Update app.py
#33
by
hrt10
- opened
app.py
CHANGED
|
@@ -1 +1,71 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
from diffusers import FluxKontextPipeline
|
| 5 |
+
from gfpgan import GFPGANer
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
# Device setup
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
|
| 11 |
+
# Load FLUX in-context editing pipeline
|
| 12 |
+
pipe = FluxKontextPipeline.from_pretrained(
|
| 13 |
+
"black-forest-labs/FLUX.1-Kontext-dev",
|
| 14 |
+
torch_dtype=torch.bfloat16 if device.type=="cuda" else torch.float32
|
| 15 |
+
).to(device)
|
| 16 |
+
|
| 17 |
+
# Load face enhancement model
|
| 18 |
+
gfpgan = GFPGANer(
|
| 19 |
+
model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.3.pth",
|
| 20 |
+
upscale=1,
|
| 21 |
+
arch="clean",
|
| 22 |
+
channel_multiplier=2,
|
| 23 |
+
bg_upsampler=None,
|
| 24 |
+
device=device.type
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def enhance_face(input_img: Image.Image) -> Image.Image:
|
| 28 |
+
img_np = np.array(input_img)
|
| 29 |
+
_, _, output = gfpgan.enhance(img_np, has_aligned=False, only_center_face=False, paste_back=True)
|
| 30 |
+
return Image.fromarray(output)
|
| 31 |
+
|
| 32 |
+
def infer(input_image, prompt, beautify, seed, randomize, steps, guidance_scale):
|
| 33 |
+
# Set random seed
|
| 34 |
+
generator = torch.Generator(device=device).manual_seed(seed if not randomize else torch.randint(0, 2**32-1, ()).item())
|
| 35 |
+
|
| 36 |
+
# In-context editing
|
| 37 |
+
out = pipe(
|
| 38 |
+
image=input_image.convert("RGB"),
|
| 39 |
+
prompt=prompt,
|
| 40 |
+
num_inference_steps=steps,
|
| 41 |
+
guidance_scale=guidance_scale,
|
| 42 |
+
generator=generator
|
| 43 |
+
).images[0]
|
| 44 |
+
|
| 45 |
+
# Apply face enhancement if selected
|
| 46 |
+
if beautify:
|
| 47 |
+
out = enhance_face(out)
|
| 48 |
+
|
| 49 |
+
return out
|
| 50 |
+
|
| 51 |
+
# UI setup
|
| 52 |
+
with gr.Blocks() as demo:
|
| 53 |
+
gr.Markdown("# FLUX Kontekt Editor + Beautify")
|
| 54 |
+
with gr.Row():
|
| 55 |
+
input_image = gr.Image(label="Upload Image", type="pil")
|
| 56 |
+
result = gr.Image(label="Edited Output")
|
| 57 |
+
prompt = gr.Textbox(label="Edit Prompt", placeholder="e.g., 'change background to beach'")
|
| 58 |
+
beautify = gr.Checkbox(label="Beautify Face", value=True)
|
| 59 |
+
seed = gr.Slider(0, 2**32-1, value=0, step=1, label="Seed")
|
| 60 |
+
randomize = gr.Checkbox(label="Randomize Seed", value=True)
|
| 61 |
+
steps = gr.Slider(1, 30, value=28, label="Steps")
|
| 62 |
+
guidance = gr.Slider(1.0, 10.0, value=2.5, step=0.1, label="Guidance Scale")
|
| 63 |
+
run = gr.Button("Run")
|
| 64 |
+
|
| 65 |
+
run.click(
|
| 66 |
+
fn=infer,
|
| 67 |
+
inputs=[input_image, prompt, beautify, seed, randomize, steps, guidance],
|
| 68 |
+
outputs=result
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
demo.launch()
|