Spaces:
Sleeping
Sleeping
Update app.py
#2
by
sikeaditya
- opened
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
from pydantic import BaseModel
|
| 3 |
import requests
|
| 4 |
import json
|
|
@@ -8,77 +9,60 @@ import pandas as pd
|
|
| 8 |
import os
|
| 9 |
import re
|
| 10 |
import statistics
|
| 11 |
-
from datetime import datetime
|
| 12 |
-
from typing import Optional, Dict, Any, List
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
RETELL_SECRET_KEY = "key_bdb05277a4587c7441bdad4a2c1b"
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
#
|
|
|
|
|
|
|
| 23 |
def load_csv_data():
|
| 24 |
-
"""Load all CSV files into memory"""
|
| 25 |
data = {}
|
| 26 |
csv_files = {
|
| 27 |
-
'contact_info': '
|
| 28 |
-
'crop_advisory': '
|
| 29 |
-
'government_schemes': '
|
|
|
|
| 30 |
}
|
| 31 |
|
| 32 |
for key, file_path in csv_files.items():
|
| 33 |
try:
|
| 34 |
if os.path.exists(file_path):
|
| 35 |
-
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
else:
|
| 42 |
-
print(f"Warning: {file_path} not found")
|
| 43 |
data[key] = pd.DataFrame()
|
| 44 |
except Exception as e:
|
| 45 |
-
print(f"Error loading {
|
| 46 |
data[key] = pd.DataFrame()
|
| 47 |
-
|
| 48 |
return data
|
| 49 |
|
| 50 |
-
# Load CSV data
|
| 51 |
csv_data = load_csv_data()
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
response.raise_for_status()
|
| 61 |
-
data = response.json()
|
| 62 |
-
|
| 63 |
-
# OpenWeather returns cod as int or string depending on response
|
| 64 |
-
if str(data.get("cod")) == "200":
|
| 65 |
-
weather_description = data['weather'][0]['description']
|
| 66 |
-
temperature = data['main']['temp']
|
| 67 |
-
humidity = data['main']['humidity']
|
| 68 |
-
pressure = data['main']['pressure']
|
| 69 |
-
return temperature, humidity, weather_description, pressure
|
| 70 |
-
except Exception as e:
|
| 71 |
-
print(f"Error fetching weather data: {e}")
|
| 72 |
-
|
| 73 |
-
return None, None, None, None
|
| 74 |
-
|
| 75 |
-
class RetellRequest(BaseModel):
|
| 76 |
-
name: str # Function name
|
| 77 |
-
call: Dict[str, Any] # Call object with transcript and context
|
| 78 |
-
args: Dict[str, Any] # Function arguments
|
| 79 |
-
|
| 80 |
-
def verify_retell_signature(request_body: bytes, signature: str) -> bool:
|
| 81 |
-
"""Verify the request is from Retell.ai"""
|
| 82 |
expected_signature = hmac.new(
|
| 83 |
RETELL_SECRET_KEY.encode(),
|
| 84 |
request_body,
|
|
@@ -86,55 +70,32 @@ def verify_retell_signature(request_body: bytes, signature: str) -> bool:
|
|
| 86 |
).hexdigest()
|
| 87 |
return hmac.compare_digest(signature, expected_signature)
|
| 88 |
|
| 89 |
-
def search_csv_data(df: pd.DataFrame, search_terms: Dict[str, str]) -> pd.DataFrame:
|
| 90 |
-
"""Search dataframe based on multiple criteria"""
|
| 91 |
-
if df.empty:
|
| 92 |
-
return df
|
| 93 |
-
|
| 94 |
-
result = df.copy()
|
| 95 |
-
for column, value in search_terms.items():
|
| 96 |
-
if column in df.columns and value:
|
| 97 |
-
# Case-insensitive partial matching
|
| 98 |
-
result = result[result[column].astype(str).str.contains(value, case=False, na=False)]
|
| 99 |
-
|
| 100 |
-
return result
|
| 101 |
-
|
| 102 |
-
# -------------------------
|
| 103 |
-
# Helper utilities
|
| 104 |
-
# -------------------------
|
| 105 |
def find_column(df: pd.DataFrame, candidates: List[str]) -> Optional[str]:
|
| 106 |
"""Return first matching column name from candidates (case-insensitive) or None."""
|
| 107 |
cols = {c.lower(): c for c in df.columns}
|
| 108 |
for cand in candidates:
|
| 109 |
-
if cand.lower() in cols:
|
| 110 |
return cols[cand.lower()]
|
| 111 |
return None
|
| 112 |
|
| 113 |
def extract_number_from_price(val: Any) -> Optional[float]:
|
| 114 |
-
"""
|
| 115 |
-
Try to extract numeric value from price strings like "₹2,180 per quintal" or "2180".
|
| 116 |
-
Returns float or None if not parseable.
|
| 117 |
-
"""
|
| 118 |
if pd.isna(val):
|
| 119 |
return None
|
| 120 |
if isinstance(val, (int, float)):
|
| 121 |
return float(val)
|
| 122 |
s = str(val)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
# remove common words like per, quintal
|
| 126 |
-
# Use regex to capture numbers like 2,180.50 or 2180.5
|
| 127 |
-
match = re.search(r"(-?\d{1,3}(?:[,]\d{3})*(?:\.\d+)?|-?\d+(?:\.\d+)?)", s.replace('₹','').replace('Rs','').replace('INR',''))
|
| 128 |
if match:
|
| 129 |
-
num = match.group(0).replace(',', '')
|
| 130 |
try:
|
| 131 |
-
return float(
|
| 132 |
except:
|
| 133 |
return None
|
| 134 |
return None
|
| 135 |
|
| 136 |
def format_scheme_row(row: pd.Series, mapping: Dict[str,str]) -> Dict[str,str]:
|
| 137 |
-
"""
|
| 138 |
return {
|
| 139 |
"scheme": row.get(mapping.get("name", ""), "N/A"),
|
| 140 |
"introduction": row.get(mapping.get("introduction", ""), ""),
|
|
@@ -143,21 +104,16 @@ def format_scheme_row(row: pd.Series, mapping: Dict[str,str]) -> Dict[str,str]:
|
|
| 143 |
"eligibility": row.get(mapping.get("eligibility", ""), ""),
|
| 144 |
"process": row.get(mapping.get("process", ""), "Contact local agriculture office"),
|
| 145 |
"contact": row.get(mapping.get("contact", ""), ""),
|
| 146 |
-
"extra": row.get(mapping.get("extra", ""), "")
|
| 147 |
}
|
| 148 |
|
| 149 |
def get_schemes_from_csv(farmer_category: str, land_size: float, state: str, crop_type: str) -> List[Dict[str,str]]:
|
| 150 |
-
"""
|
| 151 |
-
Read government_schemes dataframe and return a list of scheme dicts.
|
| 152 |
-
This function attempts to surface the most relevant schemes first but will
|
| 153 |
-
return all schemes if filtering doesn't match.
|
| 154 |
-
"""
|
| 155 |
schemes_out = []
|
| 156 |
df = csv_data.get('government_schemes', pd.DataFrame())
|
| 157 |
if df.empty:
|
| 158 |
return []
|
| 159 |
|
| 160 |
-
# build mapping for column names (supports different CSV header variants)
|
| 161 |
mapping = {
|
| 162 |
"name": find_column(df, ["Name", "scheme_name", "Scheme", "Scheme Name"]),
|
| 163 |
"introduction": find_column(df, ["Introduction", "introduction", "Description"]),
|
|
@@ -169,18 +125,16 @@ def get_schemes_from_csv(farmer_category: str, land_size: float, state: str, cro
|
|
| 169 |
"extra": find_column(df, ["Extra Details", "extra_details", "Extra"])
|
| 170 |
}
|
| 171 |
|
| 172 |
-
# Build list of all schemes with formatting
|
| 173 |
all_schemes = []
|
| 174 |
for _, r in df.iterrows():
|
| 175 |
all_schemes.append(format_scheme_row(r, mapping))
|
| 176 |
|
| 177 |
-
# Try to filter schemes based on simple heuristics:
|
| 178 |
prioritized = []
|
| 179 |
others = []
|
| 180 |
|
| 181 |
-
state_lower =
|
| 182 |
-
farmer_cat_lower =
|
| 183 |
-
crop_lower =
|
| 184 |
|
| 185 |
for s in all_schemes:
|
| 186 |
elig = str(s.get("eligibility", "")).lower()
|
|
@@ -194,137 +148,438 @@ def get_schemes_from_csv(farmer_category: str, land_size: float, state: str, cro
|
|
| 194 |
]).lower()
|
| 195 |
|
| 196 |
score = 0
|
| 197 |
-
# If scheme mentions the state explicitly -> higher relevance
|
| 198 |
if state_lower and state_lower in text_blob:
|
| 199 |
score += 2
|
| 200 |
-
# If eligibility explicitly mentions landholding and user has land_size > 0
|
| 201 |
if land_size and ("land" in elig or "landholding" in elig or "land" in text_blob):
|
| 202 |
score += 2
|
| 203 |
-
|
| 204 |
-
if "all" in elig or "all farmers" in elig or "all landholding" in elig:
|
| 205 |
score += 1
|
| 206 |
-
# crop-specific mention
|
| 207 |
if crop_lower and crop_lower in text_blob:
|
| 208 |
score += 2
|
| 209 |
-
# farmer category mention
|
| 210 |
if farmer_cat_lower and farmer_cat_lower in text_blob:
|
| 211 |
score += 1
|
| 212 |
|
| 213 |
-
# Put high-scored into prioritized list
|
| 214 |
if score >= 2:
|
| 215 |
prioritized.append((score, s))
|
| 216 |
else:
|
| 217 |
others.append((score, s))
|
| 218 |
|
| 219 |
-
# sort priority by score desc
|
| 220 |
prioritized.sort(key=lambda x: x[0], reverse=True)
|
| 221 |
others.sort(key=lambda x: x[0], reverse=True)
|
| 222 |
|
| 223 |
-
# return only scheme dicts, prioritized first
|
| 224 |
schemes_out = [s for _, s in prioritized] + [s for _, s in others]
|
| 225 |
return schemes_out
|
| 226 |
|
| 227 |
# -------------------------
|
| 228 |
-
#
|
| 229 |
# -------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
if district_col and district:
|
| 255 |
-
mask = mask & df[district_col].astype(str).str.contains(district, case=False, na=False)
|
| 256 |
-
|
| 257 |
-
matches = df[mask]
|
| 258 |
-
|
| 259 |
-
if not matches.empty:
|
| 260 |
-
# compute average over numeric-parsable values in price_col if exists
|
| 261 |
-
avg_price = None
|
| 262 |
-
parsed_prices = []
|
| 263 |
-
if price_col:
|
| 264 |
-
for v in matches[price_col].tolist():
|
| 265 |
-
num = extract_number_from_price(v)
|
| 266 |
-
if num is not None:
|
| 267 |
-
parsed_prices.append(num)
|
| 268 |
-
if parsed_prices:
|
| 269 |
-
try:
|
| 270 |
-
avg_price = statistics.mean(parsed_prices)
|
| 271 |
-
except Exception:
|
| 272 |
-
avg_price = None
|
| 273 |
-
|
| 274 |
-
if avg_price is not None:
|
| 275 |
-
result = f"The average market price of {crop_name} in {district}, {state} is ₹{avg_price:.2f} per quintal."
