Update app.py
Browse files
app.py
CHANGED
|
@@ -38,7 +38,8 @@ def call_ai_model(all_message):
|
|
| 38 |
def get_performance_data(conditions):
|
| 39 |
all_message = (
|
| 40 |
f"Provide the expected sports performance score at conditions: "
|
| 41 |
-
f"Temperature {conditions['temperature']}°C
|
|
|
|
| 42 |
)
|
| 43 |
response = call_ai_model(all_message)
|
| 44 |
generated_text = ""
|
|
@@ -57,33 +58,38 @@ def get_performance_data(conditions):
|
|
| 57 |
continue
|
| 58 |
|
| 59 |
# Example: Replace with actual data from API
|
| 60 |
-
|
| 61 |
-
return
|
| 62 |
|
| 63 |
# Streamlit app layout
|
| 64 |
st.title("Climate Impact on Sports Performance")
|
| 65 |
-
st.write("Analyze and visualize the impact of
|
| 66 |
|
| 67 |
-
#
|
| 68 |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# Button to generate predictions
|
| 71 |
if st.button("Generate Prediction"):
|
| 72 |
conditions = {
|
| 73 |
-
"temperature": temperature
|
|
|
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
try:
|
| 77 |
with st.spinner("Generating predictions..."):
|
| 78 |
# Call AI model to get qualitative analysis
|
| 79 |
qualitative_analysis = (
|
| 80 |
-
f"Assess the impact on sports performance at
|
| 81 |
-
f"{temperature}°C
|
|
|
|
| 82 |
)
|
| 83 |
qualitative_result = call_ai_model(qualitative_analysis)
|
| 84 |
|
| 85 |
# Get performance score for specified conditions
|
| 86 |
-
|
| 87 |
|
| 88 |
st.success("Predictions generated.")
|
| 89 |
|
|
@@ -93,17 +99,21 @@ if st.button("Generate Prediction"):
|
|
| 93 |
|
| 94 |
# Display performance score
|
| 95 |
st.subheader("Performance Score")
|
| 96 |
-
st.write(f"Predicted Performance
|
| 97 |
|
| 98 |
# Plotting the data
|
| 99 |
-
st.subheader("Performance Score vs
|
| 100 |
|
| 101 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
fig, ax = plt.subplots()
|
| 103 |
-
ax.plot(
|
| 104 |
-
ax.set_xlabel('
|
| 105 |
-
ax.set_ylabel('
|
| 106 |
-
ax.set_title('Performance Score vs
|
| 107 |
ax.grid(True)
|
| 108 |
st.pyplot(fig)
|
| 109 |
|
|
|
|
| 38 |
def get_performance_data(conditions):
|
| 39 |
all_message = (
|
| 40 |
f"Provide the expected sports performance score at conditions: "
|
| 41 |
+
f"Temperature {conditions['temperature']}°C, Humidity {conditions['humidity']}%, "
|
| 42 |
+
f"Wind Speed {conditions['wind_speed']} km/h."
|
| 43 |
)
|
| 44 |
response = call_ai_model(all_message)
|
| 45 |
generated_text = ""
|
|
|
|
| 58 |
continue
|
| 59 |
|
| 60 |
# Example: Replace with actual data from API
|
| 61 |
+
performance_score = 80 # Replace with actual data from API
|
| 62 |
+
return performance_score
|
| 63 |
|
| 64 |
# Streamlit app layout
|
| 65 |
st.title("Climate Impact on Sports Performance")
|
| 66 |
+
st.write("Analyze and visualize the impact of climate conditions on sports performance.")
|
| 67 |
|
| 68 |
+
# Inputs for climate conditions
|
| 69 |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
|
| 70 |
+
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
|
| 71 |
+
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
|
| 72 |
|
| 73 |
# Button to generate predictions
|
| 74 |
if st.button("Generate Prediction"):
|
| 75 |
conditions = {
|
| 76 |
+
"temperature": temperature,
|
| 77 |
+
"humidity": humidity,
|
| 78 |
+
"wind_speed": wind_speed
|
| 79 |
}
|
| 80 |
|
| 81 |
try:
|
| 82 |
with st.spinner("Generating predictions..."):
|
| 83 |
# Call AI model to get qualitative analysis
|
| 84 |
qualitative_analysis = (
|
| 85 |
+
f"Assess the impact on sports performance at conditions: "
|
| 86 |
+
f"Temperature {temperature}°C, Humidity {humidity}%, "
|
| 87 |
+
f"Wind Speed {wind_speed} km/h."
|
| 88 |
)
|
| 89 |
qualitative_result = call_ai_model(qualitative_analysis)
|
| 90 |
|
| 91 |
# Get performance score for specified conditions
|
| 92 |
+
performance_score = get_performance_data(conditions)
|
| 93 |
|
| 94 |
st.success("Predictions generated.")
|
| 95 |
|
|
|
|
| 99 |
|
| 100 |
# Display performance score
|
| 101 |
st.subheader("Performance Score")
|
| 102 |
+
st.write(f"Predicted Performance Score: {performance_score}")
|
| 103 |
|
| 104 |
# Plotting the data
|
| 105 |
+
st.subheader("Performance Score vs Climate Conditions")
|
| 106 |
|
| 107 |
+
# Define climate conditions for plotting
|
| 108 |
+
climate_conditions = list(conditions.keys())
|
| 109 |
+
climate_values = list(conditions.values())
|
| 110 |
+
|
| 111 |
+
# Plotting performance score against climate conditions
|
| 112 |
fig, ax = plt.subplots()
|
| 113 |
+
ax.plot(climate_conditions, climate_values, marker='o', linestyle='-', color='b')
|
| 114 |
+
ax.set_xlabel('Climate Conditions')
|
| 115 |
+
ax.set_ylabel('Value')
|
| 116 |
+
ax.set_title('Performance Score vs Climate Conditions')
|
| 117 |
ax.grid(True)
|
| 118 |
st.pyplot(fig)
|
| 119 |
|