Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| from PIL import Image | |
| from typing import Iterable | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| colors.orange_red = colors.Color( | |
| name="orange_red", | |
| c50="#FFF0E5", | |
| c100="#FFE0CC", | |
| c200="#FFC299", | |
| c300="#FFA366", | |
| c400="#FF8533", | |
| c500="#FF4500", | |
| c600="#E63E00", | |
| c700="#CC3700", | |
| c800="#B33000", | |
| c900="#992900", | |
| c950="#802200", | |
| ) | |
| class OrangeRedTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.orange_red, | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="white", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_secondary_text_color="black", | |
| button_secondary_text_color_hover="white", | |
| button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", | |
| button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", | |
| button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", | |
| button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", | |
| slider_color="*secondary_500", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| orange_red_theme = OrangeRedTheme() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| dtype = torch.bfloat16 | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| print("Loading Qwen Image Edit Pipeline...") | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| transformer=QwenImageTransformer2DModel.from_pretrained( | |
| "linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda' | |
| ), | |
| torch_dtype=dtype | |
| ).to(device) | |
| print("Loading and Fusing Lightning LoRA...") | |
| pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors", | |
| adapter_name="lightning") | |
| pipe.fuse_lora(adapter_names=["lightning"], lora_scale=1.0) | |
| print("Loading Task Adapters...") | |
| pipe.load_lora_weights("tarn59/apply_texture_qwen_image_edit_2509", | |
| weight_name="apply_texture_v2_qwen_image_edit_2509.safetensors", | |
| adapter_name="texture") | |
| pipe.load_lora_weights("ostris/qwen_image_edit_inpainting", | |
| weight_name="qwen_image_edit_inpainting.safetensors", | |
| adapter_name="fusion") | |
| pipe.load_lora_weights("ostris/qwen_image_edit_2509_shirt_design", | |
| weight_name="qwen_image_edit_2509_shirt_design.safetensors", | |
| adapter_name="shirt_design") | |
| try: | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| print("Flash Attention 3 Processor set successfully.") | |
| except Exception as e: | |
| print(f"Could not set FA3 processor (likely hardware mismatch): {e}. using default attention.") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 16 | |
| new_width = (new_width // 16) * 16 | |
| new_height = (new_height // 16) * 16 | |
| return new_width, new_height | |
| def infer( | |
| image_1, | |
| image_2, | |
| prompt, | |
| lora_adapter, | |
| seed, | |
| randomize_seed, | |
| guidance_scale, | |
| steps, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if image_1 is None or image_2 is None: | |
| raise gr.Error("Please upload both images for Fusion/Texture/FaceSwap tasks.") | |
| if not prompt: | |
| if lora_adapter == "Cloth-Design-Fuse": | |
| prompt = "Put this design on their shirt." | |
| elif lora_adapter == "Texture Edit": | |
| prompt = "Apply texture to object." | |
| elif lora_adapter == "Fuse-Objects": | |
| prompt = "Fuse object into background." | |
| adapters_map = { | |
| "Texture Edit": "texture", | |
| "Fuse-Objects": "fusion", | |
| "Cloth-Design-Fuse": "shirt_design", | |
| } | |
| active_adapter = adapters_map.get(lora_adapter) | |
| if active_adapter: | |
| pipe.set_adapters([active_adapter], adapter_weights=[1.0]) | |
| else: | |
| pipe.set_adapters([], adapter_weights=[]) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry" | |
| img1_pil = image_1.convert("RGB") | |
| img2_pil = image_2.convert("RGB") | |
| width, height = update_dimensions_on_upload(img1_pil) | |
| result = pipe( | |
| image=[img1_pil, img2_pil], | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=steps, | |
| generator=generator, | |
| true_cfg_scale=guidance_scale, | |
| ).images[0] | |
| return result, seed | |
| def infer_example(image_1, image_2, prompt, lora_adapter): | |
| if image_1 is None or image_2 is None: | |
| return None, 0 | |
| result, seed = infer( | |
| image_1.convert("RGB"), | |
| image_2.convert("RGB"), | |
| prompt, | |
| lora_adapter, | |
| 0, | |
| True, | |
| 1.0, | |
| 4 | |
| ) | |
| return result, seed | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1100px; | |
| } | |
| #main-title h1 {font-size: 2.1em !important;} | |
| """ | |
| with gr.Blocks(css=css, theme=orange_red_theme) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast-Fusion**", elem_id="main-title") | |
| gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.") | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| image_1 = gr.Image(label="Base Image", type="pil", height=290) | |
| image_2 = gr.Image(label="Reference Image", type="pil", height=290) | |
| prompt = gr.Text( | |
| label="Edit Prompt", | |
| show_label=True, | |
| placeholder="e.g., Apply wood texture to the mug...", | |
| ) | |
| run_button = gr.Button("Edit Image", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False, visible=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4) | |
| with gr.Column(scale=1): | |
| output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350) | |
| with gr.Row(): | |
| lora_adapter = gr.Dropdown( | |
| label="Choose Editing Style", | |
| choices=["Texture Edit", "Fuse-Objects", "Cloth-Design-Fuse"], | |
| value="Texture Edit", | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["examples/Cloth2.jpg", "examples/Design2.png", "Put this design on their shirt.", "Cloth-Design-Fuse"], | |
| ["examples/Cup1.png", "examples/Wood1.png", "Apply wood texture to mug.", "Texture Edit"], | |
| ["examples/Mug1.jpg", "examples/Texture1.jpg", "Apply the design from image 2 to the mug.", "Texture Edit"], | |
| ["examples/Cat1.jpg", "examples/Glass1.webp", "A cat wearing glasses in image 2.", "Fuse-Objects"], | |
| ["examples/Cloth1.jpg", "examples/Design1.png", "Put this design on their shirt.", "Cloth-Design-Fuse"], | |
| ["examples/Cloth3.jpg", "examples/Design3.png", "Put this design on their shirt.", "Cloth-Design-Fuse"], | |
| ], | |
| inputs=[image_1, image_2, prompt, lora_adapter], | |
| outputs=[output_image, seed], | |
| fn=infer_example, | |
| cache_examples=False, | |
| label="Examples" | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[image_1, image_2, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], | |
| outputs=[output_image, seed] | |
| ) | |
| demo.launch(mcp_server=True, ssr_mode=False, show_error=True) |