File size: 22,211 Bytes
cb4cbb0
bd9eb72
cb4cbb0
 
e8c4ba0
bd9eb72
 
 
 
2f82b20
 
 
bd9eb72
 
343399b
 
 
 
 
 
 
 
 
 
bd9eb72
 
 
9922080
bd9eb72
dc5c57c
bd9eb72
 
 
 
 
 
f13510a
133857a
bd9eb72
46cadc4
 
 
839dee5
e799c2d
bee7b3f
 
59ae2c2
e799c2d
 
 
 
 
 
 
 
 
f13510a
 
 
2f82b20
 
 
 
 
 
 
 
f13510a
 
 
 
 
 
 
 
 
 
 
2f82b20
f13510a
 
 
 
 
 
 
 
 
2f82b20
 
f13510a
59ae2c2
 
 
46cadc4
839dee5
46cadc4
839dee5
d8d23f5
839dee5
59ae2c2
 
 
839dee5
 
 
 
 
fa06469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e799c2d
fa06469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9922080
cb4cbb0
9922080
 
fa06469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e799c2d
 
 
f13510a
 
 
fa06469
 
 
2f82b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5095eb7
e799c2d
9922080
e799c2d
 
f81f220
e799c2d
fa06469
 
 
 
 
 
 
 
e5c64d1
fa06469
 
 
 
 
 
 
 
45fe0fa
fa06469
f62503b
63cc8f4
 
 
f62503b
3916713
f62503b
 
63cc8f4
 
fa06469
 
 
 
 
 
 
 
 
 
 
 
 
 
3916713
fa06469
 
 
9922080
e799c2d
 
 
 
 
 
f81f220
fa06469
45fe0fa
fa06469
63cc8f4
fa06469
9922080
fa06469
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Copyright © 2025, Adobe Inc. and its licensors. All rights reserved.
#
# This file is licensed under the Adobe Research License. You may obtain a copy
# of the license at https://raw.githubusercontent.com/adobe-research/FaceLift/main/LICENSE.md


"""
FaceLift: Single Image 3D Face Reconstruction
Generates 3D head models from single images using multi-view diffusion and GS-LRM.

Note: To enable the interactive 3D viewer, this Space needs write access to wlyu/FaceLift_demo.
Set the HF_TOKEN environment variable in Space settings with a token that has write access.
"""

# Disable HF fast transfer if hf_transfer is not installed
# This MUST be done before importing huggingface_hub
import os
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER") == "1":
    try:
        import hf_transfer
    except ImportError:
        print("⚠️  hf_transfer not available, disabling fast download")
        os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"

import json
from pathlib import Path
from datetime import datetime
import random

import gradio as gr
import numpy as np
import torch
import yaml
from easydict import EasyDict as edict
from einops import rearrange
from PIL import Image
from huggingface_hub import snapshot_download, HfApi
import spaces

# Install diff-gaussian-rasterization at runtime (requires GPU)
import subprocess
import sys

# Outputs directory for generated files (ensures folder exists even if CWD differs)
OUTPUTS_DIR = Path.cwd() / "outputs"
OUTPUTS_DIR.mkdir(exist_ok=True)

def _log_viewer_file(ply_path: Path):
    """Print a concise JSON line about the viewer file so users can debug from Space logs."""
    info = {
        "ply_path": str(Path(ply_path).absolute()),
        "exists": Path(ply_path).exists(),
        "size_bytes": (Path(ply_path).stat().st_size if Path(ply_path).exists() else None)
    }
    print("[VIEWER-RETURN]", json.dumps(info))

def upload_ply_to_hf(ply_path: Path, repo_id: str = "wlyu/FaceLift_demo") -> str:
    """Upload PLY file to HuggingFace and return the public URL."""
    try:
        # Get HF token from environment (automatically available in HF Spaces)
        hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
        
        if not hf_token:
            print("⚠️  No HF_TOKEN found in environment, skipping upload")
            return None
        
        api = HfApi(token=hf_token)
        ply_filename = ply_path.name
        
        # Upload to tmp_ply folder
        path_in_repo = f"tmp_ply/{ply_filename}"
        
        print(f"Uploading {ply_filename} to HuggingFace...")
        api.upload_file(
            path_or_fileobj=str(ply_path),
            path_in_repo=path_in_repo,
            repo_id=repo_id,
            repo_type="model",
            token=hf_token,
        )
        
        # Return the public URL
        hf_url = f"https://huggingface.co/{repo_id}/resolve/main/{path_in_repo}"
        print(f"✓ Uploaded to: {hf_url}")
        return hf_url
        
    except Exception as e:
        print(f"⚠️  Failed to upload to HuggingFace: {e}")
        print("    Make sure the Space has write access to the repository")
        return None

