Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import gc | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import sys | |
| import types | |
| from contextlib import contextmanager | |
| from copy import deepcopy | |
| from functools import partial | |
| import numpy as np | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.distributed as dist | |
| import torchvision.transforms.functional as TF | |
| from decord import VideoReader | |
| from PIL import Image | |
| from safetensors import safe_open | |
| from torchvision import transforms | |
| from tqdm import tqdm | |
| from .distributed.fsdp import shard_model | |
| from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward | |
| from .distributed.util import get_world_size | |
| from .modules.s2v.audio_encoder import AudioEncoder | |
| from .modules.s2v.model_s2v import WanModel_S2V, sp_attn_forward_s2v | |
| from .modules.t5 import T5EncoderModel | |
| from .modules.vae2_1 import Wan2_1_VAE | |
| from .utils.fm_solvers import ( | |
| FlowDPMSolverMultistepScheduler, | |
| get_sampling_sigmas, | |
| retrieve_timesteps, | |
| ) | |
| from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
| def load_safetensors(path): | |
| tensors = {} | |
| with safe_open(path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| tensors[key] = f.get_tensor(key) | |
| return tensors | |
| class WanS2V: | |
| def __init__( | |
| self, | |
| config, | |
| checkpoint_dir, | |
| device_id=0, | |
| rank=0, | |
| t5_fsdp=False, | |
| dit_fsdp=False, | |
| use_sp=False, | |
| t5_cpu=False, | |
| init_on_cpu=True, | |
| convert_model_dtype=False, | |
| ): | |
| r""" | |
| Initializes the image-to-video generation model components. | |
| Args: | |
| config (EasyDict): | |
| Object containing model parameters initialized from config.py | |
| checkpoint_dir (`str`): | |
| Path to directory containing model checkpoints | |
| device_id (`int`, *optional*, defaults to 0): | |
| Id of target GPU device | |
| rank (`int`, *optional*, defaults to 0): | |
| Process rank for distributed training | |
| t5_fsdp (`bool`, *optional*, defaults to False): | |
| Enable FSDP sharding for T5 model | |
| dit_fsdp (`bool`, *optional*, defaults to False): | |
| Enable FSDP sharding for DiT model | |
| use_sp (`bool`, *optional*, defaults to False): | |
| Enable distribution strategy of sequence parallel. | |
| t5_cpu (`bool`, *optional*, defaults to False): | |
| Whether to place T5 model on CPU. Only works without t5_fsdp. | |
| init_on_cpu (`bool`, *optional*, defaults to True): | |
| Enable initializing Transformer Model on CPU. Only works without FSDP or USP. | |
| convert_model_dtype (`bool`, *optional*, defaults to False): | |
| Convert DiT model parameters dtype to 'config.param_dtype'. | |
| Only works without FSDP. | |
| """ | |
| self.device = torch.device(f"cuda:{device_id}") | |
| self.config = config | |
| self.rank = rank | |
| self.t5_cpu = t5_cpu | |
| self.init_on_cpu = init_on_cpu | |
| self.num_train_timesteps = config.num_train_timesteps | |
| self.param_dtype = config.param_dtype | |
| if t5_fsdp or dit_fsdp or use_sp: | |
| self.init_on_cpu = False | |
| shard_fn = partial(shard_model, device_id=device_id) | |
| self.text_encoder = T5EncoderModel( | |
| text_len=config.text_len, | |
| dtype=config.t5_dtype, | |
| device=torch.device('cpu'), | |
| checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), | |
| tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
| shard_fn=shard_fn if t5_fsdp else None, | |
| ) | |
| self.vae = Wan2_1_VAE( | |
| vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), | |
| device=self.device) | |
| logging.info(f"Creating WanModel from {checkpoint_dir}") | |
| if not dit_fsdp: | |
| self.noise_model = WanModel_S2V.from_pretrained( | |
| checkpoint_dir, | |
| torch_dtype=self.param_dtype, | |
| device_map=self.device) | |
| else: | |
| self.noise_model = WanModel_S2V.from_pretrained( | |
| checkpoint_dir, torch_dtype=self.param_dtype) | |
| self.noise_model = self._configure_model( | |
| model=self.noise_model, | |
| use_sp=use_sp, | |
| dit_fsdp=dit_fsdp, | |
| shard_fn=shard_fn, | |
| convert_model_dtype=convert_model_dtype) | |
| self.audio_encoder = AudioEncoder( | |
| model_id=os.path.join(checkpoint_dir, | |
| "wav2vec2-large-xlsr-53-english")) | |
| if use_sp: | |
| self.sp_size = get_world_size() | |
| else: | |
| self.sp_size = 1 | |
| self.sample_neg_prompt = config.sample_neg_prompt | |
| self.motion_frames = config.transformer.motion_frames | |
| self.drop_first_motion = config.drop_first_motion | |
| self.fps = config.sample_fps | |
| self.audio_sample_m = 0 | |
| def _configure_model(self, model, use_sp, dit_fsdp, shard_fn, | |
| convert_model_dtype): | |
| """ | |
| Configures a model object. This includes setting evaluation modes, | |
| applying distributed parallel strategy, and handling device placement. | |
| Args: | |
| model (torch.nn.Module): | |
| The model instance to configure. | |
| use_sp (`bool`): | |
| Enable distribution strategy of sequence parallel. | |
| dit_fsdp (`bool`): | |
| Enable FSDP sharding for DiT model. | |
| shard_fn (callable): | |
| The function to apply FSDP sharding. | |
| convert_model_dtype (`bool`): | |
| Convert DiT model parameters dtype to 'config.param_dtype'. | |
| Only works without FSDP. | |
| Returns: | |
| torch.nn.Module: | |
| The configured model. | |
| """ | |
| model.eval().requires_grad_(False) | |
| if use_sp: | |
| for block in model.blocks: | |
| block.self_attn.forward = types.MethodType( | |
| sp_attn_forward_s2v, block.self_attn) | |
| model.use_context_parallel = True | |
| if dist.is_initialized(): | |
| dist.barrier() | |
| if dit_fsdp: | |
| model = shard_fn(model) | |
| else: | |
| if convert_model_dtype: | |
| model.to(self.param_dtype) | |
| if not self.init_on_cpu: | |
| model.to(self.device) | |
| return model | |
| def get_size_less_than_area(self, | |
| height, | |
| width, | |
| target_area=1024 * 704, | |
| divisor=64): | |
| if height * width <= target_area: | |
| # If the original image area is already less than or equal to the target, | |
| # no resizing is needed—just padding. Still need to ensure that the padded area doesn't exceed the target. | |
| max_upper_area = target_area | |
| min_scale = 0.1 | |
| max_scale = 1.0 | |
| else: | |
| # Resize to fit within the target area and then pad to multiples of `divisor` | |
| max_upper_area = target_area # Maximum allowed total pixel count after padding | |
| d = divisor - 1 | |
| b = d * (height + width) | |
| a = height * width | |
| c = d**2 - max_upper_area | |
| # Calculate scale boundaries using quadratic equation | |
| min_scale = (-b + math.sqrt(b**2 - 2 * a * c)) / ( | |
| 2 * a) # Scale when maximum padding is applied | |
| max_scale = math.sqrt(max_upper_area / | |
| (height * width)) # Scale without any padding | |
