Spaces:
Sleeping
Sleeping
new api
#1
by
sikeaditya
- opened
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# app.py — robusted version (only minimal safe changes added)
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
from collections import Counter
|
|
@@ -8,8 +7,10 @@ import pandas as pd
|
|
| 8 |
import plotly.express as px
|
| 9 |
import plotly.io as pio
|
| 10 |
import dotenv
|
|
|
|
|
|
|
|
|
|
| 11 |
import numpy as np
|
| 12 |
-
from datetime import datetime, timedelta
|
| 13 |
|
| 14 |
dotenv.load_dotenv()
|
| 15 |
|
|
@@ -21,11 +22,9 @@ def clean_and_standardize(df):
|
|
| 21 |
df = df.copy()
|
| 22 |
df.columns = df.columns.str.replace('_x0020_', '_', regex=False)
|
| 23 |
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_', regex=False)
|
| 24 |
-
# drop grade if present; ignore otherwise
|
| 25 |
-
df = df.drop(columns=['grade'], errors='ignore')
|
| 26 |
required_columns = [
|
| 27 |
'state', 'district', 'market', 'commodity', 'variety',
|
| 28 |
-
'arrival_date', 'min_price', 'max_price', 'modal_price'
|
| 29 |
]
|
| 30 |
existing_columns = [col for col in required_columns if col in df.columns]
|
| 31 |
return df[existing_columns]
|
|
@@ -71,145 +70,158 @@ def load_hierarchy_from_json(path='location_hierarchy.json'):
|
|
| 71 |
print(f"CRITICAL ERROR: Could not load '{path}'. Error: {e}")
|
| 72 |
return {}
|
| 73 |
|
| 74 |
-
def
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def fetch_market_data(state=None, district=None, market=None):
|
| 80 |
"""
|
| 81 |
-
|
| 82 |
Returns a cleaned DataFrame with duplicate columns consolidated and arrival_date normalized.
|
| 83 |
"""
|
| 84 |
api_key = os.environ.get('DATA_GOV_API_KEY',
|
| 85 |
"579b464db66ec23bdd00000140925613394847c57ae13db180760f06")
|
| 86 |
base_url = "https://api.data.gov.in/resource/35985678-0d79-46b4-9ed6-6f13308a1d24"
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
params = {
|
| 91 |
"api-key": api_key,
|
| 92 |
-
"format": "json"
|
| 93 |
-
"limit": 1000,
|
| 94 |
-
"filters[Arrival_Date]": arrival_date
|
| 95 |
}
|
| 96 |
-
|
| 97 |
if state:
|
| 98 |
params["filters[State]"] = state
|
| 99 |
if district:
|
| 100 |
params["filters[District]"] = district
|
| 101 |
|
|
|
|
|
|
|
| 102 |
try:
|
| 103 |
-
print(f"[fetch_market_data] Sending request to API with arrival date: {arrival_date}. Params: {params}")
|
| 104 |
-
resp = requests.get(base_url, params=params, timeout=180)
|
| 105 |
-
except Exception as e:
|
| 106 |
-
print(f"[fetch_market_data] Network error on request: {e}")
|
| 107 |
-
# fallback to local CSV if present
|
| 108 |
try:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
try:
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
print(f"[fetch_market_data] Could not load final_price_data.csv: {csv_err}")
|
| 134 |
-
return pd.DataFrame()
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
try:
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# Parse the new API response format
|
| 154 |
-
records = data.get("records", [])
|
| 155 |
-
if not records and isinstance(data, list):
|
| 156 |
-
records = data
|
| 157 |
-
|
| 158 |
-
if not records:
|
| 159 |
-
print("[fetch_market_data] No records returned by API in response.")
|
| 160 |
try:
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
# Merge with final_price_data.csv if exists
|
| 185 |
-
dataframes_to_combine = [df_api]
|
| 186 |
-
try:
|
| 187 |
-
if os.path.exists("final_price_data.csv") and os.path.getsize("final_price_data.csv") > 0:
|
| 188 |
-
df_csv = pd.read_csv("final_price_data.csv", encoding='utf-8', on_bad_lines='skip')
|
| 189 |
-
if not df_csv.empty:
|
| 190 |
-
df_csv = consolidate_duplicate_columns(df_csv)
|
| 191 |
-
dataframes_to_combine.append(df_csv)
|
| 192 |
-
except Exception as csv_err:
|
| 193 |
-
print(f"[fetch_market_data] Could not load final_price_data.csv for merging: {csv_err}")
|
| 194 |
-
|
| 195 |
-
df_combined = pd.concat(dataframes_to_combine, ignore_index=True, sort=False)
|
| 196 |
-
df_combined = consolidate_duplicate_columns(df_combined)
|
| 197 |
-
cleaned = clean_and_standardize(df_combined)
|
| 198 |
-
if 'arrival_date' in cleaned.columns:
|
| 199 |
-
cleaned = cleaned.copy()
|
| 200 |
-
cleaned.loc[:, 'arrival_date'] = pd.to_datetime(
|
| 201 |
-
cleaned['arrival_date'].astype(str).str.replace('\\/', '-', regex=True),
