Spaces:
Sleeping
Sleeping
File size: 29,010 Bytes
eb8805a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from transformers import GPT2Tokenizer
import tiktoken
from transformers import GPT2LMHeadModel
from transformers import PretrainedConfig
@dataclass
class GPTConfig(PretrainedConfig):
visual_size: int = 1024
vocab_size: int = 50257
block_size: int = 1024
tags_embd: int = 400
n_embd: int = 768
n_layer: int = 6
n_head: int = 12
def __init__(self,**kwargs):
super().__init__(**kwargs)
self.hidden_size = self.n_embd
class CasualSelfAttention(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, config.n_embd * 3)
self.visual_attn = nn.Linear(config.visual_size, config.n_embd * 2)
self.tags_attn = nn.Linear(config.tags_embd, config.n_embd * 2)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.n_embed = config.n_embd
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.register_buffer(
'bias', torch.tril(torch.ones(199, 353))
.view(1, 1, 199, 353)
)
def forward(self, x: torch.Tensor, visual_features: torch.Tensor = None, tags_embedding: torch.Tensor = None) -> torch.Tensor:
B, T, C = x.size()
visual_features=visual_features.to(self.device)
tags_embedding=tags_embedding.to(self.device)
qkv = self.c_attn(x) # the error happens here
q, k, v = qkv.split(self.n_embed, dim=2)
q = q.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2)
k = k.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2)
# Handle visual input if provided
if visual_features is not None:
visual_kv = self.visual_attn(visual_features)
visual_k, visual_v = visual_kv.split(self.n_embed, dim=2)
visual_k = visual_k.view(B, visual_features.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
visual_v = visual_v.view(B, visual_features.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
k = torch.cat([k, visual_k], dim=-2)
v = torch.cat([v, visual_v], dim=-2)
if tags_embedding is not None:
tags_kv = self.tags_attn(tags_embedding)
tags_k, tags_v = tags_kv.split(self.n_embed, dim=2)
tags_k = tags_k.view(B, tags_embedding.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
tags_v = tags_v.view(B, tags_embedding.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
k = torch.cat([k, tags_k], dim=-2)
v = torch.cat([v, tags_v], dim=-2)
# Causal self-attention computation
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
device = att.device
query_seq_len, key_seq_len = T, k.size(-2)
# Text can attend to: previous text + all visual/tag tokens
text_mask = torch.tril(torch.ones(T, T, device=device)) # Text-to-text causal
non_text_mask = torch.ones(T, key_seq_len - T, device=device) # Text-to-other full
combined_mask = torch.cat([text_mask, non_text_mask], dim=1)
# Reshape for broadcasting
combined_mask = combined_mask.view(1, 1, T, key_seq_len)
att = att.masked_fill(combined_mask == 0, float('-inf'))
att = F.softmax(att, dim=-1)
visual_att = att[..., :T, T:].mean().item() # Text → Visual attention
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, self.n_head * (self.n_embed // self.n_head))
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config: GPTConfig):
super(MLP, self).__init__()
self.c_fc = nn.Linear(config.n_embd, config.n_embd * 4) # c_fc means fully connected layer and c is for context
self.gelu = nn.GELU()
self.c_proj = nn.Linear(config.n_embd * 4, config.n_embd)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config: GPTConfig):
super(Block, self).__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CasualSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor,visual_features: torch.Tensor, tags_embedding: torch.Tensor) -> torch.Tensor:
x = x + self.attn(self.ln_1(x),visual_features, tags_embedding)
x = x + self.mlp(self.ln_2(x))
return x
class DistilGPT2(GPT2LMHeadModel):
def __init__(self, config: GPTConfig):
super(DistilGPT2, self).__init__(config)
self.config = config
self.transformer = nn.ModuleDict(
{
'wte': nn.Embedding(config.vocab_size, config.n_embd),
'wpe': nn.Embedding(config.block_size, config.n_embd),
'h': nn.ModuleList(
[
Block(config) for _ in range(config.n_layer)
]
), # transformer blocks
'ln_f': nn.LayerNorm(config.n_embd) # final layer normalization
}
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # linear layer for projection from embedding to vocab size
def forward(self, idx: torch.Tensor, visual_features: torch.Tensor = None, tags_embedding: torch.Tensor = None, return_dict: bool = False) -> torch.Tensor:
idx=idx.to(self.device)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, Block size is {self.config.block_size}"
# forward the token and positional embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer['wpe'](pos)
tok_emb = self.transformer['wte'](idx)
x = tok_emb + pos_emb
# forward the transformer
for block in self.transformer['h']:
x = block(x, visual_features=visual_features, tags_embedding=tags_embedding)
# forward the head
x = self.transformer['ln_f'](x)
logits = self.lm_head(x)
if return_dict:
return {'logits': logits}
else:
return logits
@classmethod
def from_pretrained(cls, model_type: str):
"""Loads pre-trained GPT-2 model weights from Hugging Face and handles custom layers."""
