Spaces:
Running
Running
U1020040
commited on
Commit
·
0fb9984
1
Parent(s):
4cffc64
example, color, contrast
Browse files- HEADER.md +4 -1
- app.py +73 -12
- examples/crc100k_val.jpg +0 -0
- examples/hemit.jpg +0 -0
- examples/orion_test_1.jpg +0 -0
- examples/orion_test_2.jpg +0 -0
- examples/orion_test_3.jpg +0 -0
- examples/orion_test_4.jpg +0 -0
- examples/orion_test_5.jpg +0 -0
- examples/tcga.jpg +0 -0
HEADER.md
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
# MIPHEI-ViT Demo: 16-channel mIF Prediction
|
| 2 |
|
| 3 |
<p align="center">
|
|
|
|
|
|
|
|
|
|
| 4 |
<a href="https://huggingface.co/Estabousi/MIPHEI-vit" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 5 |
<img src="https://img.shields.io/badge/🤗 Model-MIPHEI--ViT-lightgrey?logo=huggingface" height="25">
|
| 6 |
</a>
|
|
@@ -17,7 +20,7 @@ The model returns **16 grayscale images**, each representing a predicted mIF mar
|
|
| 17 |
|
| 18 |
---
|
| 19 |
|
| 20 |
-
Try it with low-zoom screenshots from public datasets:
|
| 21 |
|
| 22 |
**ORION (in-domain test set):**
|
| 23 |
- [CRC2](https://labsyspharm.github.io/orion-crc/minerva/P37_S30-CRC02/index.html#s=0&w=0&g=5&m=-1&a=-100_-100&v=1.0673_0.6057_0.5&o=-100_-100_1_1&p=Q)
|
|
|
|
| 1 |
# MIPHEI-ViT Demo: 16-channel mIF Prediction
|
| 2 |
|
| 3 |
<p align="center">
|
| 4 |
+
<a title="arXiv" href="https://arxiv.org/abs/2505.10294" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 5 |
+
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
| 6 |
+
</a>
|
| 7 |
<a href="https://huggingface.co/Estabousi/MIPHEI-vit" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 8 |
<img src="https://img.shields.io/badge/🤗 Model-MIPHEI--ViT-lightgrey?logo=huggingface" height="25">
|
| 9 |
</a>
|
|
|
|
| 20 |
|
| 21 |
---
|
| 22 |
|
| 23 |
+
Try it with **provided examples** or low-zoom screenshots from public datasets:
|
| 24 |
|
| 25 |
**ORION (in-domain test set):**
|
| 26 |
- [CRC2](https://labsyspharm.github.io/orion-crc/minerva/P37_S30-CRC02/index.html#s=0&w=0&g=5&m=-1&a=-100_-100&v=1.0673_0.6057_0.5&o=-100_-100_1_1&p=Q)
|
app.py
CHANGED
|
@@ -18,25 +18,63 @@ with open(config_path, "r") as f:
|
|
| 18 |
config = json.load(f)
|
| 19 |
channel_names = config["targ_channel_names"]
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def preprocess(image):
|
| 22 |
image = image.convert("RGB").resize((256, 256))
|
| 23 |
tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255
|
| 24 |
tensor = (tensor - mean) / std
|
| 25 |
return tensor.unsqueeze(0) # [1, 3, H, W]
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def predict(image):
|
| 28 |
input_tensor = preprocess(image)
|
| 29 |
with torch.inference_mode():
|
| 30 |
output = model(input_tensor)[0] # [16, H, W]
|
| 31 |
output = (output.clamp(-0.9, 0.9) + 0.9) / 1.8
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Convert each mIF channel to grayscale PIL image
|
| 35 |
channel_imgs = []
|
| 36 |
-
for i in range(
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
|
| 41 |
# Return predicted 16 channels
|
| 42 |
return channel_imgs
|
|
@@ -47,14 +85,37 @@ with open("HEADER.md", "r", encoding="utf-8") as f:
|
|
| 47 |
|
| 48 |
# Build interface using Blocks
|
| 49 |
with gr.Blocks() as demo:
|
|
|
|
| 50 |
gr.Markdown(HEADER_MD)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
if __name__ == "__main__":
|
| 60 |
demo.launch()
|
|
|
|
| 18 |
config = json.load(f)
|
| 19 |
channel_names = config["targ_channel_names"]
|
| 20 |
|
| 21 |
+
|
| 22 |
+
channel_colors = {
|
| 23 |
+
"Hoechst": (0, 0, 255), # Blue (DAPI, nuclear stain)
|
| 24 |
+
"CD31": (0, 255, 255), # Cyan (endothelial)
|
| 25 |
+
"CD45": (255, 255, 0), # Yellow (leukocyte common antigen)
|
| 26 |
+
"CD68": (255, 165, 0), # Orange (macrophages)
|
| 27 |
+
"CD4": (255, 0, 0), # Red (helper T cells)
|
| 28 |
+
"FOXP3": (138, 43, 226), # Purple/Blue-Violet (regulatory T cells)
|
| 29 |
+
"CD8a": (303, 100, 100), # Green (cytotoxic T cells)
|
| 30 |
+
"CD45RO": (255, 105, 180), # Hot Pink (memory T cells)
|
| 31 |
+