|
| 202 |
-
dayfirst=True, errors='coerce'
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
# Additional market filtering after standardization
|
| 206 |
-
if market and 'market' in cleaned.columns:
|
| 207 |
-
cleaned = cleaned[cleaned['market'].str.lower() == market.lower()]
|
| 208 |
-
|
| 209 |
-
return cleaned
|
| 210 |
|
| 211 |
# Utility to flatten/clean numeric-like columns safely
|
| 212 |
-
# Utility to flatten/clean numeric-like columns safely (improved version)
|
| 213 |
def flatten_column(df, col):
|
| 214 |
"""
|
| 215 |
Ensure df[col] becomes a 1-D numeric Series:
|
|
@@ -220,7 +232,6 @@ def flatten_column(df, col):
|
|
| 220 |
"""
|
| 221 |
if df is None or col not in df.columns:
|
| 222 |
return df
|
| 223 |
-
|
| 224 |
df = df.copy()
|
| 225 |
series = df[col]
|
| 226 |
|
|
@@ -236,236 +247,84 @@ def flatten_column(df, col):
|
|
| 236 |
def _first_scalar(x):
|
| 237 |
if x is None:
|
| 238 |
return None
|
| 239 |
-
|
| 240 |
-
# Handle pandas NA/NaN values
|
| 241 |
-
try:
|
| 242 |
-
if pd.isna(x):
|
| 243 |
-
return None
|
| 244 |
-
except (TypeError, ValueError):
|
| 245 |
-
pass
|
| 246 |
-
|
| 247 |
-
# Handle numpy nan
|
| 248 |
try:
|
| 249 |
if isinstance(x, float) and np.isnan(x):
|
| 250 |
return None
|
| 251 |
-
except
|
| 252 |
pass
|
| 253 |
-
|
| 254 |
-
# Direct numeric/string values
|
| 255 |
-
if isinstance(x, (int, float, str, np.integer, np.floating)):
|
| 256 |
-
# Clean string values that might contain currency symbols or extra whitespace
|
| 257 |
-
if isinstance(x, str):
|
| 258 |
-
# Remove common currency symbols and whitespace
|
| 259 |
-
cleaned = x.strip().replace('₹', '').replace(',', '').replace('$', '')
|
| 260 |
-
try:
|
| 261 |
-
return float(cleaned) if cleaned else None
|
| 262 |
-
except ValueError:
|
| 263 |
-
return None
|
| 264 |
return x
|
| 265 |
-
|
| 266 |
-
# Handle numpy string types
|
| 267 |
-
if isinstance(x, np.str_):
|
| 268 |
-
cleaned = str(x).strip().replace('₹', '').replace(',', '').replace('$', '')
|
| 269 |
-
try:
|
| 270 |
-
return float(cleaned) if cleaned else None
|
| 271 |
-
except ValueError:
|
| 272 |
-
return None
|
| 273 |
-
|
| 274 |
-
# Handle lists, tuples, sets
|
| 275 |
if isinstance(x, (list, tuple, set)):
|
| 276 |
for item in x:
|
| 277 |
if item is None:
|
| 278 |
continue
|
| 279 |
-
try:
|
| 280 |
-
if pd.isna(item):
|
| 281 |
-
continue
|
| 282 |
-
except (TypeError, ValueError):
|
| 283 |
-
pass
|
| 284 |
try:
|
| 285 |
if isinstance(item, float) and np.isnan(item):
|
| 286 |
continue
|
| 287 |
-
except
|
| 288 |
pass
|
| 289 |
-
|
| 290 |
-
# Recursive handling for nested structures
|
| 291 |
if isinstance(item, (list, tuple, set)):
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
continue
|
| 296 |
-
|
| 297 |
if isinstance(item, dict):
|
| 298 |
# try to find a numeric-like key
|
| 299 |
-
for k in ('value', 'price', 'modal_price', '
|
| 300 |
-
if k in item
|
| 301 |
-
return
|
| 302 |
vals = list(item.values())
|
| 303 |
if vals:
|
| 304 |
-
|
| 305 |
-
result = _first_scalar(val)
|
| 306 |
-
if result is not None:
|
| 307 |
-
return result
|
| 308 |
-
continue
|
| 309 |
-
|
| 310 |
-
# Direct value handling
|
| 311 |
-
if isinstance(item, (int, float, np.integer, np.floating)):
|
| 312 |
-
return item
|
| 313 |
-
if isinstance(item, (str, np.str_)):
|
| 314 |
-
cleaned = str(item).strip().replace('₹', '').replace(',', '').replace('$', '')
|
| 315 |
-
try:
|
| 316 |
-
return float(cleaned) if cleaned else None
|
| 317 |
-
except ValueError:
|
| 318 |
-
continue
|
| 319 |
-
|
| 320 |
-
# If we can't process it, try to convert directly
|
| 321 |
-
try:
|
| 322 |
-
return float(str(item)) if str(item).strip() else None
|
| 323 |
-
except (ValueError, TypeError):
|
| 324 |
continue
|
|
|
|
| 325 |
return None
|
| 326 |
-
|
| 327 |
-
# Handle dictionaries
|
| 328 |
if isinstance(x, dict):
|
| 329 |
for k in ('value', 'price', 'modal_price', 'modalPrice', '0'):
|
| 330 |
-
if k in x
|
| 331 |
-
return
|
| 332 |
vals = list(x.values())
|
| 333 |
if vals:
|
| 334 |
-
|
| 335 |
-
result = _first_scalar(val)
|
| 336 |
-
if result is not None:
|
| 337 |
-
return result
|
| 338 |
return None
|
| 339 |
-
|
| 340 |
-
# fallback: try to convert to string then float
|
| 341 |
try:
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
# Clean common non-numeric characters
|
| 345 |
-
cleaned = str_val.replace('₹', '').replace(',', '').replace('$', '')
|
| 346 |
-
return float(cleaned)
|
| 347 |
-
return None
|
| 348 |
-
except (ValueError, TypeError):
|
| 349 |
return None
|
| 350 |
|
| 351 |
-
# Apply the flattening function
|
| 352 |
series = series.apply(_first_scalar)
|
| 353 |
-
|
| 354 |
-
# Convert to numeric, coercing errors to NaN
|
| 355 |
series = pd.to_numeric(series, errors='coerce')
|
| 356 |
-
|
| 357 |
# assign back using .loc to avoid SettingWithCopyWarning
|
| 358 |
df.loc[:, col] = series
|
| 359 |
return df
|
| 360 |
|
| 361 |
-
# AI insights (
|
| 362 |
def get_ai_insights(market_data, state, district, language="English"):
|
| 363 |
if not state or not district or market_data is None or market_data.empty:
|
| 364 |
return ""
|
| 365 |
-
|
| 366 |
api_key = os.environ.get('GEMINI_API_KEY')
|
| 367 |
if not api_key:
|
| 368 |
return "<p>AI insights unavailable.</p>"
|
| 369 |
|
| 370 |
-
# Make a copy to avoid modifying original data
|
| 371 |
-
market_data = market_data.copy()
|
| 372 |
-
|
| 373 |
-
# Ensure modal_price column exists
|
| 374 |
-
if 'modal_price' not in market_data.columns:
|
| 375 |
-
return "<p>AI insights unavailable - no price data.</p>"
|
| 376 |
-
|
| 377 |
-
# Flatten and convert to numeric more robustly
|
| 378 |
market_data = flatten_column(market_data, 'modal_price')
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
# Check if we have any valid data left
|
| 387 |
-
if market_data.empty or len(market_data) == 0:
|
| 388 |
-
return "<p>AI insights unavailable - no valid price data after cleaning.</p>"
|
| 389 |
-
|
| 390 |
-
# Additional check to ensure modal_price is actually numeric
|
| 391 |
-
if not pd.api.types.is_numeric_dtype(market_data['modal_price']):
|
| 392 |
-
# Force conversion one more time
|
| 393 |
-
market_data['modal_price'] = pd.to_numeric(market_data['modal_price'], errors='coerce')
|
| 394 |
-
market_data = market_data.dropna(subset=['modal_price'])
|
| 395 |
-
|
| 396 |
-
if market_data.empty:
|
| 397 |
-
return "<p>AI insights unavailable - could not convert price data to numeric format.</p>"
|
| 398 |
-
|
| 399 |
-
try:
|
| 400 |
-
# Safe grouping and aggregation
|
| 401 |
-
# Ensure modal_price is numeric at the group-aggregation stage
|
| 402 |
-
commodity_prices = (
|
| 403 |
-
market_data
|
| 404 |
-
.groupby('commodity', dropna=True)['modal_price']
|
| 405 |
-
.apply(lambda s: pd.to_numeric(s, errors='coerce').mean()) # coerce per-group
|
| 406 |
-
)
|
| 407 |
-
|
| 408 |
-
# Force numeric dtype and drop groups that could not be converted
|
| 409 |
-
commodity_prices = pd.to_numeric(commodity_prices, errors='coerce').dropna()
|
| 410 |
-
|
| 411 |
-
# Guard if no numeric data remains
|
| 412 |
-
if commodity_prices.empty:
|
| 413 |
-
return "<p>AI insights unavailable - no numeric commodity price data.</p>"
|
| 414 |
-
|
| 415 |
-
n_commodities = min(5, len(commodity_prices))
|
| 416 |
-
top_commodities = commodity_prices.nlargest(n_commodities)
|
| 417 |
-
|
| 418 |
-
# Debugging info (safe to keep; helpful when issues arise)
|
| 419 |
-
print("modal_price dtype:", market_data['modal_price'].dtype)
|
| 420 |
-
print("modal_price sample values:", market_data['modal_price'].head(20).tolist())
|
| 421 |
-
print("modal_price value types:", market_data['modal_price'].apply(lambda x: type(x)).value_counts().to_dict())
|
| 422 |
-
|
| 423 |
-
# Format the commodities string
|
| 424 |
-
top_commodities_str = ", ".join([
|
| 425 |
-
f"{name} (Avg: ₹{price:.2f})"
|
| 426 |
-
for name, price in top_commodities.items()
|
| 427 |
-
])
|
| 428 |
-
|
| 429 |
-
if not top_commodities_str:
|
| 430 |
-
return "<p>AI insights unavailable - no commodity price data.</p>"
|
| 431 |
-
|
| 432 |
-
except Exception as e:
|
| 433 |
-
print(f"Error processing commodity data: {e}")
|
| 434 |
-
return "<p>AI insights unavailable - error processing commodity data.</p>"
|
| 435 |
-
|
| 436 |
-
# Generate AI prompt
|
| 437 |
prompt = f'Analyze agricultural market data for {district}, {state}. Top commodities: {top_commodities_str}. Provide a JSON object with keys "crop_profitability", "market_analysis", "farmer_recommendations", each with an array of insights in {language}.'