from transformers import GPT2LMHeadModel
print(f"Loading weights from pre-trained GPT: {model_type}")
# Ensure the model type is supported
assert model_type in {'distilgpt2', 'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
# Define configurations based on the model type
config_args = {
'distilgpt2': dict(n_layer=6, n_head=12, n_embd=768),
'gpt2': dict(n_layer=12, n_head=12, n_embd=768),
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024),
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280),
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600),
}[model_type]
config_args['vocab_size'] = 50257
config_args['block_size'] = 1024
# Initialize the custom model with the given configuration
config = GPTConfig(**config_args)
from transformers import GPT2Config
config = GPT2Config.from_pretrained('distilgpt2')
config.visual_size=1024
config.block_size=1024
config.tags_embd=400
config.n_embd=768
config.n_layer=6
config.n_head=12
model = cls(config)
# Load state dictionary from Hugging Face model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# State dictionary of the custom model
sd = model.state_dict()
# Filter out custom keys that are not in the pre-trained model
custom_keys = {k for k in sd if 'visual_attn' in k or 'tags_attn' in k}
sd_keys_filtered = [k for k in sd if k not in custom_keys]
# Load matching keys
for k in sd_keys_filtered:
if k in sd_hf and sd_hf[k].shape == sd[k].shape:
with torch.no_grad():
sd[k].copy_(sd_hf[k])
# Initialize custom layers separately
for k in custom_keys:
with torch.no_grad():
print(f"Initializing custom layer: {k}")
sd[k].normal_(0.0, 0.02) # Adjust initialization method as needed
# Update the model's state dictionary
model.load_state_dict(sd, strict=False)
return model
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
# Prepare inputs for autoregressive generation
inputs = {"idx": input_ids}
if past:
inputs["past_key_values"] = past # Include past key values for caching
# Include additional features like visual and tags if provided
if "visual_features" in kwargs:
inputs["visual_features"] = kwargs["visual_features"]
if "tags_embedding" in kwargs:
inputs["tags_embedding"] = kwargs["tags_embedding"]
return inputs
def generate(
self,
input_ids: torch.Tensor = None,
max_length: int = None,
min_length: int = None,
do_sample: bool = None,
early_stopping: bool = None,
num_beams: int = None,
temperature: float = None,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = None,
bos_token_id: int = None,
pad_token_id: int = None,
eos_token_ids: int = None,
length_penalty: float = None,
no_repeat_ngram_size: int = None,
num_return_sequences: int = None,
attention_mask: torch.Tensor = None,
visual_features: torch.Tensor = None,
tags_embedding: torch.Tensor = None,
):
"""
Generate sequences using autoregressive decoding.
Args:
input_ids (torch.Tensor): Input tensor of token IDs.
max_length (int): Maximum length of the generated sequence.
min_length (int): Minimum length of the generated sequence.
do_sample (bool): Whether to use sampling; if False, uses greedy decoding.
early_stopping (bool): Whether to stop when all beams have finished.
num_beams (int): Number of beams for beam search.
temperature (float): Sampling temperature.
top_k (int): Top-k sampling.
top_p (float): Top-p (nucleus) sampling.
repetition_penalty (float): Penalty for repeated n-grams.
bos_token_id (int): Beginning of sequence token ID.
pad_token_id (int): Padding token ID.
eos_token_ids (int): End of sequence token ID.
length_penalty (float): Beam search length penalty.
no_repeat_ngram_size (int): Size of n-grams not to repeat.
num_return_sequences (int): Number of sequences to return.
attention_mask (torch.Tensor): Attention mask for padding tokens.
visual_features (torch.Tensor): Visual features for the transformer.
tags_embedding (torch.Tensor): Tags embeddings for the transformer.