| # We want to choose the largest possible scale such that the final padded area does not exceed max_upper_area | |
| # Use binary search-like iteration to find this scale | |
| find_it = False | |
| for i in range(100): | |
| scale = max_scale - (max_scale - min_scale) * i / 100 | |
| new_height, new_width = int(height * scale), int(width * scale) | |
| # Pad to make dimensions divisible by 64 | |
| pad_height = (64 - new_height % 64) % 64 | |
| pad_width = (64 - new_width % 64) % 64 | |
| pad_top = pad_height // 2 | |
| pad_bottom = pad_height - pad_top | |
| pad_left = pad_width // 2 | |
| pad_right = pad_width - pad_left | |
| padded_height, padded_width = new_height + pad_height, new_width + pad_width | |
| if padded_height * padded_width <= max_upper_area: | |
| find_it = True | |
| break | |
| if find_it: | |
| return padded_height, padded_width | |
| else: | |
| # Fallback: calculate target dimensions based on aspect ratio and divisor alignment | |
| aspect_ratio = width / height | |
| target_width = int( | |
| (target_area * aspect_ratio)**0.5 // divisor * divisor) | |
| target_height = int( | |
| (target_area / aspect_ratio)**0.5 // divisor * divisor) | |
| # Ensure the result is not larger than the original resolution | |
| if target_width >= width or target_height >= height: | |
| target_width = int(width // divisor * divisor) | |
| target_height = int(height // divisor * divisor) | |
| return target_height, target_width | |
| def prepare_default_cond_input(self, | |
| map_shape=[3, 12, 64, 64], | |
| motion_frames=5, | |
| lat_motion_frames=2, | |
| enable_mano=False, | |
| enable_kp=False, | |
| enable_pose=False): | |
| default_value = [1.0, -1.0, -1.0] | |
| cond_enable = [enable_mano, enable_kp, enable_pose] | |
| cond = [] | |
| for d, c in zip(default_value, cond_enable): | |
| if c: | |
| map_value = torch.ones( | |
| map_shape, dtype=self.param_dtype, device=self.device) * d | |
| cond_lat = torch.cat([ | |
| map_value[:, :, 0:1].repeat(1, 1, motion_frames, 1, 1), | |
| map_value | |
| ], | |
| dim=2) | |
| cond_lat = torch.stack( | |
| self.vae.encode(cond_lat.to( | |
| self.param_dtype)))[:, :, lat_motion_frames:].to( | |
| self.param_dtype) | |
| cond.append(cond_lat) | |
| if len(cond) >= 1: | |
| cond = torch.cat(cond, dim=1) | |
| else: | |
| cond = None | |
| return cond | |
| def encode_audio(self, audio_path, infer_frames): | |
| z = self.audio_encoder.extract_audio_feat( | |
| audio_path, return_all_layers=True) | |
| audio_embed_bucket, num_repeat = self.audio_encoder.get_audio_embed_bucket_fps( | |
| z, fps=self.fps, batch_frames=infer_frames, m=self.audio_sample_m) | |
| audio_embed_bucket = audio_embed_bucket.to(self.device, | |
| self.param_dtype) | |
| audio_embed_bucket = audio_embed_bucket.unsqueeze(0) | |
| if len(audio_embed_bucket.shape) == 3: | |
| audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1) | |
| elif len(audio_embed_bucket.shape) == 4: | |
| audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1) | |
| return audio_embed_bucket, num_repeat | |
| def read_last_n_frames(self, | |
| video_path, | |
| n_frames, | |
| target_fps=16, | |
| reverse=False): | |
| """ | |
| Read the last `n_frames` from a video at the specified frame rate. | |
| Parameters: | |
| video_path (str): Path to the video file. | |
| n_frames (int): Number of frames to read. | |
| target_fps (int, optional): Target sampling frame rate. Defaults to 16. | |
