Spaces:
Build error
Build error
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from huggingface_hub import InferenceClient | |
| from langchain_core.messages import HumanMessage, AIMessage | |
| from langgraph.checkpoint.memory import MemorySaver | |
| from langgraph.graph import START, MessagesState, StateGraph | |
| # Initialize the HuggingFace client | |
| client = InferenceClient( | |
| model="HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
| ) | |
| # Define the function that calls the model | |
| def call_model(state: MessagesState): | |
| # Convert LangChain messages to HuggingFace format | |
| hf_messages = [] | |
| for msg in state["messages"]: | |
| if isinstance(msg, HumanMessage): | |
| hf_messages.append({"role": "user", "content": msg.content}) | |
| elif isinstance(msg, AIMessage): | |
| hf_messages.append({"role": "assistant", "content": msg.content}) | |
| # Call the API | |
| response = client.chat_completion( | |
| messages=hf_messages, | |
| temperature=0.5, | |
| max_tokens=64, | |
| top_p=0.7 | |
| ) | |
| # Convert the response to LangChain format | |
| ai_message = AIMessage(content=response.choices[0].message.content) | |
| return {"messages": state["messages"] + [ai_message]} | |
| # Define the graph | |
| workflow = StateGraph(state_schema=MessagesState) | |
| # Define the node in the graph | |
| workflow.add_edge(START, "model") | |
| workflow.add_node("model", call_model) | |
| # Add memory | |
| memory = MemorySaver() | |
| graph_app = workflow.compile(checkpointer=memory) | |
| # Define the data model for the request | |
| class QueryRequest(BaseModel): | |
| query: str | |
| thread_id: str = "default" | |
| # Create the FastAPI application | |
| app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph") | |
| async def api_home(): | |
| """Welcome endpoint""" | |
| return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"} | |
| # Generate endpoint | |
| async def generate(request: QueryRequest): | |
| """ | |
| Endpoint to generate text using the language model | |
| Args: | |
| request: QueryRequest | |
| query: str | |
| thread_id: str = "default" | |
| Returns: | |
| dict: A dictionary containing the generated text and the thread ID | |
| """ | |
| try: | |
| # Configure the thread ID | |
| config = {"configurable": {"thread_id": request.thread_id}} | |
| # Create the input message | |
| input_messages = [HumanMessage(content=request.query)] | |
| # Invoke the graph | |
| output = graph_app.invoke({"messages": input_messages}, config) | |
| # Get the model response | |
| response = output["messages"][-1].content | |
| return { | |
| "generated_text": response, | |
| "thread_id": request.thread_id | |
| } | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}") | |
| # Add an endpoint to test the token directly | |
| # @app.get("/test-token") | |
| # async def test_token(): | |
| # """Endpoint to test the authentication with HuggingFace""" | |
| # try: | |
| # # Make a simple request to verify that the token works | |
| # response = client.chat_completion( | |
| # messages=[{"role": "user", "content": "Hello"}], | |
| # max_tokens=10 | |
| # ) | |
| # return {"status": "success", "message": "Token is valid", "response": response.choices[0].message.content} | |
| # except Exception as e: | |
| # return {"status": "error", "message": str(e)} | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |