Spaces:
Build error
Build error
Refactor app.py with improved model initialization and endpoint structure
Browse files- Rename HuggingFace client to 'model' for clarity
- Add docstring to call_model function
- Update generate endpoint route to '/api/generate'
- Remove commented-out test-token endpoint
- Enhance code readability and documentation
app.py
CHANGED
|
@@ -6,13 +6,22 @@ from langchain_core.messages import HumanMessage, AIMessage
|
|
| 6 |
from langgraph.checkpoint.memory import MemorySaver
|
| 7 |
from langgraph.graph import START, MessagesState, StateGraph
|
| 8 |
|
| 9 |
-
# Initialize the HuggingFace
|
| 10 |
-
|
| 11 |
model="HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
| 12 |
)
|
| 13 |
|
| 14 |
# Define the function that calls the model
|
| 15 |
def call_model(state: MessagesState):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# Convert LangChain messages to HuggingFace format
|
| 17 |
hf_messages = []
|
| 18 |
for msg in state["messages"]:
|
|
@@ -22,7 +31,7 @@ def call_model(state: MessagesState):
|
|
| 22 |
hf_messages.append({"role": "assistant", "content": msg.content})
|
| 23 |
|
| 24 |
# Call the API
|
| 25 |
-
response =
|
| 26 |
messages=hf_messages,
|
| 27 |
temperature=0.5,
|
| 28 |
max_tokens=64,
|
|
@@ -52,13 +61,14 @@ class QueryRequest(BaseModel):
|
|
| 52 |
# Create the FastAPI application
|
| 53 |
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")
|
| 54 |
|
|
|
|
| 55 |
@app.get("/")
|
| 56 |
async def api_home():
|
| 57 |
"""Welcome endpoint"""
|
| 58 |
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
|
| 59 |
|
| 60 |
# Generate endpoint
|
| 61 |
-
@app.post("/generate")
|
| 62 |
async def generate(request: QueryRequest):
|
| 63 |
"""
|
| 64 |
Endpoint to generate text using the language model
|
|
@@ -91,20 +101,6 @@ async def generate(request: QueryRequest):
|
|
| 91 |
except Exception as e:
|
| 92 |
raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")
|
| 93 |
|
| 94 |
-
# Add an endpoint to test the token directly
|
| 95 |
-
# @app.get("/test-token")
|
| 96 |
-
# async def test_token():
|
| 97 |
-
# """Endpoint to test the authentication with HuggingFace"""
|
| 98 |
-
# try:
|
| 99 |
-
# # Make a simple request to verify that the token works
|
| 100 |
-
# response = client.chat_completion(
|
| 101 |
-
# messages=[{"role": "user", "content": "Hello"}],
|
| 102 |
-
# max_tokens=10
|
| 103 |
-
# )
|
| 104 |
-
# return {"status": "success", "message": "Token is valid", "response": response.choices[0].message.content}
|
| 105 |
-
# except Exception as e:
|
| 106 |
-
# return {"status": "error", "message": str(e)}
|
| 107 |
-
|
| 108 |
if __name__ == "__main__":
|
| 109 |
import uvicorn
|
| 110 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 6 |
from langgraph.checkpoint.memory import MemorySaver
|
| 7 |
from langgraph.graph import START, MessagesState, StateGraph
|
| 8 |
|
| 9 |
+
# Initialize the HuggingFace model
|
| 10 |
+
model = InferenceClient(
|
| 11 |
model="HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
| 12 |
)
|
| 13 |
|
| 14 |
# Define the function that calls the model
|
| 15 |
def call_model(state: MessagesState):
|
| 16 |
+
"""
|
| 17 |
+
Call the model with the given messages
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
state: MessagesState
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
dict: A dictionary containing the generated text and the thread ID
|
| 24 |
+
"""
|
| 25 |
# Convert LangChain messages to HuggingFace format
|
| 26 |
hf_messages = []
|
| 27 |
for msg in state["messages"]:
|
|
|
|
| 31 |
hf_messages.append({"role": "assistant", "content": msg.content})
|
| 32 |
|
| 33 |
# Call the API
|
| 34 |
+
response = model.chat_completion(
|
| 35 |
messages=hf_messages,
|
| 36 |
temperature=0.5,
|
| 37 |
max_tokens=64,
|
|
|
|
| 61 |
# Create the FastAPI application
|
| 62 |
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")
|
| 63 |
|
| 64 |
+
# Welcome endpoint
|
| 65 |
@app.get("/")
|
| 66 |
async def api_home():
|
| 67 |
"""Welcome endpoint"""
|
| 68 |
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
|
| 69 |
|
| 70 |
# Generate endpoint
|
| 71 |
+
@app.post("/api/generate")
|
| 72 |
async def generate(request: QueryRequest):
|
| 73 |
"""
|
| 74 |
Endpoint to generate text using the language model
|
|
|
|
| 101 |
except Exception as e:
|
| 102 |
raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
if __name__ == "__main__":
|
| 105 |
import uvicorn
|
| 106 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|