| reverse (bool, optional): Whether to read frames in reverse order. | |
| If True, reads the first `n_frames` instead of the last ones. | |
| Returns: | |
| np.ndarray: A NumPy array of shape [n_frames, H, W, 3], representing the sampled video frames. | |
| """ | |
| vr = VideoReader(video_path) | |
| original_fps = vr.get_avg_fps() | |
| total_frames = len(vr) | |
| interval = max(1, round(original_fps / target_fps)) | |
| required_span = (n_frames - 1) * interval | |
| start_frame = max(0, total_frames - required_span - | |
| 1) if not reverse else 0 | |
| sampled_indices = [] | |
| for i in range(n_frames): | |
| indice = start_frame + i * interval | |
| if indice >= total_frames: | |
| break | |
| else: | |
| sampled_indices.append(indice) | |
| return vr.get_batch(sampled_indices).asnumpy() | |
| def load_pose_cond(self, pose_video, num_repeat, infer_frames, size): | |
| HEIGHT, WIDTH = size | |
| if not pose_video is None: | |
| pose_seq = self.read_last_n_frames( | |
| pose_video, | |
| n_frames=infer_frames * num_repeat, | |
| target_fps=self.fps, | |
| reverse=True) | |
| resize_opreat = transforms.Resize(min(HEIGHT, WIDTH)) | |
| crop_opreat = transforms.CenterCrop((HEIGHT, WIDTH)) | |
| tensor_trans = transforms.ToTensor() | |
| cond_tensor = torch.from_numpy(pose_seq) | |
| cond_tensor = cond_tensor.permute(0, 3, 1, 2) / 255.0 * 2 - 1.0 | |
| cond_tensor = crop_opreat(resize_opreat(cond_tensor)).permute( | |
| 1, 0, 2, 3).unsqueeze(0) | |
| padding_frame_num = num_repeat * infer_frames - cond_tensor.shape[2] | |
| cond_tensor = torch.cat([ | |
| cond_tensor, | |
| - torch.ones([1, 3, padding_frame_num, HEIGHT, WIDTH]) | |
| ], | |
| dim=2) | |
| cond_tensors = torch.chunk(cond_tensor, num_repeat, dim=2) | |
| else: | |
| cond_tensors = [-torch.ones([1, 3, infer_frames, HEIGHT, WIDTH])] | |
| COND = [] | |
| for r in range(len(cond_tensors)): | |
| cond = cond_tensors[r] | |
| cond = torch.cat([cond[:, :, 0:1].repeat(1, 1, 1, 1, 1), cond], | |
| dim=2) | |
| cond_lat = torch.stack( | |
| self.vae.encode( | |
| cond.to(dtype=self.param_dtype, | |
| device=self.device)))[:, :, | |
| 1:].cpu() # for mem save | |
| COND.append(cond_lat) | |
| return COND | |
| def get_gen_size(self, size, max_area, ref_image_path, pre_video_path): | |
| if not size is None: | |
| HEIGHT, WIDTH = size | |
| else: | |
| if pre_video_path: | |
| ref_image = self.read_last_n_frames( | |
| pre_video_path, n_frames=1)[0] | |
| else: | |
| ref_image = np.array(Image.open(ref_image_path).convert('RGB')) | |
| HEIGHT, WIDTH = ref_image.shape[:2] | |
| HEIGHT, WIDTH = self.get_size_less_than_area( | |
| HEIGHT, WIDTH, target_area=max_area) | |
| return (HEIGHT, WIDTH) | |
| def generate( | |
| self, | |
| input_prompt, | |
| ref_image_path, | |
| audio_path, | |
| enable_tts, | |
| tts_prompt_audio, | |
| tts_prompt_text, | |
| tts_text, | |
| num_repeat=1, | |
| pose_video=None, | |
| max_area=720 * 1280, | |
| infer_frames=80, | |
| shift=5.0, | |
| sample_solver='unipc', | |
| sampling_steps=40, | |
| guide_scale=5.0, | |
| n_prompt="", | |
| seed=-1, | |
| offload_model=True, | |
| init_first_frame=False, | |
| ): | |
| r""" | |
| Generates video frames from input image and text prompt using diffusion process. | |
| Args: | |
| input_prompt (`str`): | |
| Text prompt for content generation. | |
| ref_image_path ('str'): | |
| Input image path | |
| audio_path ('str'): | |
| Audio for video driven | |
