File size: 29,010 Bytes
eb8805a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from transformers import GPT2Tokenizer
import tiktoken
from transformers import GPT2LMHeadModel
from transformers import PretrainedConfig


@dataclass
class GPTConfig(PretrainedConfig):
    visual_size: int = 1024
    vocab_size: int = 50257
    block_size: int = 1024
    tags_embd: int = 400
    n_embd: int = 768
    n_layer: int = 6
    n_head: int = 12

    def __init__(self,**kwargs):
        super().__init__(**kwargs)
        self.hidden_size = self.n_embd


class CasualSelfAttention(nn.Module):
    def __init__(self, config: GPTConfig):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, config.n_embd * 3)
        self.visual_attn = nn.Linear(config.visual_size, config.n_embd * 2)
        self.tags_attn = nn.Linear(config.tags_embd, config.n_embd * 2)
    
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.n_head = config.n_head
        self.n_embed = config.n_embd 
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        self.register_buffer(
            'bias', torch.tril(torch.ones(199, 353))
            .view(1, 1, 199, 353)
        )
    
    def forward(self, x: torch.Tensor, visual_features: torch.Tensor = None, tags_embedding: torch.Tensor = None) -> torch.Tensor:

        B, T, C = x.size() 
        visual_features=visual_features.to(self.device)
        tags_embedding=tags_embedding.to(self.device)


        qkv = self.c_attn(x) # the error happens here
        
        q, k, v = qkv.split(self.n_embed, dim=2) 
        q = q.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2) 
        k = k.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2) 
        v = v.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2)
        # Handle visual input if provided
        if visual_features is not None: 
            visual_kv = self.visual_attn(visual_features) 
            visual_k, visual_v = visual_kv.split(self.n_embed, dim=2)
            visual_k = visual_k.view(B, visual_features.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2) 
            visual_v = visual_v.view(B, visual_features.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)

            k = torch.cat([k, visual_k], dim=-2) 
            v = torch.cat([v, visual_v], dim=-2)
        
        if tags_embedding is not None:
            tags_kv = self.tags_attn(tags_embedding)  
            tags_k, tags_v = tags_kv.split(self.n_embed, dim=2)
            tags_k = tags_k.view(B, tags_embedding.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2) 
            tags_v = tags_v.view(B, tags_embedding.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)

            k = torch.cat([k, tags_k], dim=-2) 
            v = torch.cat([v, tags_v], dim=-2)

        # Causal self-attention computation
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) 
        device = att.device
        query_seq_len, key_seq_len = T, k.size(-2)
        
        # Text can attend to: previous text + all visual/tag tokens
        text_mask = torch.tril(torch.ones(T, T, device=device))  # Text-to-text causal
        non_text_mask = torch.ones(T, key_seq_len - T, device=device)  # Text-to-other full
        combined_mask = torch.cat([text_mask, non_text_mask], dim=1)
        
        # Reshape for broadcasting
        combined_mask = combined_mask.view(1, 1, T, key_seq_len)
        att = att.masked_fill(combined_mask == 0, float('-inf'))



        att = F.softmax(att, dim=-1)
        visual_att = att[..., :T, T:].mean().item()  # Text → Visual attention
        y = att @ v 
        y = y.transpose(1, 2).contiguous().view(B, T, self.n_head * (self.n_embed // self.n_head))
        y = self.c_proj(y)

        return y

class MLP(nn.Module):
    def __init__(self, config: GPTConfig):
        super(MLP, self).__init__()
        self.c_fc = nn.Linear(config.n_embd, config.n_embd * 4) # c_fc means fully connected layer and c is for context
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(config.n_embd * 4, config.n_embd)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x


class Block(nn.Module):
    def __init__(self, config: GPTConfig):
        super(Block, self).__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd) 
        self.attn = CasualSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x: torch.Tensor,visual_features: torch.Tensor, tags_embedding: torch.Tensor) -> torch.Tensor:
        x = x + self.attn(self.ln_1(x),visual_features, tags_embedding) 
        x = x + self.mlp(self.ln_2(x)) 
        return x


class DistilGPT2(GPT2LMHeadModel):
    def __init__(self, config: GPTConfig):
        super(DistilGPT2, self).__init__(config)
        self.config = config 


        self.transformer = nn.ModuleDict(
            {
                'wte': nn.Embedding(config.vocab_size, config.n_embd), 
                'wpe': nn.Embedding(config.block_size, config.n_embd), 
                'h': nn.ModuleList(
                    [
                        Block(config) for _ in range(config.n_layer)
                    ]
                ), # transformer blocks
                'ln_f': nn.LayerNorm(config.n_embd) # final layer normalization
            }
        )
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # linear layer for projection from embedding to vocab size

    def forward(self, idx: torch.Tensor, visual_features: torch.Tensor = None, tags_embedding: torch.Tensor = None, return_dict: bool = False) -> torch.Tensor:
        idx=idx.to(self.device)
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, Block size is {self.config.block_size}"

        # forward the token and positional embeddings
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device) 
        pos_emb = self.transformer['wpe'](pos)  
        tok_emb = self.transformer['wte'](idx)  
        x = tok_emb + pos_emb  

        # forward the transformer
        for block in self.transformer['h']:
            x = block(x, visual_features=visual_features, tags_embedding=tags_embedding)

        # forward the head
        x = self.transformer['ln_f'](x)
        logits = self.lm_head(x)

        if return_dict:
            return {'logits': logits}
        else:
            
            return logits
   
    
    @classmethod
    def from_pretrained(cls, model_type: str):
        """Loads pre-trained GPT-2 model weights from Hugging Face and handles custom layers."""
        from transformers import GPT2LMHeadModel
        print(f"Loading weights from pre-trained GPT: {model_type}")

        # Ensure the model type is supported
        assert model_type in {'distilgpt2', 'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}

        # Define configurations based on the model type
        config_args = {
            'distilgpt2':   dict(n_layer=6, n_head=12, n_embd=768),
            'gpt2':         dict(n_layer=12, n_head=12, n_embd=768),
            'gpt2-medium':  dict(n_layer=24, n_head=16, n_embd=1024),
            'gpt2-large':   dict(n_layer=36, n_head=20, n_embd=1280),
            'gpt2-xl':      dict(n_layer=48, n_head=25, n_embd=1600),
        }[model_type]
        config_args['vocab_size'] = 50257
        config_args['block_size'] = 1024

        # Initialize the custom model with the given configuration
        config = GPTConfig(**config_args)
        from transformers import GPT2Config

        config = GPT2Config.from_pretrained('distilgpt2')

        config.visual_size=1024
        config.block_size=1024
        config.tags_embd=400
        config.n_embd=768
        config.n_layer=6
        config.n_head=12

        model = cls(config)

        # Load state dictionary from Hugging Face model
        model_hf = GPT2LMHeadModel.from_pretrained(model_type)
        sd_hf = model_hf.state_dict()

        # State dictionary of the custom model
        sd = model.state_dict()

        # Filter out custom keys that are not in the pre-trained model
        custom_keys = {k for k in sd if 'visual_attn' in k or 'tags_attn' in k}
        sd_keys_filtered = [k for k in sd if k not in custom_keys]

        # Load matching keys
        for k in sd_keys_filtered:
            if k in sd_hf and sd_hf[k].shape == sd[k].shape:
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k])

        # Initialize custom layers separately
        for k in custom_keys:
            with torch.no_grad():
                print(f"Initializing custom layer: {k}")
                sd[k].normal_(0.0, 0.02)  # Adjust initialization method as needed

        # Update the model's state dictionary
        model.load_state_dict(sd, strict=False)

        return model
    
    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
        # Prepare inputs for autoregressive generation
        inputs = {"idx": input_ids}
        if past:
            inputs["past_key_values"] = past  # Include past key values for caching

