Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from gradio_image_slider import ImageSlider | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| import os | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda'),torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", | |
| weight_name="qwen-edit-enhance_64-v3_000001500.safetensors", | |
| adapter_name="upscale") | |
| pipe.set_adapters(["upscale"], adapter_weights=[1.]) | |
| pipe.fuse_lora(adapter_names=["upscale"], lora_scale=1.0) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def upscale_image( | |
| image, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| prompt = "Upscale and enhance this image with high quality details" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| pil_images = [] | |
| if image is not None: | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| if len(pil_images) == 0: | |
| raise gr.Error("Please upload an image first.") | |
| result = pipe( | |
| image=pil_images, | |
| prompt=prompt, | |
| height=height if height != 0 else None, | |
| width=width if width != 0 else None, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return (image, result), seed | |
| # --- UI --- | |
| css = ''' | |
| #col-container { | |
| max-width: 900px; | |
| margin: 0 auto; | |
| padding: 2rem; | |
| font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; | |
| } | |
| .gradio-container { | |
| background: linear-gradient(to bottom, #f5f5f7, #ffffff); | |
| } | |
| #title { | |
| text-align: center; | |
| font-size: 2.5rem; | |
| font-weight: 600; | |
| color: #1d1d1f; | |
| margin-bottom: 0.5rem; | |
| } | |
| #description { | |
| text-align: center; | |
| font-size: 1.1rem; | |
| color: #6e6e73; | |
| margin-bottom: 2rem; | |
| } | |
| .image-container { | |
| border-radius: 18px; | |
| overflow: hidden; | |
| box-shadow: 0 4px 6px rgba(0, 0, 0, 0.07); | |
| } | |
| #convert-btn { | |
| background: linear-gradient(180deg, #0071e3 0%, #0077ed 100%); | |
| border: none; | |
| border-radius: 12px; | |
| color: white; | |
| font-size: 1.1rem; | |
| font-weight: 500; | |
| padding: 0.75rem 2rem; | |
| transition: all 0.3s ease; | |
| } | |
| #convert-btn:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 8px 16px rgba(0, 113, 227, 0.3); | |
| } | |
| ''' | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# 🔍 Image Upscaler", elem_id="title") | |
| gr.Markdown( | |
| """ | |
| Upscale and enhance your images with AI-powered quality improvement ✨ | |
| <br> | |
| <div style='text-align: center; margin-top: 1rem;'> | |
| <a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank' style='color: #0071e3; text-decoration: none; font-weight: 500;'>Built with anycoder</a> | |
| </div> | |
| """, | |
| elem_id="description" | |
| ) | |
| with gr.Column(): | |
| image = gr.Image( | |
| label="Upload Image", | |
| type="pil", | |
| elem_classes="image-container" | |
| ) | |
| with gr.Accordion("⚙️ Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| true_guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) | |
| height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024, visible=False) | |
| width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024, visible=False) | |
| upscale_btn = gr.Button("Upscale Image", variant="primary", elem_id="convert-btn", size="lg") | |
| result = ImageSlider( | |
| label="Before / After", | |
| interactive=False, | |
| elem_classes="image-container" | |
| ) | |
| inputs = [ | |
| image, seed, randomize_seed, true_guidance_scale, | |
| num_inference_steps, height, width | |
| ] | |
| outputs = [result, seed] | |
| # Upscale button click | |
| upscale_btn.click( | |
| fn=upscale_image, | |
| inputs=inputs, | |
| outputs=outputs | |
| ) | |
| # Image upload triggers dimension update | |
| image.upload( | |
| fn=update_dimensions_on_upload, | |
| inputs=[image], | |
| outputs=[width, height] | |
| ) | |
| demo.launch() |