| num_repeat ('int'): | |
| Number of clips to generate; will be automatically adjusted based on the audio length | |
| pose_video ('str'): | |
| If provided, uses a sequence of poses to drive the generated video | |
| max_area (`int`, *optional*, defaults to 720*1280): | |
| Maximum pixel area for latent space calculation. Controls video resolution scaling | |
| infer_frames (`int`, *optional*, defaults to 80): | |
| How many frames to generate per clips. The number should be 4n | |
| shift (`float`, *optional*, defaults to 5.0): | |
| Noise schedule shift parameter. Affects temporal dynamics | |
| [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. | |
| sample_solver (`str`, *optional*, defaults to 'unipc'): | |
| Solver used to sample the video. | |
| sampling_steps (`int`, *optional*, defaults to 40): | |
| Number of diffusion sampling steps. Higher values improve quality but slow generation | |
| guide_scale (`float` or tuple[`float`], *optional*, defaults 5.0): | |
| Classifier-free guidance scale. Controls prompt adherence vs. creativity. | |
| If tuple, the first guide_scale will be used for low noise model and | |
| the second guide_scale will be used for high noise model. | |
| n_prompt (`str`, *optional*, defaults to ""): | |
| Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
| seed (`int`, *optional*, defaults to -1): | |
| Random seed for noise generation. If -1, use random seed | |
| offload_model (`bool`, *optional*, defaults to True): | |
| If True, offloads models to CPU during generation to save VRAM | |
| init_first_frame (`bool`, *optional*, defaults to False): | |
| Whether to use the reference image as the first frame (i.e., standard image-to-video generation) | |
| Returns: | |
| torch.Tensor: | |
| Generated video frames tensor. Dimensions: (C, N H, W) where: | |
| - C: Color channels (3 for RGB) | |
| - N: Number of frames (81) | |
| - H: Frame height (from max_area) | |
| - W: Frame width from max_area) | |
| """ | |
| # preprocess | |
| size = self.get_gen_size( | |
| size=None, | |
| max_area=max_area, | |
| ref_image_path=ref_image_path, | |
| pre_video_path=None) | |
| HEIGHT, WIDTH = size | |
| channel = 3 | |
| resize_opreat = transforms.Resize(min(HEIGHT, WIDTH)) | |
| crop_opreat = transforms.CenterCrop((HEIGHT, WIDTH)) | |
| tensor_trans = transforms.ToTensor() | |
| ref_image = None | |
| motion_latents = None | |
| if ref_image is None: | |
| ref_image = np.array(Image.open(ref_image_path).convert('RGB')) | |
| if motion_latents is None: | |
| motion_latents = torch.zeros( | |
| [1, channel, self.motion_frames, HEIGHT, WIDTH], | |
| dtype=self.param_dtype, | |
| device=self.device) | |
| # extract audio emb | |
| if enable_tts is True: | |
| audio_path = self.tts(tts_prompt_audio, tts_prompt_text, tts_text) | |
| audio_emb, nr = self.encode_audio(audio_path, infer_frames=infer_frames) | |
| if num_repeat is None or num_repeat > nr: | |
| num_repeat = nr | |
| lat_motion_frames = (self.motion_frames + 3) // 4 | |
| model_pic = crop_opreat(resize_opreat(Image.fromarray(ref_image))) | |
| ref_pixel_values = tensor_trans(model_pic) | |
| ref_pixel_values = ref_pixel_values.unsqueeze(1).unsqueeze( | |
| 0) * 2 - 1.0 # b c 1 h w | |
| ref_pixel_values = ref_pixel_values.to( | |
| dtype=self.vae.dtype, device=self.vae.device) | |
| ref_latents = torch.stack(self.vae.encode(ref_pixel_values)) | |
| # encode the motion latents | |