        # Include additional features like visual and tags if provided
        if "visual_features" in kwargs:
            inputs["visual_features"] = kwargs["visual_features"]
        if "tags_embedding" in kwargs:
            inputs["tags_embedding"] = kwargs["tags_embedding"]

        return inputs
    def generate(
        self,
        input_ids: torch.Tensor = None,
        max_length: int = None,
        min_length: int = None,
        do_sample: bool = None,
        early_stopping: bool = None,
        num_beams: int = None,
        temperature: float = None,
        top_k: int = None,
        top_p: float = None,
        repetition_penalty: float = None,
        bos_token_id: int = None,
        pad_token_id: int = None,
        eos_token_ids: int = None,
        length_penalty: float = None,
        no_repeat_ngram_size: int = None,
        num_return_sequences: int = None,
        attention_mask: torch.Tensor = None,
        visual_features: torch.Tensor = None,
        tags_embedding: torch.Tensor = None,
    ):
        """
        Generate sequences using autoregressive decoding.

        Args:
            input_ids (torch.Tensor): Input tensor of token IDs.
            max_length (int): Maximum length of the generated sequence.
            min_length (int): Minimum length of the generated sequence.
            do_sample (bool): Whether to use sampling; if False, uses greedy decoding.
            early_stopping (bool): Whether to stop when all beams have finished.
            num_beams (int): Number of beams for beam search.
            temperature (float): Sampling temperature.
            top_k (int): Top-k sampling.
            top_p (float): Top-p (nucleus) sampling.
            repetition_penalty (float): Penalty for repeated n-grams.
            bos_token_id (int): Beginning of sequence token ID.
            pad_token_id (int): Padding token ID.
            eos_token_ids (int): End of sequence token ID.
            length_penalty (float): Beam search length penalty.
            no_repeat_ngram_size (int): Size of n-grams not to repeat.
            num_return_sequences (int): Number of sequences to return.
            attention_mask (torch.Tensor): Attention mask for padding tokens.
            visual_features (torch.Tensor): Visual features for the transformer.
            tags_embedding (torch.Tensor): Tags embeddings for the transformer.

        Returns:
            torch.Tensor: Generated sequences of token IDs.
        """
        # Default values for unspecified parameters
        max_length = max_length or self.config.block_size
        min_length = min_length or 0
        do_sample = do_sample or False
        early_stopping = early_stopping or False
        num_beams = num_beams or 1
        temperature = temperature or 1.0
        top_k = top_k or 0
        top_p = top_p or 1.0
        repetition_penalty = repetition_penalty or 1.0
        bos_token_id = bos_token_id or self.config.bos_token_id
        pad_token_id = pad_token_id or self.config.pad_token_id
        eos_token_ids = eos_token_ids or self.config.eos_token_ids
        length_penalty = length_penalty or 1.0
        no_repeat_ngram_size = no_repeat_ngram_size or 0
        num_return_sequences = num_return_sequences or 1

        if input_ids is not None:
            batch_size=input_ids.shape[0]
        else:
            batch_size=1

        if input_ids is None:
            assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
                "You should either supply a context to complete as `input_ids` input "
                "or a `bos_token_id` (integer >= 0) as a first token to start the generation."
            )
            input_ids = torch.full((batch_size, 1), bos_token_id, dtype=torch.long)

        else:
            assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."

        # Avoid duplicate outputs when greedy decoding
        if not do_sample:
            if num_beams == 1:
                assert num_return_sequences == 1, (
                    "Greedy decoding will always produce the same output for num_beams == 1 "
                    "and num_return_sequences > 1. Please set num_return_sequences = 1."
                )
            else:
                assert num_beams >= num_return_sequences, (
                    "Greedy beam search decoding cannot return more sequences than it has beams. "
                    "Please set num_beams >= num_return_sequences."
                )

        # Create attention mask if necessary
        if attention_mask is None:
            if pad_token_id is not None and pad_token_id in input_ids:
                attention_mask = (input_ids != pad_token_id).long()
            else:
                attention_mask = torch.ones_like(input_ids)

        # Set pad_token_id if not provided and eos_token_ids is available
        if pad_token_id is None and eos_token_ids is not None:
            pad_token_id = eos_token_ids
            print(f"Setting `pad_token_id` to {pad_token_id} (first `eos_token_ids`) to generate sequence.")

