File size: 11,044 Bytes
f129010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import AutoModel, AutoTokenizer, AutoProcessor, AdamW, get_scheduler
from datasets import load_dataset
from PIL import Image
import os
from tqdm import tqdm
# --- 1. Configuration ---
# A simple class to hold our configuration
class Config:
# Model IDs
IMAGE_ENCODER_ID = "unum-cloud/uform3-image-text-english-large"
TEXT_MODEL_ID = "Qwen/Qwen1.5-0.5B-Chat"
# Dataset
DATASET_ID = "recastai/LAION-art-EN-improved-captions"
# Training Parameters
LR = 5e-5
NUM_TRAIN_STEPS = 500 # Adjust this number. 500 steps is a quick test. 10,000+ would be better.
BATCH_SIZE = 4 # Lower if you run out of memory
# Projector Dimensions
IMAGE_EMBED_DIM = 768 # From uform3
TEXT_EMBED_DIM = 1024 # From Qwen1.5-0.5B
# Paths
PROJECTOR_WEIGHTS_PATH = "projector_weights.pt"
# --- 2. The Multimodal Model Architecture ---
# This class combines the frozen encoders with our trainable projector
class MultimodalModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Load and freeze the vision encoder
self.vision_encoder = AutoModel.from_pretrained(
config.IMAGE_ENCODER_ID, trust_remote_code=True
).eval() # .eval() is important
for param in self.vision_encoder.parameters():
param.requires_grad = False
# Load and freeze the language model
self.language_model = AutoModel.from_pretrained(
config.TEXT_MODEL_ID
).eval()
for param in self.language_model.parameters():
param.requires_grad = False
# Define our trainable projector
self.projector = nn.Sequential(
nn.Linear(config.IMAGE_EMBED_DIM, config.IMAGE_EMBED_DIM * 2),
nn.ReLU(),
nn.Linear(config.IMAGE_EMBED_DIM * 2, config.TEXT_EMBED_DIM)
)
def forward(self, pixel_values, input_ids, attention_mask=None, labels=None):
# 1. Get image embeddings from the vision encoder
# We need to process this to get a single vector per image
image_outputs = self.vision_encoder.get_image_features(pixel_values=pixel_values)
image_embeds = image_outputs
# 2. Project the image embeddings to match the text model's dimension
projected_image_embeds = self.projector(image_embeds)
# 3. Get text embeddings from the language model
text_embeds = self.language_model.get_input_embeddings()(input_ids)
# 4. Concatenate them: [Image Embedding, Text Embedding]
# The projected image embed acts as a "visual prefix"
inputs_embeds = torch.cat([projected_image_embeds.unsqueeze(1), text_embeds], dim=1)
# 5. Get language model outputs
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels
)
return outputs
# --- 3. The Training Function ---
def train_projector(training_steps, learning_rate, batch_size, progress=gr.Progress()):
if not torch.cuda.is_available():
yield "Training requires a GPU. Please provision one for this Space."
return
device = "cuda"
config = Config()
config.NUM_TRAIN_STEPS = int(training_steps)
config.LR = float(learning_rate)
config.BATCH_SIZE = int(batch_size)
yield "Initializing models and tokenizers..."
# Load processors
image_processor = AutoProcessor.from_pretrained(config.IMAGE_ENCODER_ID, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(config.TEXT_MODEL_ID)
tokenizer.pad_token = tokenizer.eos_token # Qwen doesn't have a pad token by default
# Instantiate the combined model
model = MultimodalModel(config).to(device)
# Load and preprocess the dataset
yield "Loading and preprocessing dataset (this may take a moment)..."