|
| 438 |
-
|
| 439 |
try:
|
| 440 |
-
api_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-
|
| 441 |
headers = {"Content-Type": "application/json"}
|
| 442 |
-
payload = {
|
| 443 |
-
"contents": [{"parts": [{"text": prompt}]}],
|
| 444 |
-
"generationConfig": {"responseMimeType": "application/json"}
|
| 445 |
-
}
|
| 446 |
-
|
| 447 |
response = requests.post(f"{api_url}?key={api_key}", headers=headers, json=payload, timeout=25)
|
| 448 |
-
|
| 449 |
if response.status_code == 200:
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
parts = content.get('parts', [])
|
| 454 |
-
if parts and len(parts) > 0:
|
| 455 |
-
insights_text = parts[0].get('text', '')
|
| 456 |
-
if insights_text:
|
| 457 |
-
insights_json = json.loads(insights_text)
|
| 458 |
-
return format_ai_insights(insights_json)
|
| 459 |
-
|
| 460 |
-
return "<p>Error: Invalid response format from AI model.</p>"
|
| 461 |
-
else:
|
| 462 |
-
return f"<p>Error from AI model: {response.status_code}</p>"
|
| 463 |
-
|
| 464 |
-
except requests.exceptions.Timeout:
|
| 465 |
-
return "<p>AI insights request timed out. Please try again.</p>"
|
| 466 |
-
except json.JSONDecodeError as e:
|
| 467 |
-
print(f"JSON decode error in AI insights: {e}")
|
| 468 |
-
return "<p>Error parsing AI response.</p>"
|
| 469 |
except Exception as e:
|
| 470 |
print(f"Error generating insights: {e}")
|
| 471 |
return "<p>Error generating AI insights.</p>"
|
|
@@ -494,10 +353,6 @@ def generate_plots(df):
|
|
| 494 |
for col in ['min_price', 'max_price', 'modal_price']:
|
| 495 |
df = flatten_column(df, col)
|
| 496 |
|
| 497 |
-
# Ensure numeric modal_price for plotting
|
| 498 |
-
if 'modal_price' in df.columns:
|
| 499 |
-
df.loc[:, 'modal_price'] = pd.to_numeric(df['modal_price'], errors='coerce')
|
| 500 |
-
|
| 501 |
df.dropna(subset=['modal_price', 'commodity'], inplace=True)
|
| 502 |
if df.empty:
|
| 503 |
return plots
|
|
@@ -520,6 +375,33 @@ LOCATION_HIERARCHY = load_hierarchy_from_json()
|
|
| 520 |
print("Location hierarchy loaded.")
|
| 521 |
|
| 522 |
# --- Flask Routes ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
@app.route('/')
|
| 524 |
def index():
|
| 525 |
states = sorted(list(LOCATION_HIERARCHY.keys()))
|
|
@@ -557,20 +439,18 @@ def filter_data():
|
|
| 557 |
if not state:
|
| 558 |
return jsonify({'success': False, 'message': 'Please select a state.'})
|
| 559 |
|
| 560 |
-
|
| 561 |
-
df_combined = fetch_market_data(state, district, market)
|
| 562 |
if df_combined is None or df_combined.empty:
|
| 563 |
return jsonify({'success': False, 'message': 'No data found from API or local CSV.'})
|
| 564 |
|
| 565 |
# Defensive copy
|
| 566 |
df_filtered = df_combined.copy()
|
| 567 |
|
| 568 |
-
# Additional frontend filtering (in case not filtered by API)
|
| 569 |
if state:
|
| 570 |
df_filtered = df_filtered[df_filtered['state'].str.lower() == state.lower()]
|
| 571 |
if district:
|
| 572 |
df_filtered = df_filtered[df_filtered['district'].str.lower() == district.lower()]
|
| 573 |
-
if market
|
| 574 |
df_filtered = df_filtered[df_filtered['market'].str.lower() == market.lower()]
|
| 575 |
if commodity:
|
| 576 |
df_filtered = df_filtered[df_filtered['commodity'].str.lower() == commodity.lower()]
|
|
@@ -586,28 +466,10 @@ def filter_data():
|
|
| 586 |
# Consolidate duplicate columns just in case (extra safety)
|
| 587 |
df_final = consolidate_duplicate_columns(df_final)
|
| 588 |
|
| 589 |
-
# Ensure price columns are numeric
|
| 590 |
for col in ['min_price', 'max_price', 'modal_price']:
|
| 591 |
df_final = flatten_column(df_final, col)
|
| 592 |
|
| 593 |
-
# --- NEW: final coercion and safety for modal_price before computing stats/ordering ---
|
| 594 |
-
if 'modal_price' in df_final.columns:
|
| 595 |
-
# Coerce any remaining weird values to NaN, then drop them.
|
| 596 |
-
df_final.loc[:, 'modal_price'] = pd.to_numeric(df_final['modal_price'], errors='coerce')
|
| 597 |
-
print("After coercion modal_price dtype:", df_final['modal_price'].dtype)
|
| 598 |
-
print("modal_price sample values (post-coercion):", df_final['modal_price'].head(20).tolist())
|
| 599 |
-
|
| 600 |
-
# Drop rows that have no numeric modal_price (so nsmallest/nlargest won't fail)
|
| 601 |
-
df_final = df_final.dropna(subset=['modal_price'])
|
| 602 |
-
# Ensure float dtype
|
| 603 |
-
if not df_final.empty:
|
| 604 |
-
df_final.loc[:, 'modal_price'] = df_final['modal_price'].astype(float)
|
| 605 |
-
else:
|
| 606 |
-
return jsonify({'success': False, 'message': 'No valid price data after coercion.'})
|
| 607 |
-
else:
|
| 608 |
-
return jsonify({'success': False, 'message': 'No modal_price column present after cleaning.'})
|
| 609 |
-
# -------------------------------------------------------------------------------
|
| 610 |
-
|
| 611 |
plots = generate_plots(df_final.copy())
|
| 612 |
insights = get_ai_insights(df_final.copy(), state, district, language)
|
| 613 |
|
|
@@ -615,21 +477,13 @@ def filter_data():
|
|
| 615 |
if df_final.empty or 'modal_price' not in df_final.columns or df_final['modal_price'].dropna().empty:
|
| 616 |
return jsonify({'success': False, 'message': 'No valid price data after cleaning.'})
|
| 617 |
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
cheapest = df_final.nsmallest(5, 'modal_price')[['commodity', 'market', 'modal_price']]
|
| 621 |
-
costliest = df_final.nlargest(5, 'modal_price')[['commodity', 'market', 'modal_price']]
|
| 622 |
-
except Exception as e:
|
| 623 |
-
# fallback: compute via sort_values if something unexpected happens
|
| 624 |
-
print(f"Warning: nsmallest/nlargest failed: {e}. Falling back to sort_values.")
|
| 625 |
-
cheapest = df_final.sort_values('modal_price', ascending=True).head(5)[['commodity', 'market', 'modal_price']]
|
| 626 |
-
costliest = df_final.sort_values('modal_price', ascending=False).head(5)[['commodity', 'market', 'modal_price']]
|
| 627 |
-
|
| 628 |
market_stats = {
|
| 629 |
-
'total_commodities': int(df_final['commodity'].nunique())
|
| 630 |
'avg_modal_price': f"₹{df_final['modal_price'].mean():.2f}",
|
| 631 |
'price_range': f"₹{df_final['modal_price'].min():.2f} - ₹{df_final['modal_price'].max():.2f}",
|
| 632 |
-
'total_markets': int(df_final['market'].nunique())
|
| 633 |
}
|
| 634 |
|
| 635 |
return jsonify({
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
from collections import Counter
|
|
|
|
| 7 |
import plotly.express as px
|
| 8 |
import plotly.io as pio
|
| 9 |
import dotenv
|
| 10 |
+
import threading
|
| 11 |
+
import tempfile
|
| 12 |
+
import shutil
|
| 13 |
import numpy as np
|
|
|
|
| 14 |
|
| 15 |
dotenv.load_dotenv()
|
| 16 |
|
|
|
|
| 22 |
df = df.copy()
|
| 23 |
df.columns = df.columns.str.replace('_x0020_', '_', regex=False)
|
| 24 |
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_', regex=False)
|
|
|
|
|
|
|
| 25 |
required_columns = [
|
| 26 |
'state', 'district', 'market', 'commodity', 'variety',
|
| 27 |
+
'grade', 'arrival_date', 'min_price', 'max_price', 'modal_price'
|
| 28 |
]
|
| 29 |
existing_columns = [col for col in required_columns if col in df.columns]
|
| 30 |
return df[existing_columns]
|
|
|
|
| 70 |
print(f"CRITICAL ERROR: Could not load '{path}'. Error: {e}")
|
| 71 |
return {}
|
| 72 |
|
| 73 |
+
def fetch_market_data(state=None, district=None,
|
| 74 |
+
cache_path='agmarknet_cache.csv',
|
| 75 |
+
use_cache=True, force_refresh=False,
|
| 76 |
+
sleep_between=0.15, page_size=1000,
|
| 77 |
+
synchronous=True):
|
|
|
|
| 78 |
"""
|
| 79 |
+
Single-request fetcher (the API returns the full dataset in one response).
|
| 80 |
Returns a cleaned DataFrame with duplicate columns consolidated and arrival_date normalized.
|
| 81 |
"""
|
| 82 |
api_key = os.environ.get('DATA_GOV_API_KEY',
|
| 83 |
"579b464db66ec23bdd00000140925613394847c57ae13db180760f06")
|
| 84 |
base_url = "https://api.data.gov.in/resource/35985678-0d79-46b4-9ed6-6f13308a1d24"
|
| 85 |
|
| 86 |
+
# Use cache if present and not forcing refresh
|
| 87 |
+
if use_cache and not force_refresh and os.path.exists(cache_path):
|
| 88 |
+
try:
|
| 89 |
+
df_cache = pd.read_csv(cache_path)
|
| 90 |
+
print(f"[fetch_market_data] Loaded cache '{cache_path}' ({len(df_cache)} rows).")
|
| 91 |
+
dataframes_to_combine = [df_cache]
|
| 92 |
+
try:
|
| 93 |
+
df_csv = pd.read_csv("final_price_data.csv")
|
| 94 |
+
dataframes_to_combine.append(df_csv)
|
| 95 |
+
except FileNotFoundError:
|
| 96 |
+
pass
|
| 97 |
+
df_combined = pd.concat(dataframes_to_combine, ignore_index=True, sort=False)
|
| 98 |
+
# first, consolidate duplicate columns (if any)
|
| 99 |
+
df_combined = consolidate_duplicate_columns(df_combined)
|
| 100 |
+
cleaned = clean_and_standardize(df_combined)
|
| 101 |
+
if 'arrival_date' in cleaned.columns:
|
| 102 |
+
cleaned = cleaned.copy()
|
| 103 |
+
cleaned.loc[:, 'arrival_date'] = pd.to_datetime(
|
| 104 |
+
cleaned['arrival_date'].astype(str).str.replace('\\/', '-', regex=True),
|
| 105 |
+
dayfirst=True, errors='coerce'
|
| 106 |
+
)
|
| 107 |
+
return cleaned
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"[fetch_market_data] Failed reading cache: {e}. Will fetch live.")
