Spaces:
Paused
Paused
File size: 14,985 Bytes
bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 61eb9f4 b47d506 61eb9f4 bbec779 b47d506 bbec779 cec5209 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 efb0e65 b47d506 bbec779 b47d506 efb0e65 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 bbec779 b47d506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# video_service.py
import torch
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
import sys
import subprocess
import threading
import time
from huggingface_hub import hf_hub_download
# --- LÓGICA DE SETUP E DEPENDÊNCIAS ---
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
return
try:
print("--- Executando setup.py para garantir que as dependências estão presentes ---")
subprocess.run([sys.executable, setup_script_path], check=True)
print("--- Setup concluído com sucesso ---")
except subprocess.CalledProcessError as e:
print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
sys.exit(1)
DEPS_DIR = Path("./deps")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
run_setup()
def add_deps_to_path():
if not LTX_VIDEO_REPO_DIR.exists():
raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
add_deps_to_path()
# Importações específicas do modelo
from inference import (
create_ltx_video_pipeline, create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop, seed_everething,
calculate_padding, load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# --- CONFIGURAÇÃO DA DISTRIBUIÇÃO DE GPUS ---
GPU_MAPPING = [
{'base': 'cuda:0', 'upscaler': 'cuda:2'},
{'base': 'cuda:1', 'upscaler': 'cuda:3'}
]
class VideoService:
def __init__(self):
print("Inicializando VideoService (modo Lazy Loading)...")
self.models_loaded = False
self.workers = None
self.config = self._load_config()
self.models_dir = "downloaded_models"
self.loading_lock = threading.Lock() # Para evitar que múltiplos usuários iniciem o carregamento ao mesmo tempo
def _ensure_models_are_loaded(self):
"""Verifica se os modelos estão carregados e os carrega se não estiverem."""
with self.loading_lock:
if not self.models_loaded:
print("Primeira requisição recebida. Iniciando carregamento dos modelos...")
if torch.cuda.is_available() and torch.cuda.device_count() < 4:
raise RuntimeError(f"Este serviço está configurado para 4 GPUs, mas apenas {torch.cuda.device_count()} foram encontradas.")
self._download_model_files()
self.workers = self._initialize_workers()
self.models_loaded = True
print(f"Modelos carregados com sucesso. {len(self.workers)} workers prontos.")
def _load_config(self):
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file:
return yaml.safe_load(file)
def _download_model_files(self):
Path(self.models_dir).mkdir(parents=True, exist_ok=True)
LTX_REPO = "Lightricks/LTX-Video"
print("Baixando arquivos de modelo (se necessário)...")
self.distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=self.models_dir)
self.spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=self.models_dir)
print("Download de modelos concluído.")
def _load_models_for_worker(self, base_device, upscaler_device):
print(f"Carregando modelo base para {base_device} e upscaler para {upscaler_device}")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.distilled_model_path, precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"], device="cpu", enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
latent_upsampler = create_latent_upsampler(self.spatial_upscaler_path, device="cpu")
pipeline.to(base_device)
latent_upsampler.to(upscaler_device)
return pipeline, latent_upsampler
def _initialize_workers(self):
workers = []
for i, mapping in enumerate(GPU_MAPPING):
print(f"--- Inicializando Worker {i} ---")
pipeline, latent_upsampler = self._load_models_for_worker(mapping['base'], mapping['upscaler'])
workers.append({"id": i, "base_pipeline": pipeline, "latent_upsampler": latent_upsampler, "devices": mapping, "lock": threading.Lock()})
return workers
def _acquire_worker(self):
while True:
for worker in self.workers:
if worker["lock"].acquire(blocking=False):
print(f"Worker {worker['id']} adquirido para uma nova tarefa.")
return worker
time.sleep(0.1)
def generate(self, prompt, negative_prompt, input_image_filepath=None, input_video_filepath=None,
height=512, width=704, mode="text-to-video", duration=2.0,
frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=1.0, # Ignorado, mas mantido por compatibilidade
improve_texture=True, progress_callback=None):
# A MÁGICA DO LAZY LOADING ACONTECE AQUI
self._ensure_models_are_loaded()
worker = self._acquire_worker()
base_device = worker['devices']['base']
upscaler_device = worker['devices']['upscaler']
try:
# ... (todo o resto do código da função generate permanece exatamente o mesmo) ...
if mode == "image-to-video" and not input_image_filepath: raise ValueError("Caminho da imagem é obrigatório para o modo image-to-video")
if mode == "video-to-video" and not input_video_filepath: raise ValueError("Caminho do vídeo é obrigatório para o modo video-to-video")
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
seed_everething(used_seed)
FPS = 24.0; MAX_NUM_FRAMES = 257
target_frames_rounded = round(duration * FPS)
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
height_padded = ((height - 1) // 32 + 1) * 32
width_padded = ((width - 1) // 32 + 1) * 32
padding_values = calculate_padding(height, width, height_padded, width_padded)
pad_left, pad_right, pad_top, pad_bottom = padding_values
call_kwargs_base = {
"prompt": prompt, "negative_prompt": negative_prompt, "num_frames": actual_num_frames, "frame_rate": int(FPS),
"decode_timestep": 0.05, "decode_noise_scale": self.config["decode_noise_scale"],
"stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.025,
"is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (self.config["precision"] == "mixed_precision"),
"offload_to_cpu": False, "enhance_prompt": False, "skip_layer_strategy": SkipLayerStrategy.AttentionValues
}
result_tensor = None
if improve_texture:
downscale_factor = self.config.get("downscale_factor", 0.5)
downscaled_height_ideal = int(height_padded * downscale_factor); downscaled_width_ideal = int(width_padded * downscale_factor)
downscaled_height = ((downscaled_height_ideal - 1) // 32 + 1) * 32; downscaled_width = ((downscaled_width_ideal - 1) // 32 + 1) * 32
# --- PASSE 1 ---
first_pass_kwargs = call_kwargs_base.copy()
first_pass_kwargs.update({
"height": downscaled_height, "width": downscaled_width,
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
"output_type": "latent", "guidance_scale": 1.0,
"timesteps": self.config["first_pass"]["timesteps"],
"stg_scale": self.config["first_pass"]["stg_scale"],
"rescaling_scale": self.config["first_pass"]["rescaling_scale"],
"skip_block_list": self.config["first_pass"]["skip_block_list"]
})
if mode == "image-to-video":
padding_low_res = calculate_padding(downscaled_height, downscaled_width, downscaled_height, downscaled_width)
media_tensor_low_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, downscaled_height, downscaled_width)
media_tensor_low_res = torch.nn.functional.pad(media_tensor_low_res, padding_low_res)
first_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_low_res.to(base_device), 0, 1.0)]
print(f"Worker {worker['id']}: Iniciando passe 1 em {base_device}")
with torch.no_grad(): low_res_latents = worker['base_pipeline'](**first_pass_kwargs).images
low_res_latents = low_res_latents.to(upscaler_device)
with torch.no_grad(): high_res_latents = worker['latent_upsampler'](low_res_latents)
high_res_latents = high_res_latents.to(base_device)
# --- PASSE 2 ---
second_pass_kwargs = call_kwargs_base.copy()
high_res_h, high_res_w = downscaled_height * 2, downscaled_width * 2
second_pass_kwargs.update({
"height": high_res_h, "width": high_res_w, "latents": high_res_latents,
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
"output_type": "pt", "image_cond_noise_scale": 0.0, "guidance_scale": 1.0,
"timesteps": self.config["second_pass"]["timesteps"],
"stg_scale": self.config["second_pass"]["stg_scale"],
"rescaling_scale": self.config["second_pass"]["rescaling_scale"],
"skip_block_list": self.config["second_pass"]["skip_block_list"],
"tone_map_compression_ratio": self.config["second_pass"].get("tone_map_compression_ratio", 0.0)
})
if mode == "image-to-video":
padding_high_res = calculate_padding(high_res_h, high_res_w, high_res_h, high_res_w)
media_tensor_high_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, high_res_h, high_res_w)
media_tensor_high_res = torch.nn.functional.pad(media_tensor_high_res, padding_high_res)
second_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_high_res.to(base_device), 0, 1.0)]
print(f"Worker {worker['id']}: Iniciando passe 2 em {base_device}")
with torch.no_grad(): result_tensor = worker['base_pipeline'](**second_pass_kwargs).images
else: # Passe Único
single_pass_kwargs = call_kwargs_base.copy()
first_pass_config = self.config["first_pass"]
single_pass_kwargs.update({
"height": height_padded, "width": width_padded, "output_type": "pt",
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
"guidance_scale": 1.0, **first_pass_config
})
if mode == "image-to-video":
media_tensor_final = load_image_to_tensor_with_resize_and_crop(input_image_filepath, height_padded, width_padded)
media_tensor_final = torch.nn.functional.pad(media_tensor_final, padding_values)
single_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_final.to(base_device), 0, 1.0)]
elif mode == "video-to-video":
single_pass_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height_padded, width=width_padded, max_frames=int(frames_to_use), padding=padding_values).to(base_device)
print(f"Worker {worker['id']}: Iniciando passe único em {base_device}")
with torch.no_grad(): result_tensor = worker['base_pipeline'](**single_pass_kwargs).images
if result_tensor.shape[-2:] != (height, width):
num_frames_final = result_tensor.shape[2]
videos_tensor = result_tensor.permute(0, 2, 1, 3, 4).reshape(-1, result_tensor.shape[1], result_tensor.shape[3], result_tensor.shape[4])
videos_resized = torch.nn.functional.interpolate(videos_tensor, size=(height, width), mode='bilinear', align_corners=False)
result_tensor = videos_resized.reshape(result_tensor.shape[0], num_frames_final, result_tensor.shape[1], height, width).permute(0, 2, 1, 3, 4)
result_tensor = result_tensor[:, :, :actual_num_frames, (pad_top if pad_top > 0 else None):(-pad_bottom if pad_bottom > 0 else None), (pad_left if pad_left > 0 else None):(-pad_right if pad_right > 0 else None)]
video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
temp_dir = tempfile.mkdtemp()
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
with imageio.get_writer(output_video_path, fps=call_kwargs_base["frame_rate"], codec='libx264', quality=8) as writer:
for i, frame in enumerate(video_np):
writer.append_data(frame)
if progress_callback: progress_callback(i + 1, len(video_np))
return output_video_path, used_seed
except Exception as e:
print(f"!!!!!!!! ERRO no Worker {worker['id']} !!!!!!!!\n{e}")
raise e
finally:
print(f"Worker {worker['id']}: Tarefa finalizada. Limpando cache e liberando worker...")
with torch.cuda.device(base_device): torch.cuda.empty_cache()
with torch.cuda.device(upscaler_device): torch.cuda.empty_cache()
worker["lock"].release()
# A instância do serviço é criada aqui, mas os modelos só serão carregados no primeiro clique.
video_generation_service = VideoService() |