        # Current sequence length and vocabulary size
        cur_len = input_ids.size(1)
        vocab_size = self.config.vocab_size

        # Adjust effective batch size and multiplier for sampling
        if do_sample:
            effective_batch_size = batch_size * num_return_sequences
            effective_batch_mult = num_return_sequences
        else:
            effective_batch_size = batch_size
            effective_batch_mult = 1

        # Expand input_ids and attention_mask for beam search or multiple return sequences
        if num_return_sequences > 1 or num_beams > 1:
            input_ids_len = input_ids.size(-1)

            # Expand dimensions and repeat for each beam and return sequence
            input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
            attention_mask = attention_mask.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)

            # Reshape to combine batch and beam dimensions
            input_ids = input_ids.reshape(effective_batch_size * num_beams, input_ids_len)
            attention_mask = attention_mask.reshape(effective_batch_size * num_beams, input_ids_len)

        if num_beams > 1:
            output = self._generate_beam_search(
                input_ids=input_ids,
                attention_mask=attention_mask,
                visual_features=visual_features,
                tags_embedding=tags_embedding,
                cur_len=input_ids.size(1),
                max_length=max_length,
                min_length=min_length,
                do_sample=do_sample,
                early_stopping=early_stopping,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
                pad_token_id=pad_token_id,
                eos_token_ids=eos_token_ids,
                length_penalty=length_penalty,
                num_return_sequences=num_return_sequences,
                num_beams=num_beams,
            )
        else:
            output = self._generate_no_beam_search(
                input_ids=input_ids,
                attention_mask=attention_mask,
                visual_features=visual_features,
                tags_embedding=tags_embedding,
                cur_len=input_ids.size(1),
                max_length=max_length,
                min_length=min_length,
                do_sample=do_sample,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
                pad_token_id=pad_token_id,
                eos_token_ids=eos_token_ids,
                batch_size=batch_size,
                vocab_size=vocab_size,
            )

        return output
    

    def _generate_no_beam_search(
    self,
    input_ids,
    visual_features,
    tags_embedding,
    cur_len,
    max_length,
    min_length,
    do_sample,
    temperature,
    top_k,
    top_p,
    repetition_penalty,
    no_repeat_ngram_size,
    pad_token_id,
    eos_token_ids,
    batch_size,
    vocab_size,
    attention_mask,
):
        """
        Generate sequences for each example without beam search (num_beams == 1).
        All returned sequences are generated independently.
        """
        # Track unfinished sentences and their lengths
        unfinished_sents=torch.ones_like(input_ids[:,0])
        sent_lengths=torch.ones_like(input_ids[:,0])*max_length

        past=None
        

        while cur_len < max_length:
            if past is None:
                inputs = input_ids
            else:
                inputs = input_ids[:, -1].unsqueeze(1)

            model_inputs = self.prepare_inputs_for_generation(
                inputs, past=past, visual_features=visual_features, tags_embedding=tags_embedding
            )
            outputs = self(**model_inputs)
            # next_token_logits = outputs[0][-1, :]  # Extract logits for the last token, shape: [batch_size, vocab_size]
            next_token_logits = outputs[:, -1, :]

            # next_token_logits = next_token_logits.unsqueeze(0)  # Add a new dimension: [1, batch_size, vocab_size]
            next_token_logits = next_token_logits.expand(batch_size, vocab_size)  # Expand to match batch size: [batch_size, vocab_size]