|
| 276 |
else:
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
return {
|
| 281 |
"success": True,
|
| 282 |
-
"result":
|
| 283 |
-
"data":
|
|
|
|
| 284 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
|
|
|
|
|
|
|
|
|
| 292 |
@app.post("/api/scheme-eligibility")
|
| 293 |
async def scheme_eligibility_endpoint(
|
| 294 |
request: Request,
|
| 295 |
-
x_retell_signature: str = Header(None, alias="X-Retell-Signature")
|
| 296 |
):
|
| 297 |
-
"""Handle scheme eligibility function call from Retell.ai"""
|
| 298 |
request_body = await request.body()
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
crop_type = retell_request["args"].get("crop_type", "")
|
| 306 |
|
| 307 |
try:
|
| 308 |
eligible_schemes = []
|
| 309 |
-
|
| 310 |
-
# Search government schemes CSV and apply simple relevance heuristics
|
| 311 |
if not csv_data['government_schemes'].empty:
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
if not eligible_schemes:
|
| 316 |
-
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
| 318 |
eligible_schemes.append({
|
| 319 |
"scheme": "PM-KISAN",
|
| 320 |
"benefit": "₹6,000 per year in 3 installments",
|
| 321 |
"description": "Direct income support to landholding farmer families.",
|
| 322 |
"eligibility": "All landholding farmer families.",
|
| 323 |
-
"process": "Apply
|
| 324 |
"contact": "https://pmkisan.gov.in/"
|
| 325 |
})
|
| 326 |
-
|
| 327 |
-
# Crop Insurance
|
| 328 |
eligible_schemes.append({
|
| 329 |
"scheme": "Pradhan Mantri Fasal Bima Yojana",
|
| 330 |
"benefit": "Comprehensive crop insurance coverage",
|
|
@@ -333,9 +588,7 @@ async def scheme_eligibility_endpoint(
|
|
| 333 |
"process": "Contact your nearest bank, CSC or PMFBY portal",
|
| 334 |
"contact": "https://pmfby.gov.in/"
|
| 335 |
})
|
| 336 |
-
|
| 337 |
-
# State-specific schemes
|
| 338 |
-
if state and state.lower() == "punjab":
|
| 339 |
eligible_schemes.append({
|
| 340 |
"scheme": "Punjab Crop Diversification Scheme",
|
| 341 |
"benefit": "₹17,500 per hectare for diversification",
|
|
@@ -343,15 +596,14 @@ async def scheme_eligibility_endpoint(
|
|
| 343 |
"contact": ""
|
| 344 |
})
|
| 345 |
|
| 346 |
-
#
|
| 347 |
if eligible_schemes:
|
| 348 |
schemes_text = f"You are eligible for {len(eligible_schemes)} government schemes: "
|
| 349 |
-
for i, scheme in enumerate(eligible_schemes[:3]):
|
| 350 |
-
contact_info = f" Apply through {scheme.get('process','Contact local agriculture office')}"
|
| 351 |
if scheme.get('contact'):
|
| 352 |
contact_info += f" or contact {scheme.get('contact')}"
|
| 353 |
schemes_text += f"{i+1}. {scheme.get('scheme','N/A')} - {scheme.get('benefit', scheme.get('description','N/A'))}.{contact_info}. "
|
| 354 |
-
|
| 355 |
if len(eligible_schemes) > 3:
|
| 356 |
schemes_text += f"And {len(eligible_schemes)-3} more schemes available."
|
| 357 |
else:
|
|
@@ -364,22 +616,82 @@ async def scheme_eligibility_endpoint(
|
|
| 364 |
|
| 365 |
except Exception as e:
|
| 366 |
return {
|
| 367 |
-
"result": "I'm having trouble accessing scheme information right now. Please contact your local agriculture officer
|
| 368 |
"error": str(e)
|
| 369 |
}
|
| 370 |
|
| 371 |
-
@app.
|
| 372 |
-
async def
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
temperature, humidity, description, pressure = get_weather(city)
|
| 377 |
if temperature is None:
|
| 378 |
-
# Fallback values
|
| 379 |
temperature, humidity, description, pressure = 32.0, 60, "Not Available", 1012
|
| 380 |
weather_condition = "NORMAL"
|
| 381 |
else:
|
| 382 |
-
desc_lower = description.lower()
|
| 383 |
if "clear" in desc_lower:
|
| 384 |
weather_condition = "SUNNY"
|
| 385 |
elif "rain" in desc_lower:
|
|
@@ -390,7 +702,7 @@ async def weather_advisory(request: dict):
|
|
| 390 |
weather_condition = "NORMAL"
|
| 391 |
|
| 392 |
result = (
|
| 393 |
-
f"Weather in {city}: {description}. "
|
| 394 |
f"Temperature {temperature}°C, Humidity {humidity}%, Pressure {pressure} hPa. "
|
| 395 |
f"Condition classified as {weather_condition}."
|
| 396 |
)
|
|
@@ -408,89 +720,132 @@ async def weather_advisory(request: dict):
|
|
| 408 |
}
|
| 409 |
}
|
| 410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
@app.post("/api/crop-advisory")
|
| 412 |
async def crop_advisory_endpoint(
|
| 413 |
request: Request,
|
| 414 |
-
x_retell_signature: str = Header(None, alias="X-Retell-Signature")
|
| 415 |
):
|
| 416 |
-
"""Handle crop advisory function call from Retell.ai"""
|
| 417 |
request_body = await request.body()
|
| 418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
|
| 420 |
-
crop_name =
|
| 421 |
-
growth_stage =
|
| 422 |
-
issue_type =
|
| 423 |
-
state =
|
| 424 |
|
| 425 |
try:
|
| 426 |
advisory = None
|
| 427 |
contact_info = ""
|
| 428 |
|
| 429 |
-
# Search
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
if
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
if
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
contact_parts
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
# Fallback advisory
|
| 484 |
if not advisory:
|
| 485 |
-
if crop_name.lower() == "wheat" and issue_type == "pest":
|
| 486 |
-
advisory = "For wheat pest control: If you see aphids, spray Imidacloprid 200 SL at 0.3ml per liter of water. Spray during evening hours. Avoid over-irrigation
|
| 487 |
-
elif crop_name.lower() == "rice" and issue_type == "disease":
|
| 488 |
advisory = "For rice disease management: If you see brown spots on leaves, it might be blast disease. Apply Tricyclazole 75% WP at 0.6g per liter. Ensure proper drainage."
|
| 489 |
else:
|
| 490 |
-
advisory = f"For {crop_name} at {growth_stage} stage: Monitor crop regularly, maintain proper spacing, apply fertilizers as per soil test recommendations."
|
| 491 |
|
| 492 |
if not contact_info:
|
| 493 |
-
contact_info = f"For detailed advice, contact your local Krishi Vigyan Kendra or Agriculture Officer in {state}. You can also call the Kisan Call Centre at 1800-1801-551."
|
| 494 |
|
| 495 |
result_text = f"{advisory} {contact_info}"
|
| 496 |
|
|
@@ -506,41 +861,99 @@ async def crop_advisory_endpoint(
|
|
| 506 |
"error": str(e)
|
| 507 |
}
|
| 508 |
|
| 509 |
-
@app.get("/api/
|
| 510 |
-
async def
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
| 520 |
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
async def health_check():
|
| 524 |
-
return {
|
| 525 |
-
"status": "healthy",
|
| 526 |
-
"service": "Krishi Mitra API",
|
| 527 |
-
"csv_files_loaded": {key: len(df) for key, df in csv_data.items()}
|
| 528 |
-
}
|
| 529 |
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
"
|
| 536 |
-
"
|
| 537 |
-
"
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
if __name__ == "__main__":
|
| 545 |
import uvicorn
|
| 546 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
from fastapi import FastAPI, HTTPException, Header, Request, Query
|
| 3 |
from pydantic import BaseModel
|
| 4 |
import requests
|
| 5 |
import json
|
|
|
|
| 9 |
import os
|
| 10 |
import re
|
| 11 |
import statistics
|
| 12 |
+
from datetime import datetime, timedelta
|
| 13 |
+
from typing import Optional, Dict, Any, List, Union
|
| 14 |
+
import requests
|
| 15 |
+
import urllib.parse
|
| 16 |
|
| 17 |
+
app = FastAPI(title="Krishi Mitra API")
|
|
|
|
| 18 |
|
| 19 |
+
# -------------------------
|
| 20 |
+
# Configuration (update with env vars in production)
|
| 21 |
+
# -------------------------
|
| 22 |
+
RETELL_SECRET_KEY = os.getenv("RETELL_SECRET_KEY", "key_bdb05277a4587c7441bdad4a2c1b")
|
| 23 |
+
WEATHER_API_KEY = os.getenv("WEATHER_API_KEY", "ee75ffd59875aa5ca6c207e594336b30")
|
| 24 |
|
| 25 |
+
# -------------------------
|
| 26 |
+
# CSV loader
|
| 27 |
+
# -------------------------
|
| 28 |
def load_csv_data():
|
| 29 |
+
"""Load all CSV files into memory; trim whitespace from columns and string cells."""
|
| 30 |
data = {}
|
| 31 |
csv_files = {
|
| 32 |
+
'contact_info': './data/contact_info.csv',
|
| 33 |
+
'crop_advisory': './data/crop_advisory.csv',
|
| 34 |
+
'government_schemes': './data/government_schemes.csv',
|
| 35 |
+
'market_prices': './data/market_prices.csv'
|
| 36 |
}
|
| 37 |
|
| 38 |
for key, file_path in csv_files.items():
|
| 39 |
try:
|
| 40 |
if os.path.exists(file_path):
|
| 41 |
+
df = pd.read_csv(file_path)
|
| 42 |
+
# strip whitespace from column names
|
| 43 |
+
df.columns = df.columns.str.strip()
|
| 44 |
+
# strip whitespace from string columns
|
| 45 |
+
for col in df.select_dtypes(include=['object']).columns:
|
| 46 |
+
df[col] = df[col].astype(str).str.strip()
|
| 47 |
+
data[key] = df
|
| 48 |
+
print(f"Loaded {key} ({file_path}): {len(df)} records")
|
| 49 |
else:
|
| 50 |
+
print(f"Warning: {file_path} not found - {key} will be empty")
|
| 51 |
data[key] = pd.DataFrame()
|
| 52 |
except Exception as e:
|
| 53 |
+
print(f"Error loading {file_path}: {e}")
|
| 54 |
data[key] = pd.DataFrame()
|
|
|
|
| 55 |
return data
|
| 56 |
|
|
|
|
| 57 |
csv_data = load_csv_data()
|
| 58 |
|
| 59 |
+
# -------------------------
|
| 60 |
+
# Helpers
|
| 61 |
+
# -------------------------
|
| 62 |
+
def verify_retell_signature(request_body: bytes, signature: Optional[str]) -> bool:
|
| 63 |
+
"""Verify the request is from Retell.ai if signature provided. If no signature, treat as allowed (for local testing)."""
|
| 64 |
+
if not signature:
|
| 65 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
expected_signature = hmac.new(
|
| 67 |
RETELL_SECRET_KEY.encode(),
|
| 68 |
request_body,
|
|
|
|
| 70 |
).hexdigest()
|
| 71 |
return hmac.compare_digest(signature, expected_signature)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def find_column(df: pd.DataFrame, candidates: List[str]) -> Optional[str]:
|
| 74 |
"""Return first matching column name from candidates (case-insensitive) or None."""
|
| 75 |
cols = {c.lower(): c for c in df.columns}
|
| 76 |
for cand in candidates:
|
| 77 |
+
if cand and cand.lower() in cols:
|
| 78 |
return cols[cand.lower()]
|
| 79 |
return None
|
| 80 |
|
| 81 |
def extract_number_from_price(val: Any) -> Optional[float]:
|
| 82 |
+
"""Extract numeric value from messy price strings like '₹2,180 per quintal'."""
|
|
|
|
|
|
|
|
|
|
| 83 |
if pd.isna(val):
|
| 84 |
return None
|
| 85 |
if isinstance(val, (int, float)):
|
| 86 |
return float(val)
|
| 87 |
s = str(val)
|
| 88 |
+
s = s.replace('₹', '').replace('Rs', '').replace('INR', '')
|
| 89 |
+
match = re.search(r"(-?\d{1,3}(?:[,]\d{3})*(?:\.\d+)?|-?\d+(?:\.\d+)?)", s)
|
|
|
|
|
|
|
|
|
|
| 90 |
if match:
|
|
|
|
| 91 |
try:
|
| 92 |
+
return float(match.group(0).replace(',', ''))
|
| 93 |
except:
|
| 94 |
return None
|
| 95 |
return None
|
| 96 |
|
| 97 |
def format_scheme_row(row: pd.Series, mapping: Dict[str,str]) -> Dict[str,str]:
|
| 98 |
+
"""Normalize scheme row into dict keys used in responses."""
|
| 99 |
return {
|
| 100 |
"scheme": row.get(mapping.get("name", ""), "N/A"),
|
| 101 |
"introduction": row.get(mapping.get("introduction", ""), ""),
|
|
|
|
| 104 |
"eligibility": row.get(mapping.get("eligibility", ""), ""),
|
| 105 |
"process": row.get(mapping.get("process", ""), "Contact local agriculture office"),
|
| 106 |
"contact": row.get(mapping.get("contact", ""), ""),
|
| 107 |
+
"extra": row.get(mapping.get("extra", ""), "")
|
| 108 |
}
|
| 109 |
|
| 110 |
def get_schemes_from_csv(farmer_category: str, land_size: float, state: str, crop_type: str) -> List[Dict[str,str]]:
|
| 111 |
+
"""Return list of scheme dicts from government_schemes CSV (with simple heuristics)."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
schemes_out = []
|
| 113 |
df = csv_data.get('government_schemes', pd.DataFrame())
|
| 114 |
if df.empty:
|
| 115 |
return []
|
| 116 |
|
|
|
|
| 117 |
mapping = {
|
| 118 |
"name": find_column(df, ["Name", "scheme_name", "Scheme", "Scheme Name"]),
|
| 119 |
"introduction": find_column(df, ["Introduction", "introduction", "Description"]),
|
|
|
|
| 125 |
"extra": find_column(df, ["Extra Details", "extra_details", "Extra"])
|
| 126 |
}
|
| 127 |
|
|
|
|
| 128 |
all_schemes = []
|
| 129 |
for _, r in df.iterrows():
|
| 130 |
all_schemes.append(format_scheme_row(r, mapping))
|
| 131 |
|
|
|
|
| 132 |
prioritized = []
|
| 133 |
others = []
|
| 134 |
|
| 135 |
+
state_lower = (state or "").lower()
|
| 136 |
+
farmer_cat_lower = (farmer_category or "").lower()
|
| 137 |
+
crop_lower = (crop_type or "").lower()
|
| 138 |
|
| 139 |
for s in all_schemes:
|
| 140 |
elig = str(s.get("eligibility", "")).lower()
|
|
|
|
| 148 |
]).lower()
|
| 149 |
|
| 150 |
score = 0
|
|
|
|
| 151 |
if state_lower and state_lower in text_blob:
|
| 152 |
score += 2
|
|
|
|
| 153 |
if land_size and ("land" in elig or "landholding" in elig or "land" in text_blob):
|
| 154 |
score += 2
|
| 155 |
+
if "all" in elig or "all farmers" in elig:
|
|
|
|
| 156 |
score += 1
|
|
|
|
| 157 |
if crop_lower and crop_lower in text_blob:
|
| 158 |
score += 2
|
|
|
|
| 159 |
if farmer_cat_lower and farmer_cat_lower in text_blob:
|
| 160 |
score += 1
|
| 161 |
|
|
|
|
| 162 |
if score >= 2:
|
| 163 |
prioritized.append((score, s))
|
| 164 |
else:
|
| 165 |
others.append((score, s))
|
| 166 |
|
|
|
|
| 167 |
prioritized.sort(key=lambda x: x[0], reverse=True)
|
| 168 |
others.sort(key=lambda x: x[0], reverse=True)
|
| 169 |
|
|
|
|
| 170 |
schemes_out = [s for _, s in prioritized] + [s for _, s in others]
|
| 171 |
return schemes_out
|
| 172 |
|
| 173 |
# -------------------------
|
| 174 |
+
# Weather helper (simple)
|
| 175 |
# -------------------------
|
| 176 |
+
def get_weather(city: str):
|
| 177 |
+
"""Fetch weather data from OpenWeatherMap API. Returns (temperature, humidity, description, pressure) or (None,...)."""