| videos_last_frames = motion_latents.detach() | |
| drop_first_motion = self.drop_first_motion | |
| if init_first_frame: | |
| drop_first_motion = False | |
| motion_latents[:, :, -6:] = ref_pixel_values | |
| motion_latents = torch.stack(self.vae.encode(motion_latents)) | |
| # get pose cond input if need | |
| COND = self.load_pose_cond( | |
| pose_video=pose_video, | |
| num_repeat=num_repeat, | |
| infer_frames=infer_frames, | |
| size=size) | |
| seed = seed if seed >= 0 else random.randint(0, sys.maxsize) | |
| if n_prompt == "": | |
| n_prompt = self.sample_neg_prompt | |
| # preprocess | |
| if not self.t5_cpu: | |
| self.text_encoder.model.to(self.device) | |
| context = self.text_encoder([input_prompt], self.device) | |
| context_null = self.text_encoder([n_prompt], self.device) | |
| if offload_model: | |
| self.text_encoder.model.cpu() | |
| else: | |
| context = self.text_encoder([input_prompt], torch.device('cpu')) | |
| context_null = self.text_encoder([n_prompt], torch.device('cpu')) | |
| context = [t.to(self.device) for t in context] | |
| context_null = [t.to(self.device) for t in context_null] | |
| out = [] | |
| # evaluation mode | |
| with ( | |
| torch.amp.autocast('cuda', dtype=self.param_dtype), | |
| torch.no_grad(), | |
| ): | |
| for r in range(num_repeat): | |
| seed_g = torch.Generator(device=self.device) | |
| seed_g.manual_seed(seed + r) | |
| lat_target_frames = (infer_frames + 3 + self.motion_frames | |
| ) // 4 - lat_motion_frames | |
| target_shape = [lat_target_frames, HEIGHT // 8, WIDTH // 8] | |
| noise = [ | |
| torch.randn( | |
| 16, | |
| target_shape[0], | |
| target_shape[1], | |
| target_shape[2], | |
| dtype=self.param_dtype, | |
| device=self.device, | |
| generator=seed_g) | |
| ] | |
| max_seq_len = np.prod(target_shape) // 4 | |
| if sample_solver == 'unipc': | |
| sample_scheduler = FlowUniPCMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sample_scheduler.set_timesteps( | |
| sampling_steps, device=self.device, shift=shift) | |
| timesteps = sample_scheduler.timesteps | |
| elif sample_solver == 'dpm++': | |
| sample_scheduler = FlowDPMSolverMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
| timesteps, _ = retrieve_timesteps( | |
| sample_scheduler, | |
| device=self.device, | |
| sigmas=sampling_sigmas) | |
| else: | |
| raise NotImplementedError("Unsupported solver.") | |
| latents = deepcopy(noise) | |
| with torch.no_grad(): | |
| left_idx = r * infer_frames | |
| right_idx = r * infer_frames + infer_frames | |
| cond_latents = COND[r] if pose_video else COND[0] * 0 | |
| cond_latents = cond_latents.to( | |
| dtype=self.param_dtype, device=self.device) | |
| audio_input = audio_emb[..., left_idx:right_idx] | |
| input_motion_latents = motion_latents.clone() | |
| arg_c = { | |
| 'context': context[0:1], | |
| 'seq_len': max_seq_len, | |
| 'cond_states': cond_latents, | |
| "motion_latents": input_motion_latents, | |
| 'ref_latents': ref_latents, | |
| "audio_input": audio_input, | |
| "motion_frames": [self.motion_frames, lat_motion_frames], | |
| "drop_motion_frames": drop_first_motion and r == 0, | |
| } | |
| if guide_scale > 1: | |
| arg_null = { | |
| 'context': context_null[0:1], | |
| 'seq_len': max_seq_len, | |
| 'cond_states': cond_latents, | |
| "motion_latents": input_motion_latents, | |
| 'ref_latents': ref_latents, | |
| "audio_input": 0.0 * audio_input, | |
| "motion_frames": [ | |