|
| 110 |
+
|
| 111 |
+
# Background start support
|
| 112 |
+
if not synchronous:
|
| 113 |
+
t = threading.Thread(target=fetch_market_data, kwargs={
|
| 114 |
+
'state': state, 'district': district, 'cache_path': cache_path,
|
| 115 |
+
'use_cache': use_cache, 'force_refresh': force_refresh,
|
| 116 |
+
'sleep_between': sleep_between, 'page_size': page_size, 'synchronous': True
|
| 117 |
+
}, daemon=True)
|
| 118 |
+
t.start()
|
| 119 |
+
print("[fetch_market_data] Started background fetcher thread (single-request mode).")
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
# Build params for single request
|
| 123 |
params = {
|
| 124 |
"api-key": api_key,
|
| 125 |
+
"format": "json"
|
|
|
|
|
|
|
| 126 |
}
|
|
|
|
| 127 |
if state:
|
| 128 |
params["filters[State]"] = state
|
| 129 |
if district:
|
| 130 |
params["filters[District]"] = district
|
| 131 |
|
| 132 |
+
temp_fd, temp_file = tempfile.mkstemp(suffix='.csv')
|
| 133 |
+
os.close(temp_fd)
|
| 134 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
try:
|
| 136 |
+
print(f"[fetch_market_data] Sending single request to API (may be large). Params: { {k:v for k,v in params.items() if k!='api-key'} }")
|
| 137 |
+
resp = requests.get(base_url, params=params, timeout=180)
|
| 138 |
+
except Exception as e:
|
| 139 |
+
print(f"[fetch_market_data] Network error on single request: {e}")
|
| 140 |
+
# fallback to local CSV if present
|
| 141 |
+
try:
|
| 142 |
+
df_csv = pd.read_csv("final_price_data.csv")
|
| 143 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 144 |
+
return clean_and_standardize(df_csv)
|
| 145 |
+
except FileNotFoundError:
|
| 146 |
+
return pd.DataFrame()
|
| 147 |
+
|
| 148 |
+
if resp.status_code != 200:
|
| 149 |
+
print(f"[fetch_market_data] API returned {resp.status_code}: {resp.text[:500]}")
|
| 150 |
+
try:
|
| 151 |
+
df_csv = pd.read_csv("final_price_data.csv")
|
| 152 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 153 |
+
return clean_and_standardize(df_csv)
|
| 154 |
+
except FileNotFoundError:
|
| 155 |
+
return pd.DataFrame()
|
| 156 |
+
|
| 157 |
try:
|
| 158 |
+
data = resp.json()
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"[fetch_market_data] JSON decode error: {e}")
|
| 161 |
+
try:
|
| 162 |
+
df_csv = pd.read_csv("final_price_data.csv")
|
| 163 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 164 |
+
return clean_and_standardize(df_csv)
|
| 165 |
+
except FileNotFoundError:
|
| 166 |
+
return pd.DataFrame()
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
records = data.get("records", [])
|
| 169 |
+
if not records and isinstance(data, list):
|
| 170 |
+
records = data
|
| 171 |
+
|
| 172 |
+
if not records:
|
| 173 |
+
print("[fetch_market_data] No records returned by API in single response.")
|
| 174 |
+
try:
|
| 175 |
+
df_csv = pd.read_csv("final_price_data.csv")
|
| 176 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 177 |
+
return clean_and_standardize(df_csv)
|
| 178 |
+
except FileNotFoundError:
|
| 179 |
+
return pd.DataFrame()
|
| 180 |
+
|
| 181 |
+
df_api = pd.DataFrame.from_records(records)
|
| 182 |
+
# Consolidate duplicate columns immediately
|
| 183 |
+
df_api = consolidate_duplicate_columns(df_api)
|
| 184 |
+
|
| 185 |
+
# write cache atomically
|
| 186 |
try:
|
| 187 |
+
df_api.to_csv(temp_file, index=False)
|
| 188 |
+
shutil.move(temp_file, cache_path)
|
| 189 |
+
print(f"[fetch_market_data] Single-request cache updated at '{cache_path}' ({len(df_api)} rows).")