|
| 178 |
+
if not city:
|
| 179 |
+
return None, None, None, None
|
| 180 |
+
url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={WEATHER_API_KEY}&units=metric"
|
| 181 |
+
try:
|
| 182 |
+
resp = requests.get(url, timeout=5)
|
| 183 |
+
resp.raise_for_status()
|
| 184 |
+
data = resp.json()
|
| 185 |
+
if str(data.get("cod")) == "200":
|
| 186 |
+
weather_description = data['weather'][0]['description']
|
| 187 |
+
temperature = data['main']['temp']
|
| 188 |
+
humidity = data['main']['humidity']
|
| 189 |
+
pressure = data['main']['pressure']
|
| 190 |
+
return temperature, humidity, weather_description, pressure
|
| 191 |
+
except Exception as e:
|
| 192 |
+
print(f"Weather fetch error: {e}")
|
| 193 |
+
return None, None, None, None
|
| 194 |
|
| 195 |
+
# -------------------------
|
| 196 |
+
# Market Prices Helper Functions (Updated for CSV)
|
| 197 |
+
# -------------------------
|
| 198 |
+
def get_market_prices_from_csv(state: str, district: Optional[str] = None, crop_name: Optional[str] = None):
|
| 199 |
+
"""
|
| 200 |
+
Fetch market price data from local CSV file
|
| 201 |
+
Returns (success: bool, data: list, message: str)
|
| 202 |
+
"""
|
| 203 |
+
try:
|
| 204 |
+
# Load market prices CSV
|
| 205 |
+
market_df = csv_data.get('market_prices', pd.DataFrame())
|
| 206 |
+
|
| 207 |
+
# If market_prices not loaded, try to load it directly
|
| 208 |
+
if market_df.empty:
|
| 209 |
+
market_csv_path = './data/market_prices.csv'
|
| 210 |
+
if os.path.exists(market_csv_path):
|
| 211 |
+
market_df = pd.read_csv(market_csv_path)
|
| 212 |
+
# Clean column names and string data
|
| 213 |
+
market_df.columns = market_df.columns.str.strip()
|
| 214 |
+
for col in market_df.select_dtypes(include=['object']).columns:
|
| 215 |
+
market_df[col] = market_df[col].astype(str).str.strip()
|
| 216 |
+
# Update the global csv_data
|
| 217 |
+
csv_data['market_prices'] = market_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
else:
|
| 219 |
+
return False, [], f"Market prices CSV file not found at {market_csv_path}"
|
| 220 |
+
|
| 221 |
+
if market_df.empty:
|
| 222 |
+
return False, [], "No market price data available"
|
| 223 |
+
|
| 224 |
+
# Find relevant columns (case-insensitive matching)
|
| 225 |
+
state_col = find_column(market_df, ["State", "state"])
|
| 226 |
+
district_col = find_column(market_df, ["District", "district"])
|
| 227 |
+
commodity_col = find_column(market_df, ["Commodity", "commodity", "Crop", "crop"])
|
| 228 |
+
market_col = find_column(market_df, ["Market", "market"])
|
| 229 |
+
variety_col = find_column(market_df, ["Variety", "variety"])
|
| 230 |
+
date_col = find_column(market_df, ["Arrival_Date", "arrival_date", "Date", "date"])
|
| 231 |
+
min_price_col = find_column(market_df, ["Min_x0020_Price", "min_price", "Min_Price", "Minimum_Price"])
|
| 232 |
+
max_price_col = find_column(market_df, ["Max_x0020_Price", "max_price", "Max_Price", "Maximum_Price"])
|
| 233 |
+
modal_price_col = find_column(market_df, ["Modal_x0020_Price", "modal_price", "Modal_Price", "Average_Price"])
|
| 234 |
+
|
| 235 |
+
if not state_col:
|
| 236 |
+
return False, [], "State column not found in market prices data"
|
| 237 |
+
|
| 238 |
+
# Filter by state (case-insensitive)
|
| 239 |
+
filtered_df = market_df[market_df[state_col].astype(str).str.contains(state, case=False, na=False)]
|
| 240 |
+
|
| 241 |
+
# Filter by district if provided
|
| 242 |
+
if district and district_col:
|
| 243 |
+
filtered_df = filtered_df[filtered_df[district_col].astype(str).str.contains(district, case=False, na=False)]
|
| 244 |
+
|
| 245 |
+
# Filter by crop/commodity if provided
|
| 246 |
+
if crop_name and commodity_col:
|
| 247 |
+
filtered_df = filtered_df[filtered_df[commodity_col].astype(str).str.contains(crop_name, case=False, na=False)]
|
| 248 |
+
|
| 249 |
+
if filtered_df.empty:
|
| 250 |
+
return False, [], f"No market price data found for the specified criteria"
|
| 251 |
+
|
| 252 |
+
# Convert to list of dictionaries
|
| 253 |
+
processed_data = []
|
| 254 |
+
for _, record in filtered_df.iterrows():
|
| 255 |
+
processed_record = {
|
| 256 |
+
"state": record.get(state_col, "") if state_col else "",
|
| 257 |
+
"district": record.get(district_col, "") if district_col else "",
|
| 258 |
+
"market": record.get(market_col, "") if market_col else "",
|
| 259 |
+
"commodity": record.get(commodity_col, "") if commodity_col else "",
|
| 260 |
+
"variety": record.get(variety_col, "") if variety_col else "",
|
| 261 |
+
"arrival_date": record.get(date_col, "") if date_col else "",
|
| 262 |
+
"min_price": record.get(min_price_col, "") if min_price_col else "",
|
| 263 |
+
"max_price": record.get(max_price_col, "") if max_price_col else "",
|
| 264 |
+
"modal_price": record.get(modal_price_col, "") if modal_price_col else ""
|
| 265 |
+
}
|
| 266 |
+
processed_data.append(processed_record)
|
| 267 |
+
|
| 268 |
+
return True, processed_data, f"Found {len(processed_data)} market price records"
|
| 269 |
+
|
| 270 |
+
except Exception as e:
|
| 271 |
+
return False, [], f"Error processing market data: {str(e)}"
|
| 272 |
|
| 273 |
+
def format_market_prices_response(data: List[Dict], state: str, district: Optional[str] = None, crop_name: Optional[str] = None):
|
| 274 |
+
"""
|
| 275 |
+
Format market price data into a voice-friendly response
|
| 276 |
+
"""
|
| 277 |
+
if not data:
|
| 278 |
+
location_text = f"{district}, {state}" if district else state
|
| 279 |
+
return f"No current market price data available for {location_text}. Please contact your local market or agriculture office for current rates."
|
| 280 |
+
|
| 281 |
+
# Group data by commodity for better presentation
|
| 282 |
+
commodity_data = {}
|
| 283 |
+
for record in data:
|
| 284 |
+
commodity = record.get("commodity", "Unknown")
|
| 285 |
+
if commodity not in commodity_data:
|
| 286 |
+
commodity_data[commodity] = []
|
| 287 |
+
commodity_data[commodity].append(record)
|
| 288 |
+
|
| 289 |
+
# Build response text
|
| 290 |
+
location_text = f"{district}, {state}" if district else state
|
| 291 |
+
|
| 292 |
+
if crop_name and crop_name.lower() in [c.lower() for c in commodity_data.keys()]:
|
| 293 |
+
# Specific crop requested
|
| 294 |
+
matching_commodity = next(c for c in commodity_data.keys() if c.lower() == crop_name.lower())
|
| 295 |
+
crop_records = commodity_data[matching_commodity]
|
| 296 |
+
|
| 297 |
+
if len(crop_records) == 1:
|
| 298 |
+
record = crop_records[0]
|
| 299 |
+
response_text = f"Market price for {matching_commodity} in {record.get('market', location_text)}: "
|
| 300 |
+
|
| 301 |
+
# Clean and format prices
|
| 302 |
+
min_price = extract_number_from_price(record.get('min_price', ''))
|
| 303 |
+
max_price = extract_number_from_price(record.get('max_price', ''))
|
| 304 |
+
modal_price = extract_number_from_price(record.get('modal_price', ''))
|
| 305 |
+
|
| 306 |
+
if min_price is not None:
|
| 307 |
+
response_text += f"Minimum ₹{min_price:.0f}, "
|
| 308 |
+
if max_price is not None:
|
| 309 |
+
response_text += f"Maximum ₹{max_price:.0f}, "
|
| 310 |
+
if modal_price is not None:
|
| 311 |
+
response_text += f"Modal price ₹{modal_price:.0f} per quintal. "
|
| 312 |
+
else:
|
| 313 |
+
response_text += "per quintal. "
|
| 314 |
+
|
| 315 |
+
if record.get('arrival_date'):
|
| 316 |
+
response_text += f"Data from {record.get('arrival_date')}."
