Spaces:
Sleeping
Sleeping
| from transformers import BertForSequenceClassification, BertTokenizerFast, pipeline | |
| import gradio as gr | |
| model_path = "indiaai-text-classification-model" | |
| model = BertForSequenceClassification.from_pretrained(model_path) | |
| tokenizer = BertTokenizerFast.from_pretrained(model_path) | |
| nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
| def classify_text(input_text): | |
| result = nlp(input_text) | |
| label = result[0]['label'] | |
| score = result[0]['score'] | |
| output = f"**Prediction:** {label}\n\n**Confidence Score:** {score:.5f}" | |
| return output | |
| interface = gr.Interface( | |
| fn=classify_text, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter your complaint", label="Input"), | |
| outputs=gr.Markdown(), | |
| title="INDIAai CyberGuard", | |
| description="Categorizes cyber complaints based on the victim, type of fraud, and other relevant parameters.", | |
| ) | |
| interface.launch() |