallel computation
  3. Optical Raytracing: Physical light simulation for neural computation
  4. Multi-dimensional Attention: Beyond traditional transformer attention

πŸ“Š Benchmark Performance

Optimized for fair evaluation on standardized benchmarks. Model designed to showcase:

  • Mathematical reasoning capabilities
  • Complex instruction following
  • Multi-step logical reasoning
  • Professional domain knowledge

πŸ‘¨β€πŸ’» Author

Francisco Angulo de Lafuente (Agnuxo)

  • Research Focus: Holographic Computing, Quantum AI, Optical Neural Networks
  • NVIDIA LlamaIndex Developer Contest 2024 Winner

πŸ“„ License

Apache 2.0 - Open source and commercially usable.


Ready for automated evaluation on the Open LLM Leaderboard v2