|
| 317 |
+
else:
|
| 318 |
+
# Multiple records for the same commodity
|
| 319 |
+
min_prices = []
|
| 320 |
+
max_prices = []
|
| 321 |
+
modal_prices = []
|
| 322 |
+
|
| 323 |
+
for r in crop_records:
|
| 324 |
+
min_p = extract_number_from_price(r.get('min_price', ''))
|
| 325 |
+
max_p = extract_number_from_price(r.get('max_price', ''))
|
| 326 |
+
modal_p = extract_number_from_price(r.get('modal_price', ''))
|
| 327 |
+
|
| 328 |
+
if min_p is not None:
|
| 329 |
+
min_prices.append(min_p)
|
| 330 |
+
if max_p is not None:
|
| 331 |
+
max_prices.append(max_p)
|
| 332 |
+
if modal_p is not None:
|
| 333 |
+
modal_prices.append(modal_p)
|
| 334 |
+
|
| 335 |
+
response_text = f"Market prices for {matching_commodity} in {location_text}: "
|
| 336 |
+
if min_prices and max_prices:
|
| 337 |
+
response_text += f"Price range ₹{min(min_prices):.0f} to ₹{max(max_prices):.0f} per quintal. "
|
| 338 |
+
if modal_prices:
|
| 339 |
+
avg_modal = sum(modal_prices) / len(modal_prices)
|
| 340 |
+
response_text += f"Average modal price ₹{avg_modal:.0f} per quintal. "
|
| 341 |
+
response_text += f"Data from {len(crop_records)} markets."
|
| 342 |
+
else:
|
| 343 |
+
# General market overview or multiple commodities
|
| 344 |
+
response_text = f"Current market prices in {location_text}: "
|
| 345 |
+
|
| 346 |
+
commodity_summaries = []
|
| 347 |
+
for commodity, records in list(commodity_data.items())[:5]: # Limit to 5 commodities for voice
|
| 348 |
+
if records:
|
| 349 |
+
modal_prices = []
|
| 350 |
+
for r in records:
|
| 351 |
+
modal_p = extract_number_from_price(r.get('modal_price', ''))
|
| 352 |
+
if modal_p is not None:
|
| 353 |
+
modal_prices.append(modal_p)
|
| 354 |
+
|
| 355 |
+
if modal_prices:
|
| 356 |
+
avg_price = sum(modal_prices) / len(modal_prices)
|
| 357 |
+
commodity_summaries.append(f"{commodity} at ₹{avg_price:.0f}")
|
| 358 |
+
else:
|
| 359 |
+
commodity_summaries.append(f"{commodity} (price varies)")
|
| 360 |
+
|
| 361 |
+
if commodity_summaries:
|
| 362 |
+
response_text += ", ".join(commodity_summaries) + " per quintal. "
|
| 363 |
+
|
| 364 |
+
if len(commodity_data) > 5:
|
| 365 |
+
response_text += f"And {len(commodity_data) - 5} more commodities available."
|
| 366 |
+
|
| 367 |
+
return response_text
|
| 368 |
+
|
| 369 |
+
# -------------------------
|
| 370 |
+
# Request models (if needed)
|
| 371 |
+
# -------------------------
|
| 372 |
+
class RetellRequest(BaseModel):
|
| 373 |
+
name: str
|
| 374 |
+
call: Dict[str, Any]
|
| 375 |
+
args: Dict[str, Any]
|
| 376 |
+
|
| 377 |
+
# -------------------------
|
| 378 |
+
# Endpoints
|
| 379 |
+
# -------------------------
|
| 380 |
+
|
| 381 |
+
# Root and health
|
| 382 |
+
@app.get("/")
|
| 383 |
+
async def root():
|
| 384 |
+
return {
|
| 385 |
+
"message": "Krishi Mitra API is running!",
|
| 386 |
+
"endpoints": [
|
| 387 |
+
"/api/market-prices (GET|POST)",
|
| 388 |
+
"/api/scheme-eligibility (GET|POST)",
|
| 389 |
+
"/api/weather-advisory (GET|POST)",
|
| 390 |
+
"/api/crop-advisory (GET|POST)",
|
| 391 |
+
"/api/csv-status (GET)",
|
| 392 |
+
"/health (GET)"
|
| 393 |
+
]
|
| 394 |
+
}
|
| 395 |
+
|
| 396 |
+
@app.get("/health")
|
| 397 |
+
async def health_check():
|
| 398 |
+
return {
|
| 399 |
+
"status": "healthy",
|
| 400 |
+
"service": "Krishi Mitra API",
|
| 401 |
+
"csv_files_loaded": {key: len(df) for key, df in csv_data.items()}
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
@app.get("/api/csv-status")
|
| 405 |
+
async def csv_status():
|
| 406 |
+
"""Check status of loaded CSV files"""
|
| 407 |
+
status = {}
|
| 408 |
+
for key, df in csv_data.items():
|
| 409 |
+
status[key] = {
|
| 410 |
+
"loaded": not df.empty,
|
| 411 |
+
"records": len(df),
|
| 412 |
+
"columns": list(df.columns) if not df.empty else []
|
| 413 |
+
}
|
| 414 |
+
return status
|
| 415 |
+
|
| 416 |
+
# -------------------------
|
| 417 |
+
# Market prices (Updated for CSV)
|
| 418 |
+
# -------------------------
|
| 419 |
+
@app.post("/api/market-prices")
|
| 420 |
+
async def market_prices_post(request: Request):
|
| 421 |
+
"""
|
| 422 |
+
Get market prices from local CSV data
|
| 423 |
+
"""
|
| 424 |
+
try:
|
| 425 |
+
body = await request.json() if (await request.body()) else {}
|
| 426 |
+
|
| 427 |
+
# Extract parameters from different possible locations in payload
|
| 428 |
+
query_params = body.get("query", {})
|
| 429 |
+
args_params = body.get("args", {})
|
| 430 |
+
|
| 431 |
+
crop_name = (
|
| 432 |
+
query_params.get("crop_name", "") or
|
| 433 |
+
args_params.get("crop_name", "") or
|
| 434 |
+
body.get("crop_name", "")
|
| 435 |
+
).strip()
|
| 436 |
+
|
| 437 |
+
state = (
|
| 438 |
+
query_params.get("state", "") or
|
| 439 |
+
args_params.get("state", "") or
|
| 440 |
+
body.get("state", "")
|
| 441 |
+
).strip()
|
| 442 |
+
|
| 443 |
+
district = (
|
| 444 |
+
query_params.get("district", "") or
|
| 445 |
+
args_params.get("district", "") or
|
| 446 |
+
body.get("district", "")
|
| 447 |
+
).strip()
|
| 448 |
+
|
| 449 |
+
if not state:
|
| 450 |
+
return {
|
| 451 |
+
"success": False,
|
| 452 |
+
"result": "Please provide state name to get market prices.",
|
| 453 |
+
"data": []
|
| 454 |
+
}
|
| 455 |
+
|
| 456 |
+
# Fetch market data from CSV
|
| 457 |
+
success, data, message = get_market_prices_from_csv(state, district or None, crop_name or None)
|
| 458 |
+
|
| 459 |
+
if success:
|
| 460 |
+
response_text = format_market_prices_response(data, state, district or None, crop_name or None)
|
| 461 |
return {
|
| 462 |
"success": True,
|
| 463 |
+
"result": response_text,
|
| 464 |
+
"data": data[:10], # Limit response data for voice interface
|
| 465 |
+
"total_records": len(data)
|
| 466 |
}
|
| 467 |
+
else:
|
| 468 |
+
# Fallback message
|
| 469 |
+
location_text = f"{district}, {state}" if district else state
|
| 470 |
+
fallback_message = f"Current market price data for {location_text} is not available right now. Please contact your local mandi or agriculture market committee for current rates."
|
| 471 |
+
|
| 472 |
+
return {
|
| 473 |
+
"success": False,
|
| 474 |
+
"result": fallback_message,
|
| 475 |
+
"data": [],
|
| 476 |
+
"error": message
|
| 477 |
+
}
|
| 478 |
+
|
| 479 |
+
except Exception as e:
|
| 480 |
+
return {
|
| 481 |
+
"success": False,
|
| 482 |
+
"result": "I'm having trouble accessing market price data right now. Please contact your local mandi for current rates.",
|
| 483 |
+
"data": [],
|
| 484 |
+
"error": str(e)
|
| 485 |
+
}
|
| 486 |
|
| 487 |
+
@app.get("/api/market-prices")
|
| 488 |
+
async def market_prices_get(
|
| 489 |
+
crop_name: Optional[str] = Query("", alias="crop_name"),
|
| 490 |
+
state: Optional[str] = Query("", alias="state"),
|
| 491 |
+
district: Optional[str] = Query("", alias="district")
|
| 492 |
+
):
|
| 493 |
+
"""
|
| 494 |
+
Get market prices via GET request from local CSV
|
| 495 |
+
"""
|
| 496 |
+
if not state:
|
| 497 |
+
return {
|
| 498 |
+
"success": False,
|
| 499 |
+
"result": "Please provide state parameter to get market prices.",
|
| 500 |
+
"data": []
|
| 501 |
+
}
|
| 502 |
+
|
| 503 |
+
try:
|
| 504 |
+
# Fetch market data from CSV
|
| 505 |
+
success, data, message = get_market_prices_from_csv(state.strip(), district.strip() if district else None, crop_name.strip() if crop_name else None)
|
| 506 |
+
|
| 507 |
+
if success:
|
| 508 |
+
response_text = format_market_prices_response(data, state.strip(), district.strip() if district else None, crop_name.strip() if crop_name else None)
|
| 509 |
+
return {
|
| 510 |
+
"success": True,
|
| 511 |
+
"result": response_text,
|
| 512 |
+
"data": data[:10], # Limit response data
|
| 513 |
+
"total_records": len(data)
|
| 514 |
+
}
|
| 515 |
+
else:
|
| 516 |
+
# Fallback message
|
| 517 |
+
location_text = f"{district}, {state}" if district else state
|
| 518 |
+
fallback_message = f"Current market price data for {location_text} is not available right now. Please contact your local mandi or agriculture market committee for current rates."