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"[fetch_market_data] Failed to write cache atomically: {e}")
|
| 192 |
+
try:
|
| 193 |
+
df_api.to_csv(cache_path, index=False)
|
| 194 |
+
except Exception as e2:
|
| 195 |
+
print(f"[fetch_market_data] Fallback write also failed: {e2}")
|
| 196 |
+
|
| 197 |
+
# Merge with final_price_data.csv if exists
|
| 198 |
+
dataframes_to_combine = [df_api]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
try:
|
| 200 |
+
df_csv = pd.read_csv("final_price_data.csv")
|
| 201 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 202 |
+
dataframes_to_combine.append(df_csv)
|
| 203 |
+
except FileNotFoundError:
|
| 204 |
+
pass
|
| 205 |
+
|
| 206 |
+
df_combined = pd.concat(dataframes_to_combine, ignore_index=True, sort=False)
|
| 207 |
+
df_combined = consolidate_duplicate_columns(df_combined)
|
| 208 |
+
cleaned = clean_and_standardize(df_combined)
|
| 209 |
+
if 'arrival_date' in cleaned.columns:
|
| 210 |
+
cleaned = cleaned.copy()
|
| 211 |
+
cleaned.loc[:, 'arrival_date'] = pd.to_datetime(
|
| 212 |
+
cleaned['arrival_date'].astype(str).str.replace('\\/', '-', regex=True),
|
| 213 |
+
dayfirst=True, errors='coerce'
|
| 214 |
+
)
|
| 215 |
+
return cleaned
|
| 216 |
+
|
| 217 |
+
finally:
|
| 218 |
+
if os.path.exists(temp_file):
|
| 219 |
+
try:
|
| 220 |
+
os.remove(temp_file)
|
| 221 |
+
except Exception:
|
| 222 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
# Utility to flatten/clean numeric-like columns safely
|
|
|
|
| 225 |
def flatten_column(df, col):
|
| 226 |
"""
|
| 227 |
Ensure df[col] becomes a 1-D numeric Series:
|
|
|
|
| 232 |
"""
|
| 233 |
if df is None or col not in df.columns:
|
| 234 |
return df
|
|
|
|
| 235 |
df = df.copy()
|
| 236 |
series = df[col]
|
| 237 |
|
|
|
|
| 247 |
def _first_scalar(x):
|
| 248 |
if x is None:
|
| 249 |
return None
|
| 250 |
+
# numpy nan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
try:
|
| 252 |
if isinstance(x, float) and np.isnan(x):
|
| 253 |
return None
|
| 254 |
+
except Exception:
|
| 255 |
pass
|
| 256 |
+
if isinstance(x, (int, float, str, np.integer, np.floating, np.str_)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
if isinstance(x, (list, tuple, set)):
|
| 259 |
for item in x:
|
| 260 |
if item is None:
|
| 261 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
try:
|
| 263 |
if isinstance(item, float) and np.isnan(item):
|
| 264 |
continue
|
| 265 |
+
except Exception:
|
| 266 |
pass
|
|
|
|
|
|
|
| 267 |
if isinstance(item, (list, tuple, set)):
|
| 268 |
+
for sub in item:
|
| 269 |
+
if sub is not None:
|
| 270 |
+
return sub
|
| 271 |
continue
|
|
|
|
| 272 |
if isinstance(item, dict):
|
| 273 |
# try to find a numeric-like key
|
| 274 |
+
for k in ('value', 'price', 'modal_price', '0'):
|
| 275 |
+
if k in item:
|
| 276 |
+
return item[k]
|
| 277 |
vals = list(item.values())
|
| 278 |
if vals:
|
| 279 |
+
return vals[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
continue
|
| 281 |
+
return item
|
| 282 |
return None
|
|
|
|
|
|
|
| 283 |
if isinstance(x, dict):
|
| 284 |
for k in ('value', 'price', 'modal_price', 'modalPrice', '0'):
|
| 285 |
+
if k in x:
|
| 286 |
+
return x[k]
|
| 287 |
vals = list(x.values())
|
| 288 |
if vals:
|
| 289 |
+
return vals[0]
|
|
|
|
|
|
|
|
|
|
| 290 |
return None
|
| 291 |
+
# fallback to string
|
|
|
|
| 292 |
try:
|
| 293 |
+
return str(x)
|
| 294 |
+
except Exception:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
return None
|
| 296 |
|
|
|
|
| 297 |
series = series.apply(_first_scalar)
|
|
|
|
|
|
|
| 298 |
series = pd.to_numeric(series, errors='coerce')
|
|
|
|
| 299 |
# assign back using .loc to avoid SettingWithCopyWarning
|
| 300 |
df.loc[:, col] = series
|
| 301 |
return df
|
| 302 |
|
| 303 |
+
# AI insights (unchanged logic but using safer flatten)
|
| 304 |
def get_ai_insights(market_data, state, district, language="English"):
|
| 305 |
if not state or not district or market_data is None or market_data.empty:
|
| 306 |
return ""
|
|
|
|
| 307 |
api_key = os.environ.get('GEMINI_API_KEY')
|
| 308 |
if not api_key:
|
| 309 |
return "<p>AI insights unavailable.</p>"
|
| 310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
market_data = flatten_column(market_data, 'modal_price')
|
| 312 |
+
if 'modal_price' not in market_data.columns:
|
| 313 |
+
return "<p>AI insights unavailable.</p>"
|
| 314 |
+
|
| 315 |
+
# safe grouping even if some modal_price are NaN
|
| 316 |
+
top_commodities = market_data.groupby('commodity', dropna=True)['modal_price'].mean().nlargest(5)
|
| 317 |
+
top_commodities_str = ", ".join([f"{name} (Avg: ₹{price:.2f})" for name, price in top_commodities.items()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
prompt = f'Analyze agricultural market data for {district}, {state}. Top commodities: {top_commodities_str}. Provide a JSON object with keys "crop_profitability", "market_analysis", "farmer_recommendations", each with an array of insights in {language}.'