def preprocess(batch):
# We need to handle potential errors if an image fails to load
try:
images = [Image.open(f).convert("RGB") for f in batch['image_path']]
except Exception:
return {'pixel_values': None}
captions = batch['caption']
# Process images
image_inputs = image_processor(images=images, return_tensors="pt")
# Process text
text_inputs = tokenizer(captions, padding="max_length", truncation=True, max_length=64, return_tensors="pt")
return {
'pixel_values': image_inputs['pixel_values'],
'input_ids': text_inputs['input_ids'],
'attention_mask': text_inputs['attention_mask']
}
# Use streaming to avoid downloading the whole dataset
dataset = load_dataset(config.DATASET_ID, streaming=True, split="train")
processed_dataset = dataset.map(preprocess, batched=True, batch_size=config.BATCH_SIZE)
# Filter out failed image loads
processed_dataset = processed_dataset.filter(lambda example: example['pixel_values'] is not None)
dataloader = DataLoader(processed_dataset.with_format("torch"), batch_size=config.BATCH_SIZE)
# Setup optimizer and scheduler
optimizer = AdamW(model.projector.parameters(), lr=config.LR)
scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=config.NUM_TRAIN_STEPS
)
# Training Loop
model.projector.train()
progress(0, desc="Starting Training")
global_step = 0
for batch in tqdm(dataloader, desc="Training Steps"):
if global_step >= config.NUM_TRAIN_STEPS:
break
pixel_values = batch['pixel_values'].to(device)
input_ids = batch['input_ids'].to(device)
# Prepare labels for language model loss calculation
labels = input_ids.clone()
# The visual part doesn't have a label
image_part_label = torch.full((labels.size(0), 1), -100, dtype=torch.long, device=device)
labels = torch.cat([image_part_label, labels], dim=1)
# Prepare attention mask for combined input
# We need to add a '1' for the image embedding
attention_mask = torch.cat([torch.ones_like(image_part_label), batch['attention_mask'].to(device)], dim=1)
# Forward pass
outputs = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
loss = outputs.loss
# Backward pass
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if global_step % 10 == 0:
yield f"Step: {global_step}/{config.NUM_TRAIN_STEPS}, Loss: {loss.item():.4f}"
progress(global_step / config.NUM_TRAIN_STEPS)
global_step += 1
yield "Training finished. Saving projector weights..."
torch.save(model.projector.state_dict(), config.PROJECTOR_WEIGHTS_PATH)
yield f"Projector weights saved to {config.PROJECTOR_WEIGHTS_PATH}. You can now use the Inference tab."
# --- 4. The Inference Function ---
def run_inference(image_pil):
if not os.path.exists(Config.PROJECTOR_WEIGHTS_PATH):
return "Projector weights not found. Please train the model first using the 'Training' tab."
if image_pil is None:
return "Please upload an image."
device = "cuda" if torch.cuda.is_available() else "cpu"
config = Config()
# Load all components for inference
image_processor = AutoProcessor.from_pretrained(config.IMAGE_ENCODER_ID, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(config.TEXT_MODEL_ID)
model = MultimodalModel(config).to(device).eval()
# Load our trained projector weights
model.projector.load_state_dict(torch.load(config.PROJECTOR_WEIGHTS_PATH, map_location=device))
# Prepare the image
image_tensors = image_processor(images=[image_pil], return_tensors="pt")['pixel_values'].to(device)
# Prepare the prompt for the language model
prompt = "Describe this image in one sentence."
prompt_tokens = tokenizer(prompt, return_tensors="pt")
# Get image and text embeddings
with torch.no_grad():
image_embeds = model.vision_encoder.get_image_features(pixel_values=image_tensors)
projected_embeds = model.projector(image_embeds)
text_embeds = model.language_model.get_input_embeddings()(prompt_tokens.input_ids.to(device))
# Combine them to form the input for the generate function
inputs_embeds = torch.cat([projected_embeds.unsqueeze(1), text_embeds], dim=1)
# Generate text
output_ids = model.language_model.generate(
inputs_embeds=inputs_embeds,
max_new_tokens=50,
do_sample=False
)
# Decode and return the result
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# The output often includes the original prompt, so we can clean it up
cleaned_text = generated_text.replace(prompt, "").strip()
return cleaned_text
# --- 5. Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Image Captioning Model Training and Inference")
gr.Markdown("Connects `uform3` (Vision) and `Qwen` (Language) by training a projector layer.")
with gr.Tab("Training"):
gr.Markdown("## Step 1: Train the Projector")
gr.Markdown("This will train a small neural network to translate image features into a format the language model can understand. **This requires a GPU and will take time.**")
steps_input = gr.Number(label="Number of Training Steps", value=Config.NUM_TRAIN_STEPS)
lr_input = gr.Number(label="Learning Rate", value=Config.LR)
batch_size_input = gr.Number(label="Batch Size (lower if you get OOM errors)", value=Config.BATCH_SIZE)
start_training_btn = gr.Button("Start Training")
training_status = gr.Textbox(label="Training Status", lines=10, interactive=False)
with gr.Tab("Inference"):
gr.Markdown("## Step 2: Describe an Image")
gr.Markdown("Upload an image to generate a description using your newly trained projector.")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Image")
caption_output = gr.Textbox(label="Generated Caption")
inference_btn = gr.Button("Generate Caption")
# Connect UI components to functions
start_training_btn.click(
fn=train_projector,
inputs=[steps_input, lr_input, batch_size_input],
outputs=[training_status]
)
inference_btn.click(
fn=run_inference,
inputs=[image_input],
outputs=[caption_output]
)
demo.launch() |