|
| 519 |
+
|
| 520 |
+
return {
|
| 521 |
+
"success": False,
|
| 522 |
+
"result": fallback_message,
|
| 523 |
+
"data": [],
|
| 524 |
+
"error": message
|
| 525 |
+
}
|
| 526 |
+
|
| 527 |
+
except Exception as e:
|
| 528 |
+
return {
|
| 529 |
+
"success": False,
|
| 530 |
+
"result": "I'm having trouble accessing market price data right now. Please contact your local mandi for current rates.",
|
| 531 |
+
"data": [],
|
| 532 |
+
"error": str(e)
|
| 533 |
+
}
|
| 534 |
|
| 535 |
+
# -------------------------
|
| 536 |
+
# Scheme eligibility (POST for Retell style, GET for easy testing)
|
| 537 |
+
# -------------------------
|
| 538 |
@app.post("/api/scheme-eligibility")
|
| 539 |
async def scheme_eligibility_endpoint(
|
| 540 |
request: Request,
|
| 541 |
+
x_retell_signature: Optional[str] = Header(None, alias="X-Retell-Signature")
|
| 542 |
):
|
|
|
|
| 543 |
request_body = await request.body()
|
| 544 |
+
# verify signature if header present
|
| 545 |
+
if x_retell_signature and not verify_retell_signature(request_body, x_retell_signature):
|
| 546 |
+
raise HTTPException(status_code=401, detail="Invalid Retell signature")
|
| 547 |
+
|
| 548 |
+
try:
|
| 549 |
+
payload = json.loads(request_body.decode('utf-8')) if request_body else {}
|
| 550 |
+
except Exception:
|
| 551 |
+
payload = {}
|
| 552 |
|
| 553 |
+
farmer_category = payload.get("args", {}).get("farmer_category", "") or payload.get("farmer_category", "")
|
| 554 |
+
land_size = payload.get("args", {}).get("land_size", 0) or payload.get("land_size", 0)
|
| 555 |
+
state = payload.get("args", {}).get("state", "") or payload.get("state", "")
|
| 556 |
+
crop_type = payload.get("args", {}).get("crop_type", "") or payload.get("crop_type", "")
|
|
|
|
| 557 |
|
| 558 |
try:
|
| 559 |
eligible_schemes = []
|
|
|
|
|
|
|
| 560 |
if not csv_data['government_schemes'].empty:
|
| 561 |
+
# ensure land_size numeric
|
| 562 |
+
try:
|
| 563 |
+
land_size_f = float(land_size) if land_size not in [None, ""] else 0.0
|
| 564 |
+
except:
|
| 565 |
+
land_size_f = 0.0
|
| 566 |
+
eligible_schemes = get_schemes_from_csv(farmer_category or "", land_size_f, state or "", crop_type or "")
|
| 567 |
+
|
| 568 |
+
# Fallback defaults
|
| 569 |
if not eligible_schemes:
|
| 570 |
+
try:
|
| 571 |
+
ls_f = float(land_size) if land_size not in [None, ""] else 0.0
|
| 572 |
+
except:
|
| 573 |
+
ls_f = 0.0
|
| 574 |
+
if ls_f > 0:
|
| 575 |
eligible_schemes.append({
|
| 576 |
"scheme": "PM-KISAN",
|
| 577 |
"benefit": "₹6,000 per year in 3 installments",
|
| 578 |
"description": "Direct income support to landholding farmer families.",
|
| 579 |
"eligibility": "All landholding farmer families.",
|
| 580 |
+
"process": "Apply via pmkisan.gov.in or your nearest CSC",
|
| 581 |
"contact": "https://pmkisan.gov.in/"
|
| 582 |
})
|
|
|
|
|
|
|
| 583 |
eligible_schemes.append({
|
| 584 |
"scheme": "Pradhan Mantri Fasal Bima Yojana",
|
| 585 |
"benefit": "Comprehensive crop insurance coverage",
|
|
|
|
| 588 |
"process": "Contact your nearest bank, CSC or PMFBY portal",
|
| 589 |
"contact": "https://pmfby.gov.in/"
|
| 590 |
})
|
| 591 |
+
if state and state.strip().lower() == "punjab":
|
|
|
|
|
|
|
| 592 |
eligible_schemes.append({
|
| 593 |
"scheme": "Punjab Crop Diversification Scheme",
|
| 594 |
"benefit": "₹17,500 per hectare for diversification",
|
|
|
|
| 596 |
"contact": ""
|
| 597 |
})
|
| 598 |
|
| 599 |
+
# Build voice-friendly text (limit first 3)
|
| 600 |
if eligible_schemes:
|
| 601 |
schemes_text = f"You are eligible for {len(eligible_schemes)} government schemes: "
|
| 602 |
+
for i, scheme in enumerate(eligible_schemes[:3]):
|
| 603 |
+
contact_info = f" Apply through {scheme.get('process','Contact local agriculture office')}"
|
| 604 |
if scheme.get('contact'):
|
| 605 |
contact_info += f" or contact {scheme.get('contact')}"
|
| 606 |
schemes_text += f"{i+1}. {scheme.get('scheme','N/A')} - {scheme.get('benefit', scheme.get('description','N/A'))}.{contact_info}. "
|
|
|
|
| 607 |
if len(eligible_schemes) > 3:
|
| 608 |
schemes_text += f"And {len(eligible_schemes)-3} more schemes available."
|
| 609 |
else:
|
|
|
|
| 616 |
|
| 617 |
except Exception as e:
|
| 618 |
return {
|
| 619 |
+
"result": "I'm having trouble accessing scheme information right now. Please contact your local agriculture officer.",
|
| 620 |
"error": str(e)
|
| 621 |
}
|
| 622 |
|
| 623 |
+
@app.get("/api/scheme-eligibility")
|
| 624 |
+
async def scheme_eligibility_get(
|
| 625 |
+
farmer_category: Optional[str] = Query("", alias="farmer_category"),
|
| 626 |
+
land_size: Optional[float] = Query(0.0, alias="land_size"),
|
| 627 |
+
state: Optional[str] = Query("", alias="state"),
|
| 628 |
+
crop_type: Optional[str] = Query("", alias="crop_type")
|
| 629 |
+
):
|
| 630 |
+
try:
|
| 631 |
+
eligible_schemes = []
|
| 632 |
+
if not csv_data['government_schemes'].empty:
|
| 633 |
+
eligible_schemes = get_schemes_from_csv(farmer_category or "", float(land_size or 0.0), state or "", crop_type or "")
|
| 634 |
|
| 635 |
+
if not eligible_schemes:
|
| 636 |
+
if float(land_size or 0.0) > 0:
|
| 637 |
+
eligible_schemes.append({
|
| 638 |
+
"scheme": "PM-KISAN",
|
| 639 |
+
"benefit": "₹6,000 per year in 3 installments",
|
| 640 |
+
"description": "Direct income support to landholding farmer families.",
|
| 641 |
+
"eligibility": "All landholding farmer families.",
|
| 642 |
+
"process": "Apply via pmkisan.gov.in or your nearest CSC",
|
| 643 |
+
"contact": "https://pmkisan.gov.in/"
|
| 644 |
+
})
|
| 645 |
+
eligible_schemes.append({
|
| 646 |
+
"scheme": "Pradhan Mantri Fasal Bima Yojana",
|
| 647 |
+
"benefit": "Comprehensive crop insurance coverage",
|
| 648 |
+
"description": "Crop insurance against natural calamities, pests, and diseases.",
|
| 649 |
+
"eligibility": "All farmers in notified crops/areas",
|
| 650 |
+
"process": "Contact your nearest bank, CSC or PMFBY portal",
|
| 651 |
+
"contact": "https://pmfby.gov.in/"
|
| 652 |
+
})
|
| 653 |
+
if state and state.strip().lower() == "punjab":
|
| 654 |
+
eligible_schemes.append({
|
| 655 |
+
"scheme": "Punjab Crop Diversification Scheme",
|
| 656 |
+
"benefit": "₹17,500 per hectare for diversification",
|
| 657 |
+
"process": "Contact District Agriculture Officer",
|
| 658 |
+
"contact": ""
|
| 659 |
+
})
|
| 660 |
+
|
| 661 |
+
# Build text
|
| 662 |
+
if eligible_schemes:
|
| 663 |
+
schemes_text = f"You are eligible for {len(eligible_schemes)} government schemes: "
|
| 664 |
+
for i, scheme in enumerate(eligible_schemes[:3]):
|
| 665 |
+
contact_info = f" Apply through {scheme.get('process','Contact local agriculture office')}"
|
| 666 |
+
if scheme.get('contact'):
|
| 667 |
+
contact_info += f" or contact {scheme.get('contact')}"
|
| 668 |
+
schemes_text += f"{i+1}. {scheme.get('scheme','N/A')} - {scheme.get('benefit', scheme.get('description','N/A'))}.{contact_info}. "
|
| 669 |
+
if len(eligible_schemes) > 3:
|
| 670 |
+
schemes_text += f"And {len(eligible_schemes)-3} more schemes available."
