File size: 23,767 Bytes
5ccf219
 
 
 
 
 
 
 
68b944b
04539d0
 
 
68b944b
5ccf219
 
 
 
 
 
 
 
 
 
 
 
48104f3
 
 
5ccf219
 
 
 
 
 
 
 
 
 
7b0d224
 
 
5ccf219
de2ba9d
5ccf219
 
 
 
 
 
 
 
 
 
 
04539d0
5ccf219
8768ac4
5ccf219
 
fefa510
5ccf219
8768ac4
04539d0
5ccf219
 
 
 
 
 
 
 
d9a932f
54e9efe
f926ba4
d9a932f
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d180b8
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d180b8
5ccf219
 
 
dd85252
5ccf219
dd85252
5ccf219
dd85252
 
 
 
 
 
 
 
 
 
 
 
 
 
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04539d0
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887266
5ccf219
 
 
 
 
 
04539d0
 
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8768ac4
4d180b8
 
 
8768ac4
68b944b
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04539d0
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04539d0
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8768ac4
1887266
5ccf219
 
 
 
 
 
04539d0
 
5ccf219
 
 
 
 
 
 
 
 
 
 
 
04539d0
5ccf219
 
04539d0
5ccf219
04539d0
5ccf219
 
 
 
 
 
 
 
17888ba
5ccf219
 
 
 
 
 
 
8768ac4
4d180b8
 
 
5ccf219
 
 
 
 
 
 
5d7d19c
 
d9a932f
 
 
5d7d19c
d9a932f
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2951dc3
5ccf219
 
 
 
 
 
 
 
 
 
 
 
5d7d19c
d9a932f
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0d224
5ccf219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0282280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ccf219
 
 
 
 
 
 
 
 
 
 
7b0d224
85a0831
 
7b0d224
 
85a0831
 
7b0d224
 
 
 
 
 
 
 
5ccf219
 
 
 
 
 
 
 
 
 
 
7b0d224
48104f3
5ccf219
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
"""
Gradio Side-by-Side Model Comparison Demo

This creates a web interface to compare three inference modes simultaneously:
1. Single: Regular HuggingFace model
2. T2T: Two-stage inference (shows context + answer)
3. C2C: Rosetta model with projectors

ZeroGPU Support:
- Models are loaded to CUDA if available
- @spaces.GPU decorator handles device allocation automatically
- Inputs are moved to match the model's actual device
- Works seamlessly on both ZeroGPU and regular GPU environments
"""

import os
import sys
import torch
import argparse
import gradio as gr
from pathlib import Path
from typing import Optional, Generator
from queue import Queue
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import spaces 
ZEROGPU_AVAILABLE = os.getenv("ZERO_GPU", "").lower() == "true" # ZeroGPU support - HuggingFace Spaces sets ZERO_GPU=true when ZeroGPU is available

from rosetta.utils.evaluate import load_rosetta_model, load_hf_model, set_default_chat_template
from rosetta.model.wrapper import RosettaModel
from rosetta.baseline.multi_stage import TwoStageInference


class ModelManager:
    """Manages loading and inference for all three model types."""
    
    def __init__(
        self,
        single_model_name: str = "Qwen/Qwen3-0.6B",
        t2t_context_model: str = "Qwen/Qwen2.5-0.5B-Instruct",
        t2t_answer_model: str = "Qwen/Qwen3-0.6B",
        c2c_checkpoint_path: str = "local/checkpoints/qwen3_0.6b+qwen2.5_0.5b_Fuser",
        device: str = "auto"
    ):
        """
        Initialize ModelManager with model configurations.
        
        Args:
            single_model_name: HuggingFace model name for single mode
            t2t_context_model: Context model for T2T mode
            t2t_answer_model: Answer model for T2T mode
            c2c_checkpoint_path: Path to C2C checkpoint directory
            device: Device to use (cuda, cpu, or auto)
        """
        # Always use CUDA if available, ZeroGPU handles the rest
        if device == "auto":
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.device = torch.device(device)
        
        print(f"Using device: {self.device}")
        if ZEROGPU_AVAILABLE:
            print("ZeroGPU environment detected")
        
        # Model configurations
        self.single_model_name = single_model_name
        self.t2t_context_model = t2t_context_model
        self.t2t_answer_model = t2t_answer_model
        self.c2c_checkpoint_path = c2c_checkpoint_path
        
        # T2T prompt configurations
        self.t2t_background_prompt = "In one clear sentence, describe the most essential background knowledge needed to answer the question:\n\n{question}\n\nDo NOT directly solve or give answer to the question."
        self.t2t_answer_prompt = "Based on the background, accurately answer the question:\n\n{question}"  # Format for second round question
        self.t2t_context_max_tokens = 256
        self.t2t_answer_max_tokens = 512
        
        # Generation configuration (shared across all models)
        # To enable sampling: set use_sampling=True and adjust temperature/top_p/top_k
        # Current mode: Greedy decoding (do_sample=False)
        self.use_sampling = False  # Set to True to enable sampling
        self.temperature = 0.7     # Used when use_sampling=True
        self.top_p = 0.8          # Used when use_sampling=True
        self.top_k = 20           # Used when use_sampling=True
        
        # Initialize models
        self.single_model = None
        self.single_tokenizer = None
        self.t2t_model = None
        self.c2c_model = None
        self.c2c_tokenizer = None
        
        # C2C model names (will be loaded from config)
        self.c2c_base_model = None
        self.c2c_teacher_model = None
        
        print("=" * 60)
        print("Initializing models... This may take a few minutes.")
        print("=" * 60)
        
        self._load_all_models()
    
    def _load_single_model(self):
        """Load single HuggingFace model."""
        print(f"\n[Single] Loading {self.single_model_name}...")
        self.single_model, self.single_tokenizer = load_hf_model(
            self.single_model_name, self.device
        )
        set_default_chat_template(self.single_tokenizer, self.single_model_name)
        print("[Single] βœ“ Model loaded")
    
    def _load_t2t_model(self):
        """Load two-stage model."""
        print(f"\n[T2T] Loading two-stage model...")
        print(f"  Context: {self.t2t_context_model}")
        print(f"  Answer: {self.t2t_answer_model}")
        print(f"  Background prompt: {self.t2t_background_prompt}")
        print(f"  Answer prompt: {self.t2t_answer_prompt}")
        
        self.t2t_model = TwoStageInference(
            context_model_path=self.t2t_context_model,
            answer_model_path=self.t2t_answer_model,
            device=str(self.device),
            background_prompt=self.t2t_background_prompt
        )
        print("[T2T] βœ“ Model loaded")
    
    def _load_c2c_model(self):
        """Load Rosetta (C2C) model."""
        print(f"\n[C2C] Loading from {self.c2c_checkpoint_path}...")
        
        # Auto-download if checkpoint doesn't exist
        if not Path(self.c2c_checkpoint_path).exists():
            print("[C2C] Downloading checkpoint from HuggingFace (may take a few minutes)...")
            try:
                from huggingface_hub import snapshot_download
                checkpoint_name = Path(self.c2c_checkpoint_path).name
                snapshot_download(
                    repo_id='nics-efc/C2C_Fuser',
                    allow_patterns=[f'{checkpoint_name}/*'],
                    local_dir=str(Path(self.c2c_checkpoint_path).parent)
                )
                print("[C2C] βœ“ Download complete")
            except ImportError:
                raise ImportError("Install huggingface_hub: pip install huggingface_hub")
            except Exception as e:
                raise RuntimeError(f"Download failed: {e}\nManual download: https://huggingface.co/nics-efc/C2C_Fuser")
        
        # Load config
        import yaml
        config_path = Path(self.c2c_checkpoint_path) / "config.json"
        if not config_path.exists():
            raise FileNotFoundError(f"Config file not found: {config_path}")
        
        with open(config_path, "r") as f:
            config = yaml.safe_load(f)
        
        # Store model names from config
        self.c2c_base_model = config["model"]["base_model"]
        self.c2c_teacher_model = config["model"]["teacher_model"]
        
        # Load Rosetta model
        subfolder_dir = Path(self.c2c_checkpoint_path) / "final"
        if not subfolder_dir.exists():
            raise FileNotFoundError(f"Final checkpoint directory not found: {subfolder_dir}")
        
        model_config = {
            "model_name": "Rosetta",
            "rosetta_config": {
                "checkpoints_dir": str(subfolder_dir),
                "base_model": self.c2c_base_model,
                "teacher_model": self.c2c_teacher_model,
                "is_do_alignment": config["model"].get("is_do_alignment", False),
                "alignment_strategy": config["model"].get("alignment_strategy", "first")
            }
        }
        
        eval_config = {"checkpoints_dir": str(subfolder_dir)}
        
        self.c2c_model, self.c2c_tokenizer = load_rosetta_model(
            model_config, eval_config, self.device
        )
        print("[C2C] βœ“ Model loaded")
    
    def _load_all_models(self):
        """Load all models sequentially."""
        try:
            self._load_single_model()
            self._load_t2t_model()
            self._load_c2c_model()
            print("\n" + "=" * 60)
            print("βœ“ All models loaded successfully!")
            print("=" * 60 + "\n")
        except Exception as e:
            print(f"\nβœ— Error loading models: {e}")
            raise
    
    def _get_generation_kwargs(self, max_new_tokens: int) -> dict:
        """
        Get generation kwargs with consistent settings across all models.
        
        Args:
            max_new_tokens: Maximum number of new tokens to generate
            
        Returns:
            Dictionary of generation parameters
        """
        kwargs = {
            'max_new_tokens': max_new_tokens,
            'do_sample': self.use_sampling
        }
        
        if self.use_sampling:
            kwargs.update({
                'temperature': self.temperature,
                'top_p': self.top_p,
                'top_k': self.top_k
            })
        
        return kwargs
    
    @spaces.GPU(duration=30)
    def generate_single(self, user_input: str) -> Generator[str, None, None]:
        """Generate response from single model with streaming."""
        messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
        text = self.single_tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
        )
        # Use the model's actual device (ZeroGPU handles device placement)
        inputs = self.single_tokenizer(text, return_tensors="pt").to(self.single_model.device)
        
        # Setup streamer
        streamer = TextIteratorStreamer(
            self.single_tokenizer, 
            skip_prompt=True, 
            skip_special_tokens=True
        )
        
        # Generation parameters
        generation_kwargs = {
            'input_ids': inputs.input_ids,
            'attention_mask': inputs.attention_mask,
            'streamer': streamer,
            **self._get_generation_kwargs(max_new_tokens=2048)
        }
        
        # Run generation in separate thread
        thread = Thread(target=self.single_model.generate, kwargs=generation_kwargs)
        thread.start()
        
        # Stream tokens
        generated_text = ""
        for token in streamer:
            generated_text += token
            yield generated_text
    
    @spaces.GPU(duration=90)
    def generate_t2t(self, user_input: str) -> Generator[tuple[str, str], None, None]:
        """Generate response from T2T model with streaming (returns context, answer)."""
        # Stage 1: Context generation
        context_streamer = TextIteratorStreamer(
            self.t2t_model.context_tokenizer,
            skip_prompt=True,
            skip_special_tokens=True
        )
        
        prompt = self.t2t_background_prompt.format(question=user_input)
        inputs = self.t2t_model.context_tokenizer.apply_chat_template(
            [{"role": "user", "content": prompt}],
            tokenize=True,
            add_generation_prompt=True,
            return_tensors="pt",
            enable_thinking=False
        ).to(self.t2t_model.context_model.device)
        
        generation_kwargs = {
            'input_ids': inputs,
            'streamer': context_streamer,
            **self._get_generation_kwargs(max_new_tokens=self.t2t_context_max_tokens)
        }
        
        # Generate context in thread
        thread = Thread(target=self.t2t_model.context_model.generate, kwargs=generation_kwargs)
        thread.start()
        
        # Stream context tokens
        context_text = ""
        for token in context_streamer:
            context_text += token
            yield context_text, ""
        
        thread.join()
        
        # Decode full context
        with torch.inference_mode():
            outputs = self.t2t_model.context_model.generate(
                inputs, **self._get_generation_kwargs(max_new_tokens=self.t2t_context_max_tokens)
            )
        context = self.t2t_model.context_tokenizer.batch_decode(
            outputs[:, inputs.shape[-1]:], skip_special_tokens=True
        )[0]
        
        # Stage 2: Answer generation
        answer_streamer = TextIteratorStreamer(
            self.t2t_model.answer_tokenizer,
            skip_prompt=True,
            skip_special_tokens=True
        )
        
        # Format the second round question
        answer_question = self.t2t_answer_prompt.format(question=user_input)

        inputs = self.t2t_model.answer_tokenizer.apply_chat_template(
            [
                {"role": "user", "content": prompt},
                {"role": "assistant", "content": context},
                {"role": "user", "content": answer_question}
            ],
            tokenize=True,
            add_generation_prompt=True,
            return_tensors="pt",
            enable_thinking=False
        ).to(self.t2t_model.answer_model.device)
        
        generation_kwargs = {
            'input_ids': inputs,
            'streamer': answer_streamer,
            **self._get_generation_kwargs(max_new_tokens=self.t2t_answer_max_tokens)
        }
        
        # Generate answer in thread
        thread = Thread(target=self.t2t_model.answer_model.generate, kwargs=generation_kwargs)
        thread.start()
        
        # Stream answer tokens
        answer_text = ""
        for token in answer_streamer:
            answer_text += token
            yield context_text, answer_text
    
    @spaces.GPU(duration=30)
    def generate_c2c(self, user_input: str) -> Generator[str, None, None]:
        """Generate response from C2C model with streaming."""
        messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
        text = self.c2c_tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
        )
        # Use the model's actual device (ZeroGPU handles device placement)
        inputs = self.c2c_tokenizer(text, return_tensors="pt").to(self.c2c_model.device)
        
        # Setup streamer
        streamer = TextIteratorStreamer(
            self.c2c_tokenizer,
            skip_prompt=True,
            skip_special_tokens=True
        )
        
        # Prepare C2C-specific inputs
        full_length = inputs.input_ids.shape[1]
        instruction_index = torch.tensor([1, 0], dtype=torch.long).repeat(
            full_length - 1, 1
        ).unsqueeze(0).to(self.c2c_model.device)
        label_index = torch.tensor([-1, 0], dtype=torch.long).repeat(
            1, 1
        ).unsqueeze(0).to(self.c2c_model.device)
        position_ids = inputs.attention_mask.long().cumsum(-1) - 1 if inputs.attention_mask is not None else \
                      torch.arange(full_length, dtype=torch.long).unsqueeze(0).to(self.c2c_model.device)
        
        # Generation parameters
        generation_kwargs = {
            'kv_cache_index': [instruction_index, label_index],
            'input_ids': inputs.input_ids,
            'attention_mask': inputs.attention_mask,
            'position_ids': position_ids,
            'streamer': streamer,
            **self._get_generation_kwargs(max_new_tokens=self.t2t_answer_max_tokens)
        }
        
        # Run generation in separate thread
        thread = Thread(target=self.c2c_model.generate, kwargs=generation_kwargs)
        thread.start()
        
        # Stream tokens
        generated_text = ""
        for token in streamer:
            generated_text += token
            yield generated_text


def create_demo(model_manager: ModelManager):
    """Create Gradio interface."""
    
    # Preset example questions
    EXAMPLE_QUESTIONS = {
        "example1": """Why is the Mars Exploration Rover Spirit currently tilted towards the north?

A. Because it’s climbing up a big hill.
B. Because it’s in the southern hemisphere where it is winter now.
C. Because it’s in the northern hemisphere where it is winter now.
D. Because one of its wheels broke.""",
        "example2": """In an experiment, you have two saltwater samples. The first is 500g at 20% concentration, and the second is 300g at 10% concentration. If you mix them together, what will be the mass percent of salt in the final solution? (Give your answer to one decimal place)."""
    }
    
    def respond(user_input: str):
        """Main response function that yields updates for all three models."""
        if not user_input.strip():
            yield "", "", "", ""
        
        # Generators for each model
        single_gen = model_manager.generate_single(user_input)
        t2t_gen = model_manager.generate_t2t(user_input)
        c2c_gen = model_manager.generate_c2c(user_input)
        
        single_done = False
        t2t_done = False
        c2c_done = False
        
        single_text = ""
        t2t_context = ""
        t2t_answer = ""
        c2c_text = ""
        
        # Stream from all three models
        while not (single_done and t2t_done and c2c_done):
            # Update single
            if not single_done:
                try:
                    single_text = next(single_gen)
                except StopIteration:
                    single_done = True
            
            # Update T2T
            if not t2t_done:
                try:
                    t2t_context, t2t_answer = next(t2t_gen)
                except StopIteration:
                    t2t_done = True
            
            # Update C2C
            if not c2c_done:
                try:
                    c2c_text = next(c2c_gen)
                except StopIteration:
                    c2c_done = True
            
            # Yield current state
            yield single_text, t2t_context, t2t_answer, c2c_text
    
    # Create Gradio interface
    with gr.Blocks(title="C2C Demo", theme=gr.themes.Base()) as demo:
        # Header with logo
        with gr.Row():
            with gr.Column(scale=1, min_width=100):
                gr.Image("https://raw.githubusercontent.com/thu-nics/C2C/main/resource/logo.png", show_label=False, show_download_button=False, container=False, height=80)
            with gr.Column(scale=5):
                gr.Markdown("# Cache-to-Cache Communication Demo")
                gr.Markdown("Compare three inference modes side-by-side: **Single** | **Text-to-Text Communication** | **Cache-to-Cache Communication**")
        
        gr.Markdown("---")
        
        # Input section
        gr.Markdown("## Question")

        # Preset question examples
        gr.Markdown("Example Questions:")
        with gr.Row():
            example1_btn = gr.Button("πŸ“ Example 1: Astronomy", size="sm")
            example2_btn = gr.Button("πŸ“ Example 2: Simple Math", size="sm")


        with gr.Row():
            user_input = gr.Textbox(
                label="",
                placeholder="Type your question here...",
                lines=2,
                scale=4,
                show_label=False
            )
        
        with gr.Row():
            submit_btn = gr.Button("πŸš€ Submit", variant="primary", scale=1)
            clear_btn = gr.Button("πŸ—‘οΈ Clear", scale=1)
        
        gr.Markdown("---")
        
