Spaces:
Running
Running
Upload 2 files
Browse files- demo_dense_visualize.py +0 -21
demo_dense_visualize.py
CHANGED
|
@@ -1,17 +1,7 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import random
|
| 3 |
import torch
|
| 4 |
-
import signal
|
| 5 |
-
import socket
|
| 6 |
import sys
|
| 7 |
-
import json
|
| 8 |
import torch.nn.functional as F
|
| 9 |
import numpy as np
|
| 10 |
-
import argparse
|
| 11 |
-
from pathlib import Path
|
| 12 |
-
import torch.optim as optim
|
| 13 |
-
from torch.cuda.amp import GradScaler
|
| 14 |
-
from lightning_fabric import Fabric
|
| 15 |
|
| 16 |
import utils.loss
|
| 17 |
import utils.samp
|
|
@@ -19,24 +9,13 @@ import utils.data
|
|
| 19 |
import utils.improc
|
| 20 |
import utils.misc
|
| 21 |
import utils.saveload
|
| 22 |
-
from tensorboardX import SummaryWriter
|
| 23 |
-
import datetime
|
| 24 |
-
import time
|
| 25 |
import cv2
|
| 26 |
-
import imageio
|
| 27 |
from nets.blocks import InputPadder
|
| 28 |
-
from tqdm import tqdm
|
| 29 |
-
# from pytorch_lightning.callbacks import BaseFinetuning
|
| 30 |
-
from utils.visualizer import Visualizer
|
| 31 |
-
from torchvision.transforms.functional import resize
|
| 32 |
|
| 33 |
import torch
|
| 34 |
-
import requests
|
| 35 |
from PIL import Image, ImageDraw
|
| 36 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 37 |
import numpy as np
|
| 38 |
|
| 39 |
-
|
| 40 |
torch.set_float32_matmul_precision('medium')
|
| 41 |
|
| 42 |
def run_example(processor, model, task_prompt, image, text_input=None):
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
import sys
|
|
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
import utils.loss
|
| 7 |
import utils.samp
|
|
|
|
| 9 |
import utils.improc
|
| 10 |
import utils.misc
|
| 11 |
import utils.saveload
|
|
|
|
|
|
|
|
|
|
| 12 |
import cv2
|
|
|
|
| 13 |
from nets.blocks import InputPadder
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
import torch
|
|
|
|
| 16 |
from PIL import Image, ImageDraw
|
|
|
|
| 17 |
import numpy as np
|
| 18 |
|
|
|
|
| 19 |
torch.set_float32_matmul_precision('medium')
|
| 20 |
|
| 21 |
def run_example(processor, model, task_prompt, image, text_input=None):
|