Returns:
torch.Tensor: Generated sequences of token IDs.
"""
# Default values for unspecified parameters
max_length = max_length or self.config.block_size
min_length = min_length or 0
do_sample = do_sample or False
early_stopping = early_stopping or False
num_beams = num_beams or 1
temperature = temperature or 1.0
top_k = top_k or 0
top_p = top_p or 1.0
repetition_penalty = repetition_penalty or 1.0
bos_token_id = bos_token_id or self.config.bos_token_id
pad_token_id = pad_token_id or self.config.pad_token_id
eos_token_ids = eos_token_ids or self.config.eos_token_ids
length_penalty = length_penalty or 1.0
no_repeat_ngram_size = no_repeat_ngram_size or 0
num_return_sequences = num_return_sequences or 1
if input_ids is not None:
batch_size=input_ids.shape[0]
else:
batch_size=1
if input_ids is None:
assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
"You should either supply a context to complete as `input_ids` input "
"or a `bos_token_id` (integer >= 0) as a first token to start the generation."
)
input_ids = torch.full((batch_size, 1), bos_token_id, dtype=torch.long)
else:
assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
# Avoid duplicate outputs when greedy decoding
if not do_sample:
if num_beams == 1:
assert num_return_sequences == 1, (
"Greedy decoding will always produce the same output for num_beams == 1 "
"and num_return_sequences > 1. Please set num_return_sequences = 1."
)
else:
assert num_beams >= num_return_sequences, (
"Greedy beam search decoding cannot return more sequences than it has beams. "
"Please set num_beams >= num_return_sequences."
)
# Create attention mask if necessary
if attention_mask is None:
if pad_token_id is not None and pad_token_id in input_ids:
attention_mask = (input_ids != pad_token_id).long()
else:
attention_mask = torch.ones_like(input_ids)
# Set pad_token_id if not provided and eos_token_ids is available
if pad_token_id is None and eos_token_ids is not None:
pad_token_id = eos_token_ids
print(f"Setting `pad_token_id` to {pad_token_id} (first `eos_token_ids`) to generate sequence.")
# Current sequence length and vocabulary size
cur_len = input_ids.size(1)
vocab_size = self.config.vocab_size
# Adjust effective batch size and multiplier for sampling
if do_sample:
effective_batch_size = batch_size * num_return_sequences
effective_batch_mult = num_return_sequences
else:
effective_batch_size = batch_size
effective_batch_mult = 1
# Expand input_ids and attention_mask for beam search or multiple return sequences
if num_return_sequences > 1 or num_beams > 1:
input_ids_len = input_ids.size(-1)
# Expand dimensions and repeat for each beam and return sequence
input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
attention_mask = attention_mask.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
# Reshape to combine batch and beam dimensions
input_ids = input_ids.reshape(effective_batch_size * num_beams, input_ids_len)
attention_mask = attention_mask.reshape(effective_batch_size * num_beams, input_ids_len)
if num_beams > 1:
output = self._generate_beam_search(
input_ids=input_ids,
attention_mask=attention_mask,
visual_features=visual_features,
tags_embedding=tags_embedding,
cur_len=input_ids.size(1),
max_length=max_length,
min_length=min_length,
do_sample=do_sample,
early_stopping=early_stopping,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
pad_token_id=pad_token_id,
eos_token_ids=eos_token_ids,
length_penalty=length_penalty,
num_return_sequences=num_return_sequences,
num_beams=num_beams,
)
else:
output = self._generate_no_beam_search(
input_ids=input_ids,
attention_mask=attention_mask,
visual_features=visual_features,
tags_embedding=tags_embedding,
cur_len=input_ids.size(1),
max_length=max_length,
min_length=min_length,
do_sample=do_sample,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
pad_token_id=pad_token_id,
eos_token_ids=eos_token_ids,
batch_size=batch_size,
vocab_size=vocab_size,
)
return output
def _generate_no_beam_search(
self,
input_ids,
visual_features,
tags_embedding,
cur_len,
max_length,
min_length,
do_sample,
temperature,
top_k,
top_p,
repetition_penalty,
no_repeat_ngram_size,
pad_token_id,
eos_token_ids,
batch_size,
vocab_size,
attention_mask,
):
"""
Generate sequences for each example without beam search (num_beams == 1).