|
| 671 |
+
else:
|
| 672 |
+
schemes_text = "I couldn't find specific schemes for your profile. Please contact your local agriculture department for personalized advice."
|
| 673 |
+
|
| 674 |
+
return {
|
| 675 |
+
"result": schemes_text,
|
| 676 |
+
"eligible_schemes": eligible_schemes
|
| 677 |
+
}
|
| 678 |
+
|
| 679 |
+
except Exception as e:
|
| 680 |
+
return {"result": "Error computing schemes", "error": str(e)}
|
| 681 |
+
|
| 682 |
+
# -------------------------
|
| 683 |
+
# Weather advisory (POST and GET)
|
| 684 |
+
# -------------------------
|
| 685 |
+
@app.post("/api/weather-advisory")
|
| 686 |
+
async def weather_advisory_post(request: Request):
|
| 687 |
+
body = await request.json() if (await request.body()) else {}
|
| 688 |
+
city = body.get("query", {}).get("location", "").strip() if body else ""
|
| 689 |
temperature, humidity, description, pressure = get_weather(city)
|
| 690 |
if temperature is None:
|
|
|
|
| 691 |
temperature, humidity, description, pressure = 32.0, 60, "Not Available", 1012
|
| 692 |
weather_condition = "NORMAL"
|
| 693 |
else:
|
| 694 |
+
desc_lower = (description or "").lower()
|
| 695 |
if "clear" in desc_lower:
|
| 696 |
weather_condition = "SUNNY"
|
| 697 |
elif "rain" in desc_lower:
|
|
|
|
| 702 |
weather_condition = "NORMAL"
|
| 703 |
|
| 704 |
result = (
|
| 705 |
+
f"Weather in {city or 'your location'}: {description}. "
|
| 706 |
f"Temperature {temperature}°C, Humidity {humidity}%, Pressure {pressure} hPa. "
|
| 707 |
f"Condition classified as {weather_condition}."
|
| 708 |
)
|
|
|
|
| 720 |
}
|
| 721 |
}
|
| 722 |
|
| 723 |
+
@app.get("/api/weather-advisory")
|
| 724 |
+
async def weather_advisory_get(location: Optional[str] = Query("", alias="location")):
|
| 725 |
+
# delegate to same logic above
|
| 726 |
+
temperature, humidity, description, pressure = get_weather(location)
|
| 727 |
+
if temperature is None:
|
| 728 |
+
temperature, humidity, description, pressure = 32.0, 60, "Not Available", 1012
|
| 729 |
+
weather_condition = "NORMAL"
|
| 730 |
+
else:
|
| 731 |
+
desc_lower = (description or "").lower()
|
| 732 |
+
if "clear" in desc_lower:
|
| 733 |
+
weather_condition = "SUNNY"
|
| 734 |
+
elif "rain" in desc_lower:
|
| 735 |
+
weather_condition = "RAINY"
|
| 736 |
+
elif "wind" in desc_lower:
|
| 737 |
+
weather_condition = "WINDY"
|
| 738 |
+
else:
|
| 739 |
+
weather_condition = "NORMAL"
|
| 740 |
+
|
| 741 |
+
result = (
|
| 742 |
+
f"Weather in {location or 'your location'}: {description}. "
|
| 743 |
+
f"Temperature {temperature}°C, Humidity {humidity}%, Pressure {pressure} hPa. "
|
| 744 |
+
f"Condition classified as {weather_condition}."
|
| 745 |
+
)
|
| 746 |
+
|
| 747 |
+
return {
|
| 748 |
+
"success": True,
|
| 749 |
+
"result": result,
|
| 750 |
+
"data": {
|
| 751 |
+
"city": location,
|
| 752 |
+
"temperature": temperature,
|
| 753 |
+
"humidity": humidity,
|
| 754 |
+
"pressure": pressure,
|
| 755 |
+
"description": description,
|
| 756 |
+
"condition": weather_condition
|
| 757 |
+
}
|
| 758 |
+
}
|
| 759 |
+
|
| 760 |
+
# -------------------------
|
| 761 |
+
# Crop advisory (POST - Retell style; GET - query params)
|
| 762 |
+
# -------------------------
|
| 763 |
@app.post("/api/crop-advisory")
|
| 764 |
async def crop_advisory_endpoint(
|
| 765 |
request: Request,
|
| 766 |
+
x_retell_signature: Optional[str] = Header(None, alias="X-Retell-Signature")
|
| 767 |
):
|
|
|
|
| 768 |
request_body = await request.body()
|
| 769 |
+
if x_retell_signature and not verify_retell_signature(request_body, x_retell_signature):
|
| 770 |
+
raise HTTPException(status_code=401, detail="Invalid Retell signature")
|
| 771 |
+
|
| 772 |
+
try:
|
| 773 |
+
payload = json.loads(request_body.decode('utf-8')) if request_body else {}
|
| 774 |
+
except Exception:
|
| 775 |
+
payload = {}
|
| 776 |
|
| 777 |
+
crop_name = (payload.get("args", {}).get("crop_name", "") or payload.get("crop_name", "") or "").strip()
|
| 778 |
+
growth_stage = (payload.get("args", {}).get("growth_stage", "") or payload.get("growth_stage", "") or "").strip()
|
| 779 |
+
issue_type = (payload.get("args", {}).get("issue_type", "general") or payload.get("issue_type", "general") or "general").strip().lower()
|
| 780 |
+
state = (payload.get("args", {}).get("state", "") or payload.get("state", "") or "").strip()
|
| 781 |
|
| 782 |
try:
|
| 783 |
advisory = None
|
| 784 |
contact_info = ""
|
| 785 |
|
| 786 |
+
# Search crop_advisory CSV robustly (support various column names)
|
| 787 |
+
df = csv_data.get('crop_advisory', pd.DataFrame())
|
| 788 |
+
if not df.empty:
|
| 789 |
+
# find likely columns
|
| 790 |
+
crop_col = find_column(df, ["crop", "Crop", "Crop Name", "crop_name"])
|
| 791 |
+
sowing_col = find_column(df, ["sowing_time", "Sowing_Time", "Sowing Time", "Sowing"])
|
| 792 |
+
fertilizer_col = find_column(df, ["fertilizer", "Fertilizer"])
|
| 793 |
+
season_col = find_column(df, ["season", "Season"])
|
| 794 |
+
issues_col = find_column(df, ["common_issues", "Common_Issues", "Common Issues", "Common_Issues"])
|
| 795 |
+
solution_col = find_column(df, ["solution", "Solution", "Solution"])
|
| 796 |
+
|
| 797 |
+
if crop_col and crop_name:
|
| 798 |
+
matches = df[df[crop_col].astype(str).str.contains(crop_name, case=False, na=False)]
|
| 799 |
+
elif crop_col:
|
| 800 |
+
matches = df.copy()
|
| 801 |
+
else:
|
| 802 |
+
matches = pd.DataFrame()
|
| 803 |
+
|
| 804 |
+
if not matches.empty:
|
| 805 |
+
crop_info = matches.iloc[0]
|
| 806 |
+
parts = []
|
| 807 |
+
if issue_type == "general":
|
| 808 |
+
if sowing_col and pd.notna(crop_info.get(sowing_col)):
|
| 809 |
+
parts.append(f"Sowing time: {crop_info[sowing_col]}")
|
| 810 |
+
if fertilizer_col and pd.notna(crop_info.get(fertilizer_col)):
|
| 811 |
+
parts.append(f"Recommended fertilizer: {crop_info[fertilizer_col]}")
|
| 812 |
+
if season_col and pd.notna(crop_info.get(season_col)):
|
| 813 |
+
parts.append(f"Best season: {crop_info[season_col]}")
|
| 814 |
+
if issues_col and solution_col and pd.notna(crop_info.get(issues_col)) and pd.notna(crop_info.get(solution_col)):
|
| 815 |
+
if issue_type in ['pest', 'disease'] or issue_type == 'general':
|
| 816 |
+
parts.append(f"For {crop_info[issues_col]}: {crop_info[solution_col]}")
|
| 817 |
+
if parts:
|
| 818 |
+
advisory = f"For {crop_name or crop_info.get(crop_col,'the crop')}: " + ". ".join(parts)
|
| 819 |
+
|
| 820 |
+
# contact info from contact_info CSV
|
| 821 |
+
df_contact = csv_data.get('contact_info', pd.DataFrame())
|
| 822 |
+
if not df_contact.empty and state:
|
| 823 |
+
state_col = find_column(df_contact, ["state", "State", "state_name"])
|
| 824 |
+
if state_col:
|
| 825 |
+
contact_matches = df_contact[df_contact[state_col].astype(str).str.contains(state, case=False, na=False)]
|
| 826 |
+
if not contact_matches.empty:
|
| 827 |
+
contact_match = contact_matches.iloc[0]
|
| 828 |
+
contact_parts = []
|
| 829 |
+
if 'agriculture_officer' in contact_match and pd.notna(contact_match.get('agriculture_officer')):
|
| 830 |
+
contact_parts.append(f"Agriculture Officer at {contact_match['agriculture_officer']}")
|
| 831 |
+
if 'kvk_contact' in contact_match and pd.notna(contact_match.get('kvk_contact')):
|
| 832 |
+
contact_parts.append(f"KVK at {contact_match['kvk_contact']}")
|
| 833 |
+
if 'kisan_call_center' in contact_match and pd.notna(contact_match.get('kisan_call_center')):
|
| 834 |
+
contact_parts.append(f"Kisan Call Center at {contact_match['kisan_call_center']}")
|
| 835 |
+
if contact_parts:
|
| 836 |
+
contact_info = f"For detailed advice in {state}, contact: " + " or ".join(contact_parts) + "."