| self.motion_frames, lat_motion_frames | |
| ], | |
| "drop_motion_frames": drop_first_motion and r == 0, | |
| } | |
| if offload_model or self.init_on_cpu: | |
| self.noise_model.to(self.device) | |
| torch.cuda.empty_cache() | |
| for i, t in enumerate(tqdm(timesteps)): | |
| latent_model_input = latents[0:1] | |
| timestep = [t] | |
| timestep = torch.stack(timestep).to(self.device) | |
| noise_pred_cond = self.noise_model( | |
| latent_model_input, t=timestep, **arg_c) | |
| if guide_scale > 1: | |
| noise_pred_uncond = self.noise_model( | |
| latent_model_input, t=timestep, **arg_null) | |
| noise_pred = [ | |
| u + guide_scale * (c - u) | |
| for c, u in zip(noise_pred_cond, noise_pred_uncond) | |
| ] | |
| else: | |
| noise_pred = noise_pred_cond | |
| temp_x0 = sample_scheduler.step( | |
| noise_pred[0].unsqueeze(0), | |
| t, | |
| latents[0].unsqueeze(0), | |
| return_dict=False, | |
| generator=seed_g)[0] | |
| latents[0] = temp_x0.squeeze(0) | |
| if offload_model: | |
| self.noise_model.cpu() | |
| torch.cuda.synchronize() | |
| torch.cuda.empty_cache() | |
| latents = torch.stack(latents) | |
| if not (drop_first_motion and r == 0): | |
| decode_latents = torch.cat([motion_latents, latents], dim=2) | |
| else: | |
| decode_latents = torch.cat([ref_latents, latents], dim=2) | |
| image = torch.stack(self.vae.decode(decode_latents)) | |
| image = image[:, :, -(infer_frames):] | |
| if (drop_first_motion and r == 0): | |
| image = image[:, :, 3:] | |
| overlap_frames_num = min(self.motion_frames, image.shape[2]) | |
| videos_last_frames = torch.cat([ | |
| videos_last_frames[:, :, overlap_frames_num:], | |
| image[:, :, -overlap_frames_num:] | |
| ], | |
| dim=2) | |
| videos_last_frames = videos_last_frames.to( | |
| dtype=motion_latents.dtype, device=motion_latents.device) | |
| motion_latents = torch.stack( | |
| self.vae.encode(videos_last_frames)) | |
| out.append(image.cpu()) | |
| videos = torch.cat(out, dim=2) | |
| del noise, latents | |
| del sample_scheduler | |
| if offload_model: | |
| gc.collect() | |
| torch.cuda.synchronize() | |
| if dist.is_initialized(): | |
| dist.barrier() | |
| return videos[0] if self.rank == 0 else None | |
| def tts(self, tts_prompt_audio, tts_prompt_text, tts_text): | |
| if not hasattr(self, 'cosyvoice'): | |
| self.load_tts() | |
| speech_list = [] | |
| from cosyvoice.utils.file_utils import load_wav | |
| import torchaudio | |
| prompt_speech_16k = load_wav(tts_prompt_audio, 16000) | |
| if tts_prompt_text is not None: | |
| for i in self.cosyvoice.inference_zero_shot(tts_text, tts_prompt_text, prompt_speech_16k): | |
| speech_list.append(i['tts_speech']) | |
| else: | |
| for i in self.cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k): | |
| speech_list.append(i['tts_speech']) | |
| torchaudio.save('tts.wav', torch.concat(speech_list, dim=1), self.cosyvoice.sample_rate) | |
| return 'tts.wav' | |
| def load_tts(self): | |
| if not os.path.exists('CosyVoice'): | |
| from wan.utils.utils import download_cosyvoice_repo | |
| download_cosyvoice_repo('CosyVoice') | |
| if not os.path.exists('CosyVoice2-0.5B'): | |
| from wan.utils.utils import download_cosyvoice_model | |
| download_cosyvoice_model('CosyVoice2-0.5B', 'CosyVoice2-0.5B') | |
| sys.path.append('CosyVoice') | |
| sys.path.append('CosyVoice/third_party/Matcha-TTS') | |
| from cosyvoice.cli.cosyvoice import CosyVoice2 | |
| self.cosyvoice = CosyVoice2('CosyVoice2-0.5B') |