All returned sequences are generated independently.
"""
# Track unfinished sentences and their lengths
unfinished_sents=torch.ones_like(input_ids[:,0])
sent_lengths=torch.ones_like(input_ids[:,0])*max_length
past=None
while cur_len < max_length:
if past is None:
inputs = input_ids
else:
inputs = input_ids[:, -1].unsqueeze(1)
model_inputs = self.prepare_inputs_for_generation(
inputs, past=past, visual_features=visual_features, tags_embedding=tags_embedding
)
outputs = self(**model_inputs)
# next_token_logits = outputs[0][-1, :] # Extract logits for the last token, shape: [batch_size, vocab_size]
next_token_logits = outputs[:, -1, :]
# next_token_logits = next_token_logits.unsqueeze(0) # Add a new dimension: [1, batch_size, vocab_size]
next_token_logits = next_token_logits.expand(batch_size, vocab_size) # Expand to match batch size: [batch_size, vocab_size]
# if self._do_output_past(outputs): # we dont have this function implemented
# past = outputs[1]
# Apply repetition penalty
if repetition_penalty != 1.0:
next_token_logits_penalties=self._create_next_token_logits_penalties(input_ids,next_token_logits,repetition_penalty)
next_token_logits=next_token_logits @ next_token_logits_penalties.T # .T de mn 3ndy
# Prevent repetition of n-grams
if no_repeat_ngram_size > 0: # not checked generated by chat
banned_tokens=self.calc_banned_ngram_tokens(input_ids,batch_size,no_repeat_ngram_size,cur_len) # not checked generated by chat
banned_tokens_indices_mask=[]
for banned_tokens_slice in banned_tokens:
banned_tokens_indices_mask.append(
[True if token in banned_tokens_slice else False for token in range(vocab_size)]
)
banned_tokens_indices_mask=torch.tensor(banned_tokens_indices_mask,dtype=bool)
next_token_logits[banned_tokens_indices_mask]= -float('inf')
# Min length constraint for EOS
if eos_token_ids is not None and cur_len < min_length:
# create eos_token_id boolean mask
is_token_logit_eos_token = torch.arange(vocab_size, device=next_token_logits.device) == eos_token_ids
eos_token_indices_mask = is_token_logit_eos_token.unsqueeze(0).expand(batch_size, -1)
# next_token_logits=next_token_logits.unsqueeze(0).expand(batch_size,vocab_size)
next_token_logits = next_token_logits.masked_fill(eos_token_indices_mask, -float("inf"))
# Sampling or greedy decoding
if do_sample:
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
next_token_logits=self.top_k_top_p_filtering(next_token_logits,top_k=top_k,top_p=top_p)
next_token = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(1)
else:
next_token=torch.argmax(next_token_logits,dim=-1)
if eos_token_ids is not None:
unfinished_sents=unfinished_sents.to(self.device)
tokens_to_add = next_token * unfinished_sents + pad_token_id * (1 - unfinished_sents)
else:
tokens_to_add = next_token
input_ids=input_ids.to(self.device)
input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=1)
if eos_token_ids is not None:
eos_in_sents = tokens_to_add == eos_token_ids
# If sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents * eos_in_sents.int()
sent_lengths=sent_lengths.to(self.device)
sent_lengths = (
sent_lengths * (1 - is_sents_unfinished_and_token_to_add_is_eos)
+ cur_len * is_sents_unfinished_and_token_to_add_is_eos
)
# Unfinished sentences are set to zero if eos is in the sentence
unfinished_sents -= is_sents_unfinished_and_token_to_add_is_eos
# Stop if there is a </s> in each sentence, or if we exceed the maximum length
if torch.max(unfinished_sents) == 0: # => this line is what keeps it stopping at 57 etc..
