| import yfinance as yf | |
| import pandas as pd | |
| def process_dataframe(df): | |
| def get_rsi(close, lookback): | |
| ret = close.diff() | |
| up = [] | |
| down = [] | |
| for i in range(len(ret)): | |
| if ret[i] < 0: | |
| up.append(0) | |
| down.append(ret[i]) | |
| else: | |
| up.append(ret[i]) | |
| down.append(0) | |
| up_series = pd.Series(up) | |
| down_series = pd.Series(down).abs() | |
| up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean() | |
| down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean() | |
| rs = up_ewm / down_ewm | |
| rsi = 100 - (100 / (1 + rs)) | |
| rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index) | |
| rsi_df = rsi_df.dropna() | |
| return rsi_df[3:] | |
| df['RSI'] = get_rsi(df['Close'], 14) | |
| df['SMA20'] = df['Close'].rolling(window=20).mean() | |
| df.drop(['Adj Close'], axis=1, inplace=True) | |
| df = df.dropna() | |
| return df | |
| def fin_data(ticker, startdate, enddate): | |
| df=yf.download(ticker,start=startdate,end=enddate, progress=False) | |
| df = process_dataframe(df) | |
| df.reset_index(inplace=True) | |
| df = df.dropna() | |
| df.reset_index(drop=True, inplace=True) | |
| df[['Open', 'High', 'Low', 'Close',"RSI"]] = df[['Open', 'High', 'Low', 'Close',"RSI"]].round(2) | |
| df = df[200:] | |
| df.reset_index(drop=True,inplace=True) | |
| return df | |
| def eqt(ticker, startdate, enddate, share_qty = 90): | |
| df = fin_data(ticker, startdate, enddate) | |
| entry = False | |
| trading = False | |
| shares_held = 0 | |
| buy_price = 0 | |
| target1 = False | |
| target2 = False | |
| target3 = False | |
| tgt1 = 0 | |
| tgt2 = 0 | |
| tgt3 = 0 | |
| total_profit = 0 | |
| profits = [] | |
| stop_loss = 0 | |
| capital_list = [] | |
| start_date = [] | |
| end_date = [] | |
| for i in range(1, len(df)-1): | |
| try: | |
| if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading: | |
| buy_price = df.at[i, 'High'] | |
| stop_loss = df.at[i, 'Low'] | |
| start_date.append(df.at[i, 'Date']) | |
| capital = buy_price * share_qty | |
| capital_list.append(round(capital, 2)) | |
| shares_held = share_qty | |
| entry = True | |
| trading = True | |
| if trading and not target1: | |
| if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price: | |
| stop_loss = buy_price | |
| target1 = True | |
| tgt1 = 0.02 * buy_price * (share_qty / 3) | |
| shares_held -= (share_qty / 3) | |
| total_profit = tgt1 | |
| if trading and target1 and not target2: | |
| if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price: | |
| target2 = True | |
| tgt2 = 0.04 * buy_price * (share_qty / 3) | |
| total_profit += tgt2 | |
| shares_held -= (share_qty / 3) | |
| if trading and target2 and not target3: | |
| if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']): | |
| stop_loss = df.at[i + 1, 'Low'] | |
| if df.at[i + 2, 'Low'] < stop_loss: | |
| target3 = True | |
| tgt3 = stop_loss * (share_qty / 3) | |
| shares_held -= (share_qty / 3) | |
| total_profit += tgt3 | |
| if (df.at[i + 1, 'Low'] < stop_loss and trading): | |
| profit_loss = (shares_held * stop_loss) - (shares_held * buy_price) | |
| total_profit += profit_loss | |
| profits.append(total_profit) | |
| end_date.append(df.at[i, 'Date']) | |
| shares_held = 0 | |
| buy_price = 0 | |
| entry = False | |
| trading = False | |
| target1 = target2 = target3 = False | |
| tgt1 = tgt2 = tgt3 = 0 | |
| total_profit = 0 | |
| except IndexError: | |
| continue | |
| print("\n") | |
| print(f"Stock: {ticker} - From {df.at[1, 'Date']} to {df.at[len(df) - 1, 'Date']}") | |
| print(f"Required capital Range equity per trade: {round(capital_list[0],2)} ₹ - {round(capital_list[-1],2)} ₹") | |
| print("Duration Total Trading Profit:", round(sum(profits), 2),"₹") | |
| if profits: | |
| if len(start_date) > len(end_date): | |
| rr = len(end_date) | |
| df = pd.DataFrame({"Start" : start_date[:rr], "End": end_date, "profit" : profits, "Capital" : capital_list[:rr]}) | |
| df['percentage'] = (df['profit'] / df['Capital']) * 100 | |
| df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%") | |
| else: | |
| df = pd.DataFrame({"Start" : start_date, "End": end_date, "profit" : profits, "Capital" : capital_list}) | |
| df['percentage'] = (df['profit'] / df['Capital']) * 100 | |
| df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%") | |
| return df | |
| else: | |
| return 0 |