            # if self._do_output_past(outputs): # we dont have this function implemented
            #     past = outputs[1]

            # Apply repetition penalty
            if repetition_penalty != 1.0:
                next_token_logits_penalties=self._create_next_token_logits_penalties(input_ids,next_token_logits,repetition_penalty)
                next_token_logits=next_token_logits @ next_token_logits_penalties.T # .T de mn 3ndy 
               

            # Prevent repetition of n-grams
            if no_repeat_ngram_size > 0:   # not checked generated by chat
                banned_tokens=self.calc_banned_ngram_tokens(input_ids,batch_size,no_repeat_ngram_size,cur_len) # not checked generated by chat
                banned_tokens_indices_mask=[]

                for banned_tokens_slice in banned_tokens:
                        banned_tokens_indices_mask.append(
                            [True if token in banned_tokens_slice else False for token in range(vocab_size)]
                        )   
                
                banned_tokens_indices_mask=torch.tensor(banned_tokens_indices_mask,dtype=bool)  

                next_token_logits[banned_tokens_indices_mask]= -float('inf')                         

            # Min length constraint for EOS
            if eos_token_ids is not None and cur_len < min_length:
                # create eos_token_id boolean mask
                is_token_logit_eos_token = torch.arange(vocab_size, device=next_token_logits.device) == eos_token_ids
                eos_token_indices_mask = is_token_logit_eos_token.unsqueeze(0).expand(batch_size, -1)
                # next_token_logits=next_token_logits.unsqueeze(0).expand(batch_size,vocab_size)

                next_token_logits = next_token_logits.masked_fill(eos_token_indices_mask, -float("inf"))



               

            # Sampling or greedy decoding
            if do_sample:
                if temperature != 1.0:
                    next_token_logits = next_token_logits / temperature
                
                next_token_logits=self.top_k_top_p_filtering(next_token_logits,top_k=top_k,top_p=top_p)

                next_token = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(1)

                
            else:
                next_token=torch.argmax(next_token_logits,dim=-1)
            

            if eos_token_ids is not None:
                unfinished_sents=unfinished_sents.to(self.device)
                tokens_to_add = next_token * unfinished_sents + pad_token_id * (1 - unfinished_sents)

            else:
                tokens_to_add = next_token
            input_ids=input_ids.to(self.device)
            input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=1)

            if eos_token_ids is not None:
                eos_in_sents = tokens_to_add == eos_token_ids
                # If sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
                is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents * eos_in_sents.int()
                sent_lengths=sent_lengths.to(self.device)
                sent_lengths = (
                    sent_lengths * (1 - is_sents_unfinished_and_token_to_add_is_eos)
                    + cur_len * is_sents_unfinished_and_token_to_add_is_eos
                )

                # Unfinished sentences are set to zero if eos is in the sentence
                unfinished_sents -= is_sents_unfinished_and_token_to_add_is_eos

            # Stop if there is a </s> in each sentence, or if we exceed the maximum length
            if torch.max(unfinished_sents) == 0:  # => this line is what keeps it stopping at 57 etc..
                break

            cur_len += 1

        # Pad sequences if necessary
        min_sent_length = sent_lengths.min()
        max_sent_length = sent_lengths.max()

        if min_sent_length != max_sent_length:
            assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths"
            padding = torch.ones((batch_size, max_sent_length), dtype=torch.int) * pad_token_id
            broad_casted_sent_lengths = sent_lengths.unsqueeze(-1).expand(batch_size, max_sent_length)
            broad_casted_range = torch.arange(max_sent_length).unsqueeze(0).expand(batch_size, max_sent_length).T

            # Use torch.where to apply padding where necessary
            decoded = torch.where(broad_casted_range < broad_casted_sent_lengths, input_ids, padding)
        else:
            decoded = input_ids

        return decoded
    
    def _create_next_token_logits_penalties(self,input_ids, logits, repetition_penalty):
        """
        Create logit penalties for already seen input_ids based on repetition penalty.