break
cur_len += 1
# Pad sequences if necessary
min_sent_length = sent_lengths.min()
max_sent_length = sent_lengths.max()
if min_sent_length != max_sent_length:
assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths"
padding = torch.ones((batch_size, max_sent_length), dtype=torch.int) * pad_token_id
broad_casted_sent_lengths = sent_lengths.unsqueeze(-1).expand(batch_size, max_sent_length)
broad_casted_range = torch.arange(max_sent_length).unsqueeze(0).expand(batch_size, max_sent_length).T
# Use torch.where to apply padding where necessary
decoded = torch.where(broad_casted_range < broad_casted_sent_lengths, input_ids, padding)
else:
decoded = input_ids
return decoded
def _create_next_token_logits_penalties(self,input_ids, logits, repetition_penalty):
"""
Create logit penalties for already seen input_ids based on repetition penalty.
Args:
input_ids (torch.Tensor): Tensor of shape (batch_size, seq_len) containing input token IDs.
logits (torch.Tensor): Tensor of shape (batch_size, vocab_size) containing next-token logits.
repetition_penalty (float): The penalty to apply for repeated tokens.
Returns:
torch.Tensor: Tensor of shape (batch_size, vocab_size) with applied penalties.
"""
token_penalties=torch.ones_like(logits)
prev_input_ids=[torch.unique(input_id) for input_id in input_ids]
for i, prev_input_id in enumerate(prev_input_ids):
logits_penalized=logits[i][prev_input_ids]
logit_penalties=torch.zeros_like(logits_penalized)
logit_penalties[logits_penalized<0]=repetition_penalty
logit_penalties[logits_penalized>0]=1/repetition_penalty
token_penalties[i].scatter_(0,prev_input_id,logit_penalties)
return token_penalties
def top_k_top_p_filtering(self,logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
"""
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering.
Args:
logits: Logits distribution of shape (batch size, vocabulary size).
top_k (int): Keep only top k tokens with the highest probability.
top_p (float): Keep the top tokens with cumulative probability >= top_p (nucleus filtering).
filter_value (float): Value to assign to filtered logits.
min_tokens_to_keep (int): Ensure at least this many tokens are kept.
Returns:
torch.Tensor: Filtered logits.
"""
logits_shape = logits.size()
# Top-k filtering
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1]) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
top_k_values, _ = torch.topk(logits, top_k, dim=-1)
min_top_k_values = top_k_values[:, -1].unsqueeze(-1) # Minimum logit in top-k
logits = torch.where(logits < min_top_k_values, torch.full_like(logits, filter_value), logits)
# Top-p (nucleus) filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Ensure we keep at least min_tokens_to_keep tokens
sorted_indices_to_remove[:, :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove = sorted_indices_to_remove.roll(1, dims=-1)
sorted_indices_to_remove[:, 0] = 0
# Scatter sorted indices back to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits = torch.where(indices_to_remove, torch.full_like(logits, filter_value), logits)
return logits
def calc_banned_ngram_tokens(self,prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
"""
Calculate banned n-gram tokens for no-repeat n-gram constraints.
Args:
prev_input_ids (torch.Tensor): Tensor of shape (num_hypos, seq_len) containing token sequences.
num_hypos (int): Number of hypotheses in the batch.
no_repeat_ngram_size (int): Size of the n-grams to avoid repeating.
cur_len (int): Current length of the sequence being generated.
Returns:
List[List[int]]: List of banned tokens for each hypothesis.
"""
if cur_len + 1 < no_repeat_ngram_size:
# Return no banned tokens if not enough tokens have been generated
return [[] for _ in range(num_hypos)]
# Dictionary to store generated n-grams for each hypothesis
generated_ngrams = [{} for _ in range(num_hypos)]
# Populate the n-grams
for idx in range(num_hypos):
gen_tokens = prev_input_ids[idx].tolist()
generated_ngram = generated_ngrams[idx]
for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
def _get_generated_ngrams(hypo_idx):
# Get n-grams that have already appeared
start_idx = cur_len + 1 - no_repeat_ngram_size
ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist())
return generated_ngrams[hypo_idx].get(ngram_idx, [])
# Calculate banned tokens for each hypothesis
banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
return banned_tokens
|