        # Output section - three columns
        gr.Markdown("## Responses")
        with gr.Row():
            # Single column
            with gr.Column():
                gr.Markdown("### Single Model")
                gr.Markdown(f"*{model_manager.single_model_name}*")
                single_output = gr.Textbox(
                    label="",
                    lines=18,
                    max_lines=30,
                    interactive=False,
                    show_label=False
                )
            
            # T2T column (with two sub-boxes)
            with gr.Column():
                gr.Markdown("### Text-to-Text Communication")
                gr.Markdown(f"*{model_manager.t2t_context_model} β†’ {model_manager.t2t_answer_model}*")
                t2t_context_output = gr.Textbox(
                    label="πŸ“ Context",
                    lines=6,
                    max_lines=12,
                    interactive=False
                )
                t2t_answer_output = gr.Textbox(
                    label="πŸ’¬ Answer",
                    lines=7,
                    max_lines=14,
                    interactive=False
                )
            
            # C2C column
            with gr.Column():
                gr.Markdown("### Cache-to-Cache Communication")
                gr.Markdown(f"*{model_manager.c2c_teacher_model} β†’ {model_manager.c2c_base_model}*")
                c2c_output = gr.Textbox(
                    label="",
                    lines=18,
                    max_lines=30,
                    interactive=False,
                    show_label=False
                )
        
        # Event handlers
        submit_btn.click(
            fn=respond,
            inputs=[user_input],
            outputs=[single_output, t2t_context_output, t2t_answer_output, c2c_output]
        )
        
        user_input.submit(
            fn=respond,
            inputs=[user_input],
            outputs=[single_output, t2t_context_output, t2t_answer_output, c2c_output]
        )
        
        clear_btn.click(
            fn=lambda: ("", "", "", "", ""),
            inputs=None,
            outputs=[user_input, single_output, t2t_context_output, t2t_answer_output, c2c_output]
        )
        
        # Example question handlers
        example1_btn.click(
            fn=lambda: EXAMPLE_QUESTIONS["example1"],
            inputs=None,
            outputs=[user_input]
        )
        
        example2_btn.click(
            fn=lambda: EXAMPLE_QUESTIONS["example2"],
            inputs=None,
            outputs=[user_input]
        )
        
        # Disclaimer notice
        gr.Markdown("---")
        gr.Markdown("""
        ### ⚠️ Disclaimer
        
        This demo is provided for **research purposes only** on an **"AS-IS" basis without warranties of any kind**. 
        
        - C2C models are trained only on English corpus and are in early experimental stages.
        - Models may generate harmful, biased, or inaccurate content.
        - Generated outputs do not represent the views or opinions of the creators.
        - **Users are solely responsible** for any use of generated content and use this demo at their own risk.
        - We assume **no liability** for any damages, losses, or consequences arising from the use of this demo or its outputs.
        
        ---
        
        C2C is not perfect and is in its early stages, representing a new communication paradigm. 
        **We welcome the community to explore the possibilities of C2C with us!** πŸš€
        """)
    
    return demo


def main():
    """Main entry point."""
    print("=" * 60)
    print("Model Comparison Demo - Gradio Interface")
    print("=" * 60)
    
    # Initialize models
    # C2C-S: qwen3_0.6b+qwen2.5_0.5b_Fuser
    # context_model_name = "Qwen/Qwen2.5-0.5B-Instruct"
    # c2c_checkpoint_path = "local/checkpoints/qwen3_0.6b+qwen2.5_0.5b_Fuser"

    # C2C-L: qwen3_0.6b+qwen2.5_0.5b_Fuser_large
    context_model_name = "Qwen/Qwen3-4B-Base"
    c2c_checkpoint_path = "local/checkpoints/qwen3_0.6b+qwen3_4b_base_Fuser"

    answer_model_name = "Qwen/Qwen3-0.6B"
    model_manager = ModelManager(
        single_model_name=answer_model_name,
        t2t_context_model=context_model_name,
        t2t_answer_model=answer_model_name,
        c2c_checkpoint_path=c2c_checkpoint_path
    )
    
    # Create and launch demo
    demo = create_demo(model_manager)
    
    print("\n" + "=" * 60)
    print("πŸš€ Launching Gradio interface...")
    print("=" * 60)
    
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )


if __name__ == "__main__":
    main()