"CD20": (0, 191, 255), # Deep Sky Blue (B cells)
|
| 32 |
+
"PD-L1": (255, 0, 255), # Magenta
|
| 33 |
+
"CD3e": (95, 95, 94), # Crimson (T cells)
|
| 34 |
+
"CD163": (184, 134, 11), # Dark Goldenrod (M2 macrophages)
|
| 35 |
+
"E-cadherin": (242, 12, 43), # Spring Green (epithelial marker)
|
| 36 |
+
"Ki67": (255, 20, 147), # Deep Pink (proliferation marker)
|
| 37 |
+
"Pan-CK": (255, 0, 0), # Red (epithelial/carcinoma)
|
| 38 |
+
"SMA": (0, 255, 0), # Green (smooth muscle, myofibroblasts)
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
# Contrast correction factors per channel (255 for Hoechst, 150 otherwise)
|
| 42 |
+
default_contrast = 150.0
|
| 43 |
+
correction_map = {"Hoechst": 255.0, "CD8a": 100, "CD31": 100, "CD4": 100, "CD68": 100, "FOXP3": 100}
|
| 44 |
+
max_contrast_correction_value = torch.tensor([
|
| 45 |
+
correction_map.get(name, default_contrast) / 255 for name in channel_names
|
| 46 |
+
]).reshape(len(channel_names), 1, 1)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
def preprocess(image):
|
| 50 |
image = image.convert("RGB").resize((256, 256))
|
| 51 |
tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255
|
| 52 |
tensor = (tensor - mean) / std
|
| 53 |
return tensor.unsqueeze(0) # [1, 3, H, W]
|
| 54 |
|
| 55 |
+
def apply_color_map(gray_img, rgb_color):
|
| 56 |
+
"""Map a grayscale image to RGB using a fixed pseudocolor."""
|
| 57 |
+
gray = np.asarray(gray_img).astype(np.float32) / 255.0
|
| 58 |
+
rgb = np.stack([gray * rgb_color[i] for i in range(3)], axis=-1).astype(np.uint8)
|
| 59 |
+
return Image.fromarray(rgb, mode='RGB')
|
| 60 |
+
|
| 61 |
def predict(image):
|
| 62 |
input_tensor = preprocess(image)
|
| 63 |
with torch.inference_mode():
|
| 64 |
output = model(input_tensor)[0] # [16, H, W]
|
| 65 |
output = (output.clamp(-0.9, 0.9) + 0.9) / 1.8
|
| 66 |
+
output_vis = output / max_contrast_correction_value.to(output.device).clamp(min=1e-6)
|
| 67 |
+
output_vis = output_vis.clamp(0, 1) * 255
|
| 68 |
+
output_vis = np.uint8(output_vis.cpu().numpy())
|
| 69 |
+
output = output.cpu().numpy()
|
| 70 |
|
| 71 |
# Convert each mIF channel to grayscale PIL image
|
| 72 |
channel_imgs = []
|
| 73 |
+
for i in range(output_vis.shape[0]):
|
| 74 |
+
ch_name = channel_names[i]
|
| 75 |
+
ch_gray = Image.fromarray(output_vis[i], mode='L')
|
| 76 |
+
ch_colored = apply_color_map(ch_gray, channel_colors[ch_name])
|
| 77 |
+
channel_imgs.append(ch_colored)
|
| 78 |
|
| 79 |
# Return predicted 16 channels
|
| 80 |
return channel_imgs
|
|
|
|
| 85 |
|
| 86 |
# Build interface using Blocks
|
| 87 |
with gr.Blocks() as demo:
|
| 88 |
+
|
| 89 |
gr.Markdown(HEADER_MD)
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
# LEFT: input + examples + button
|
| 93 |
+
with gr.Column(scale=0.5):
|
| 94 |
+
input_image = gr.Image(type="pil", label="Input H&E")
|
| 95 |
+
run_btn = gr.Button("Run Prediction")
|
| 96 |
+
gr.Examples(
|
| 97 |
+
examples=[
|
| 98 |
+
["examples/crc100k_val.jpg"],
|
| 99 |
+
["examples/orion_test_1.jpg"],
|
| 100 |
+
["examples/orion_test_2.jpg"],
|
| 101 |
+
["examples/orion_test_3.jpg"],
|
| 102 |
+
["examples/orion_test_4.jpg"],
|
| 103 |
+
["examples/orion_test_5.jpg"],
|
| 104 |
+
["examples/tcga.jpg"],
|
| 105 |
+
["examples/hemit.jpg"],
|
| 106 |
+
],
|
| 107 |
+
inputs=[input_image],
|
| 108 |
+
label="Example H&E tile (TCGA, ORION Test, CRC100K, HEMIT)"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# RIGHT: outputs
|
| 112 |
+
with gr.Column():
|
| 113 |
+
output_images = [
|
| 114 |
+
gr.Image(type="pil", label=f"mIF Channel {channel_names[i]}")
|
| 115 |
+
for i in range(16)
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
run_btn.click(fn=predict, inputs=input_image, outputs=output_images)
|
| 119 |
|
| 120 |
if __name__ == "__main__":
|
| 121 |
demo.launch()
|
examples/crc100k_val.jpg
ADDED
|
examples/hemit.jpg
ADDED
|
examples/orion_test_1.jpg
ADDED
|
examples/orion_test_2.jpg
ADDED
|
examples/orion_test_3.jpg
ADDED
|
examples/orion_test_4.jpg
ADDED
|
examples/orion_test_5.jpg
ADDED
|
examples/tcga.jpg
ADDED
|