|
|
|
|
| 319 |
try:
|
| 320 |
+
api_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent"
|
| 321 |
headers = {"Content-Type": "application/json"}
|
| 322 |
+
payload = {"contents": [{"parts": [{"text": prompt}]}], "generationConfig": {"responseMimeType": "application/json"}}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
response = requests.post(f"{api_url}?key={api_key}", headers=headers, json=payload, timeout=25)
|
|
|
|
| 324 |
if response.status_code == 200:
|
| 325 |
+
insights_json = json.loads(response.json()['candidates'][0]['content']['parts'][0]['text'])
|
| 326 |
+
return format_ai_insights(insights_json)
|
| 327 |
+
return f"<p>Error from AI model: {response.status_code}</p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
except Exception as e:
|
| 329 |
print(f"Error generating insights: {e}")
|
| 330 |
return "<p>Error generating AI insights.</p>"
|
|
|
|
| 353 |
for col in ['min_price', 'max_price', 'modal_price']:
|
| 354 |
df = flatten_column(df, col)
|
| 355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
df.dropna(subset=['modal_price', 'commodity'], inplace=True)
|
| 357 |
if df.empty:
|
| 358 |
return plots
|
|
|
|
| 375 |
print("Location hierarchy loaded.")
|
| 376 |
|
| 377 |
# --- Flask Routes ---
|
| 378 |
+
@app.route('/refresh_cache', methods=['POST'])
|
| 379 |
+
def refresh_cache():
|
| 380 |
+
state = request.form.get('state')
|
| 381 |
+
district = request.form.get('district')
|
| 382 |
+
|
| 383 |
+
def _bg():
|
| 384 |
+
try:
|
| 385 |
+
fetch_market_data(state=state, district=district, cache_path='agmarknet_cache.csv',
|
| 386 |
+
use_cache=False, force_refresh=True, page_size=1000, synchronous=True)
|
| 387 |
+
print("[refresh_cache] Background refresh finished.")
|
| 388 |
+
except Exception as e:
|
| 389 |
+
print(f"[refresh_cache] Background refresh failed: {e}")
|
| 390 |
+
|
| 391 |
+
t = threading.Thread(target=_bg, daemon=True)
|
| 392 |
+
t.start()
|
| 393 |
+
return jsonify({'success': True, 'message': 'Background cache refresh started.'})
|
| 394 |
+
|
| 395 |
+
@app.route('/download_full_sync', methods=['POST'])
|
| 396 |
+
def download_full_sync():
|
| 397 |
+
state = request.form.get('state')
|
| 398 |
+
district = request.form.get('district')
|
| 399 |
+
df = fetch_market_data(state=state, district=district, cache_path='agmarknet_cache.csv',
|
| 400 |
+
use_cache=False, force_refresh=True, page_size=1000, synchronous=True)
|
| 401 |
+
if df is None or df.empty:
|
| 402 |
+
return jsonify({'success': False, 'message': 'Download produced no data.'})
|
| 403 |
+
return jsonify({'success': True, 'message': f'Download complete. Cached {len(df)} rows.'})
|
| 404 |
+
|
| 405 |
@app.route('/')
|
| 406 |
def index():
|
| 407 |
states = sorted(list(LOCATION_HIERARCHY.keys()))
|
|
|
|
| 439 |
if not state:
|
| 440 |
return jsonify({'success': False, 'message': 'Please select a state.'})
|
| 441 |
|
| 442 |
+
df_combined = fetch_market_data(state, district)
|
|
|
|
| 443 |
if df_combined is None or df_combined.empty:
|
| 444 |
return jsonify({'success': False, 'message': 'No data found from API or local CSV.'})
|
| 445 |
|
| 446 |
# Defensive copy
|
| 447 |
df_filtered = df_combined.copy()
|
| 448 |
|
|
|
|
| 449 |
if state:
|
| 450 |
df_filtered = df_filtered[df_filtered['state'].str.lower() == state.lower()]
|
| 451 |
if district:
|
| 452 |
df_filtered = df_filtered[df_filtered['district'].str.lower() == district.lower()]
|
| 453 |
+
if market:
|
| 454 |
df_filtered = df_filtered[df_filtered['market'].str.lower() == market.lower()]
|
| 455 |
if commodity:
|
| 456 |
df_filtered = df_filtered[df_filtered['commodity'].str.lower() == commodity.lower()]
|
|
|
|
| 466 |
# Consolidate duplicate columns just in case (extra safety)
|
| 467 |
df_final = consolidate_duplicate_columns(df_final)
|
| 468 |
|
| 469 |
+
# Ensure price columns are numeric
|
| 470 |
for col in ['min_price', 'max_price', 'modal_price']:
|
| 471 |
df_final = flatten_column(df_final, col)
|
| 472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
plots = generate_plots(df_final.copy())
|
| 474 |
insights = get_ai_insights(df_final.copy(), state, district, language)
|
| 475 |
|
|
|
|
| 477 |
if df_final.empty or 'modal_price' not in df_final.columns or df_final['modal_price'].dropna().empty:
|
| 478 |
return jsonify({'success': False, 'message': 'No valid price data after cleaning.'})
|
| 479 |
|
| 480 |
+
cheapest = df_final.nsmallest(5, 'modal_price')[['commodity', 'market', 'modal_price']]
|
| 481 |
+
costliest = df_final.nlargest(5, 'modal_price')[['commodity', 'market', 'modal_price']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
market_stats = {
|
| 483 |
+
'total_commodities': int(df_final['commodity'].nunique()),
|
| 484 |
'avg_modal_price': f"₹{df_final['modal_price'].mean():.2f}",
|
| 485 |
'price_range': f"₹{df_final['modal_price'].min():.2f} - ₹{df_final['modal_price'].max():.2f}",
|
| 486 |
+
'total_markets': int(df_final['market'].nunique())
|
| 487 |
}
|
| 488 |
|
| 489 |
return jsonify({
|