        Args:
            input_ids (torch.Tensor): Tensor of shape (batch_size, seq_len) containing input token IDs.
            logits (torch.Tensor): Tensor of shape (batch_size, vocab_size) containing next-token logits.
            repetition_penalty (float): The penalty to apply for repeated tokens.

        Returns:
            torch.Tensor: Tensor of shape (batch_size, vocab_size) with applied penalties.
        """
        token_penalties=torch.ones_like(logits)
        prev_input_ids=[torch.unique(input_id) for input_id in input_ids]

        for i, prev_input_id in enumerate(prev_input_ids):
            logits_penalized=logits[i][prev_input_ids]
            logit_penalties=torch.zeros_like(logits_penalized)

            logit_penalties[logits_penalized<0]=repetition_penalty
            logit_penalties[logits_penalized>0]=1/repetition_penalty

            token_penalties[i].scatter_(0,prev_input_id,logit_penalties)
        return token_penalties

    
    def top_k_top_p_filtering(self,logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
        """
        Filter a distribution of logits using top-k and/or nucleus (top-p) filtering.
        
        Args:
            logits: Logits distribution of shape (batch size, vocabulary size).
            top_k (int): Keep only top k tokens with the highest probability.
            top_p (float): Keep the top tokens with cumulative probability >= top_p (nucleus filtering).
            filter_value (float): Value to assign to filtered logits.
            min_tokens_to_keep (int): Ensure at least this many tokens are kept.

        Returns:
            torch.Tensor: Filtered logits.
        """
        logits_shape = logits.size()

        # Top-k filtering
        if top_k > 0:
            top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1])  # Safety check
            # Remove all tokens with a probability less than the last token of the top-k
            top_k_values, _ = torch.topk(logits, top_k, dim=-1)
            min_top_k_values = top_k_values[:, -1].unsqueeze(-1)  # Minimum logit in top-k
            logits = torch.where(logits < min_top_k_values, torch.full_like(logits, filter_value), logits)

        # Top-p (nucleus) filtering
        if top_p < 1.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
            cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)

            # Remove tokens with cumulative probability above the threshold
            sorted_indices_to_remove = cumulative_probs > top_p

            if min_tokens_to_keep > 1:
                # Ensure we keep at least min_tokens_to_keep tokens
                sorted_indices_to_remove[:, :min_tokens_to_keep] = 0

            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove = sorted_indices_to_remove.roll(1, dims=-1)
            sorted_indices_to_remove[:, 0] = 0

            # Scatter sorted indices back to original indexing
            indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
            logits = torch.where(indices_to_remove, torch.full_like(logits, filter_value), logits)

        return logits
    
    def calc_banned_ngram_tokens(self,prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
        """
        Calculate banned n-gram tokens for no-repeat n-gram constraints.
        
        Args:
            prev_input_ids (torch.Tensor): Tensor of shape (num_hypos, seq_len) containing token sequences.
            num_hypos (int): Number of hypotheses in the batch.
            no_repeat_ngram_size (int): Size of the n-grams to avoid repeating.
            cur_len (int): Current length of the sequence being generated.
        
        Returns:
            List[List[int]]: List of banned tokens for each hypothesis.
        """
        if cur_len + 1 < no_repeat_ngram_size:
            # Return no banned tokens if not enough tokens have been generated
            return [[] for _ in range(num_hypos)]

        # Dictionary to store generated n-grams for each hypothesis
        generated_ngrams = [{} for _ in range(num_hypos)]

        # Populate the n-grams
        for idx in range(num_hypos):
            gen_tokens = prev_input_ids[idx].tolist()
            generated_ngram = generated_ngrams[idx]
            for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]):
                prev_ngram_tuple = tuple(ngram[:-1])
                generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]

        def _get_generated_ngrams(hypo_idx):
            # Get n-grams that have already appeared
            start_idx = cur_len + 1 - no_repeat_ngram_size
            ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist())
            return generated_ngrams[hypo_idx].get(ngram_idx, [])

        # Calculate banned tokens for each hypothesis
        banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
        return banned_tokens