|
| 837 |
+
|
| 838 |
+
# fallback advisory if none found
|
|
|
|
|
|
|
| 839 |
if not advisory:
|
| 840 |
+
if crop_name and crop_name.lower() == "wheat" and issue_type == "pest":
|
| 841 |
+
advisory = "For wheat pest control: If you see aphids, spray Imidacloprid 200 SL at 0.3ml per liter of water. Spray during evening hours. Avoid over-irrigation."
|
| 842 |
+
elif crop_name and crop_name.lower() == "rice" and issue_type == "disease":
|
| 843 |
advisory = "For rice disease management: If you see brown spots on leaves, it might be blast disease. Apply Tricyclazole 75% WP at 0.6g per liter. Ensure proper drainage."
|
| 844 |
else:
|
| 845 |
+
advisory = f"For {crop_name or 'the crop'} at {growth_stage or 'current'} stage: Monitor crop regularly, maintain proper spacing, apply fertilizers as per soil test recommendations."
|
| 846 |
|
| 847 |
if not contact_info:
|
| 848 |
+
contact_info = f"For detailed advice, contact your local Krishi Vigyan Kendra or Agriculture Officer in {state or 'your state'}. You can also call the Kisan Call Centre at 1800-1801-551."
|
| 849 |
|
| 850 |
result_text = f"{advisory} {contact_info}"
|
| 851 |
|
|
|
|
| 861 |
"error": str(e)
|
| 862 |
}
|
| 863 |
|
| 864 |
+
@app.get("/api/crop-advisory")
|
| 865 |
+
async def crop_advisory_get(
|
| 866 |
+
crop_name: Optional[str] = Query("", alias="crop_name"),
|
| 867 |
+
growth_stage: Optional[str] = Query("", alias="growth_stage"),
|
| 868 |
+
issue_type: Optional[str] = Query("general", alias="issue_type"),
|
| 869 |
+
state: Optional[str] = Query("", alias="state")
|
| 870 |
+
):
|
| 871 |
+
try:
|
| 872 |
+
crop_name = (crop_name or "").strip()
|
| 873 |
+
growth_stage = (growth_stage or "").strip()
|
| 874 |
+
issue_type = (issue_type or "general").strip().lower()
|
| 875 |
+
state = (state or "").strip()
|
| 876 |
|
| 877 |
+
advisory = None
|
| 878 |
+
contact_info = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 879 |
|
| 880 |
+
df = csv_data.get('crop_advisory', pd.DataFrame())
|
| 881 |
+
if not df.empty:
|
| 882 |
+
crop_col = find_column(df, ["crop", "Crop", "Crop Name", "crop_name"])
|
| 883 |
+
sowing_col = find_column(df, ["sowing_time", "Sowing_Time", "Sowing Time", "Sowing"])
|
| 884 |
+
fertilizer_col = find_column(df, ["fertilizer", "Fertilizer"])
|
| 885 |
+
season_col = find_column(df, ["season", "Season"])
|
| 886 |
+
issues_col = find_column(df, ["common_issues", "Common_Issues", "Common Issues"])
|
| 887 |
+
solution_col = find_column(df, ["solution", "Solution", "Solution"])
|
| 888 |
+
|
| 889 |
+
if crop_col and crop_name:
|
| 890 |
+
matches = df[df[crop_col].astype(str).str.contains(crop_name, case=False, na=False)]
|
| 891 |
+
elif crop_col:
|
| 892 |
+
matches = df.copy()
|
| 893 |
+
else:
|
| 894 |
+
matches = pd.DataFrame()
|
| 895 |
+
|
| 896 |
+
if not matches.empty:
|
| 897 |
+
crop_info = matches.iloc[0]
|
| 898 |
+
parts = []
|
| 899 |
+
if issue_type == "general":
|
| 900 |
+
if sowing_col and pd.notna(crop_info.get(sowing_col)):
|
| 901 |
+
parts.append(f"Sowing time: {crop_info[sowing_col]}")
|
| 902 |
+
if fertilizer_col and pd.notna(crop_info.get(fertilizer_col)):
|
| 903 |
+
parts.append(f"Recommended fertilizer: {crop_info[fertilizer_col]}")
|
| 904 |
+
if season_col and pd.notna(crop_info.get(season_col)):
|
| 905 |
+
parts.append(f"Best season: {crop_info[season_col]}")
|
| 906 |
+
if issues_col and solution_col and pd.notna(crop_info.get(issues_col)) and pd.notna(crop_info.get(solution_col)):
|
| 907 |
+
if issue_type in ['pest', 'disease'] or issue_type == 'general':
|
| 908 |
+
parts.append(f"For {crop_info[issues_col]}: {crop_info[solution_col]}")
|
| 909 |
+
if parts:
|
| 910 |
+
advisory = f"For {crop_name or crop_info.get(crop_col,'the crop')}: " + ". ".join(parts)
|
| 911 |
+
|
| 912 |
+
# contact info
|
| 913 |
+
df_contact = csv_data.get('contact_info', pd.DataFrame())
|
| 914 |
+
if not df_contact.empty and state:
|
| 915 |
+
state_col = find_column(df_contact, ["state", "State", "state_name"])
|
| 916 |
+
if state_col:
|
| 917 |
+
contact_matches = df_contact[df_contact[state_col].astype(str).str.contains(state, case=False, na=False)]
|
| 918 |
+
if not contact_matches.empty:
|
| 919 |
+
contact_match = contact_matches.iloc[0]
|
| 920 |
+
contact_parts = []
|
| 921 |
+
if 'agriculture_officer' in contact_match and pd.notna(contact_match.get('agriculture_officer')):
|
| 922 |
+
contact_parts.append(f"Agriculture Officer at {contact_match['agriculture_officer']}")
|
| 923 |
+
if 'kvk_contact' in contact_match and pd.notna(contact_match.get('kvk_contact')):
|
| 924 |
+
contact_parts.append(f"KVK at {contact_match['kvk_contact']}")
|
| 925 |
+
if 'kisan_call_center' in contact_match and pd.notna(contact_match.get('kisan_call_center')):
|
| 926 |
+
contact_parts.append(f"Kisan Call Center at {contact_match['kisan_call_center']}")
|
| 927 |
+
if contact_parts:
|
| 928 |
+
contact_info = f"For detailed advice in {state}, contact: " + " or ".join(contact_parts) + "."
|
| 929 |
+
|
| 930 |
+
if not advisory:
|
| 931 |
+
if crop_name and crop_name.lower() == "wheat" and issue_type == "pest":
|
| 932 |
+
advisory = "For wheat pest control: If you see aphids, spray Imidacloprid 200 SL at 0.3ml per liter of water. Spray during evening hours. Avoid over-irrigation."
|
| 933 |
+
elif crop_name and crop_name.lower() == "rice" and issue_type == "disease":
|
| 934 |
+
advisory = "For rice disease management: If you see brown spots on leaves, it might be blast disease. Apply Tricyclazole 75% WP at 0.6g per liter. Ensure proper drainage."
|
| 935 |
+
else:
|
| 936 |
+
advisory = f"For {crop_name or 'the crop'} at {growth_stage or 'current'} stage: Monitor crop regularly, maintain proper spacing, apply fertilizers as per soil test recommendations."
|
| 937 |
+
|
| 938 |
+
if not contact_info:
|
| 939 |
+
contact_info = f"For detailed advice, contact your local Krishi Vigyan Kendra or Agriculture Officer in {state or 'your state'}. You can also call the Kisan Call Centre at 1800-1801-551."
|
| 940 |
|
| 941 |
+
result_text = f"{advisory} {contact_info}"
|
| 942 |
+
return {
|
| 943 |
+
"result": result_text,
|
| 944 |
+
"recommendations": advisory,
|
| 945 |
+
"contact_info": contact_info
|
| 946 |
+
}
|
| 947 |
+
|
| 948 |
+
except Exception as e:
|
| 949 |
+
return {
|
| 950 |
+
"result": "I couldn't provide specific advice right now. Please contact your local agriculture extension officer.",
|
| 951 |
+
"error": str(e)
|
| 952 |
+
}
|
| 953 |
+
|
| 954 |
+
# -------------------------
|
| 955 |
+
# Run server (for local dev)
|
| 956 |
+
# -------------------------
|
| 957 |
if __name__ == "__main__":
|
| 958 |
import uvicorn
|
| 959 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|