# -----------------------------
# Ensure diff-gaussian-rasterization builds for current GPU
# -----------------------------
try:
    import diff_gaussian_rasterization  # noqa: F401
except ImportError:
    print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...")
    env = os.environ.copy()
    try:
        import torch as _torch
        if _torch.cuda.is_available():
            maj, minr = _torch.cuda.get_device_capability()
            arch = f"{maj}.{minr}"                 # e.g., "9.0" on H100/H200, "8.0" on A100
            env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX"
        else:
            # Build stage may not see a GPU on HF Spaces: compile a cross-arch set
            env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
    except Exception:
        env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"

    # (Optional) side-step allocator+NVML quirks in restrictive containers
    env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1")

    subprocess.check_call(
        [sys.executable, "-m", "pip", "install",
         "git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"],
        env=env,
    )
    import diff_gaussian_rasterization  # noqa: F401


from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping

# HuggingFace repository configuration
HF_REPO_ID = "wlyu/OpenFaceLift"

def download_weights_from_hf() -> Path:
    """Download model weights from HuggingFace if not already present.
    
    Returns:
        Path to the downloaded repository
    """
    workspace_dir = Path(__file__).parent
    
    # Check if weights already exist locally
    mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
    gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
    
    if mvdiffusion_path.exists() and gslrm_path.exists():
        print("Using local model weights")
        return workspace_dir
    
    print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
    print("This may take a few minutes on first run...")
    
    # Download to local directory
    snapshot_download(
        repo_id=HF_REPO_ID,
        local_dir=str(workspace_dir / "checkpoints"),
        local_dir_use_symlinks=False,
    )
    
    print("Model weights downloaded successfully!")
    return workspace_dir

class FaceLiftPipeline:
    """Pipeline for FaceLift 3D head generation from single images."""
    
    def __init__(self):
        # Download weights from HuggingFace if needed
        workspace_dir = download_weights_from_hf()
        
        # Setup paths
        self.output_dir = workspace_dir / "outputs"
        self.examples_dir = workspace_dir / "examples"
        self.output_dir.mkdir(exist_ok=True)
        
        # Parameters
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.image_size = 512
        self.camera_indices = [2, 1, 0, 5, 4, 3]
        
        # Load models (keep on CPU for ZeroGPU compatibility)
        print("Loading models... (gradio", getattr(gr, "__version__", "unknown"), ")")
        try:
            self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
                str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
                torch_dtype=torch.float16,
            )
            # Don't move to device or enable xformers here - will be done in GPU-decorated function
            self._models_on_gpu = False
            
            with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
                config = edict(yaml.safe_load(f))
            
            module_name, class_name = config.model.class_name.rsplit(".", 1)
            module = __import__(module_name, fromlist=[class_name])
            ModelClass = getattr(module, class_name)
            
            self.gs_lrm_model = ModelClass(config)
            checkpoint = torch.load(
                workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt",
                map_location="cpu"
            )
            # Filter out loss_calculator weights (training-only, not needed for inference)
            state_dict = {k: v for k, v in checkpoint["model"].items() 
                          if not k.startswith("loss_calculator.")}
            self.gs_lrm_model.load_state_dict(state_dict)
            # Keep on CPU initially - will move to GPU in decorated function
            
            self.color_prompt_embedding = torch.load(
                workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt",
                map_location="cpu"
            )
            
            with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
                self.cameras_data = json.load(f)["frames"]
            
            print("Models loaded successfully!")
        except Exception as e:
            print(f"Error loading models: {e}")
            import traceback
            traceback.print_exc()
            raise
    
    def _move_models_to_gpu(self):
        """Move models to GPU and enable optimizations. Called within @spaces.GPU context."""
        if not self._models_on_gpu and torch.cuda.is_available():
            print("Moving models to GPU...")
            self.device = torch.device("cuda:0")
            self.mvdiffusion_pipeline.to(self.device)
            self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
            self.gs_lrm_model.to(self.device)
            self.gs_lrm_model.eval()  # Set to eval mode
            self.color_prompt_embedding = self.color_prompt_embedding.to(self.device)
            self._models_on_gpu = True
            torch.cuda.empty_cache()  # Clear cache after moving models
            print("Models on GPU, xformers enabled!")
    
    @spaces.GPU(duration=120)
    def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0, 
                         random_seed=4, num_steps=50):
        """Generate 3D head from single image."""
        try:
            # Move models to GPU now that we're in the GPU context
            self._move_models_to_gpu()
            # Setup output directory
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            output_dir = self.output_dir / timestamp
            output_dir.mkdir(exist_ok=True)
            
            # Preprocess input
            original_img = np.array(Image.open(image_path))
            input_image = preprocess_image(original_img) if auto_crop else \
                         preprocess_image_without_cropping(original_img)
            
            if input_image.size != (self.image_size, self.image_size):
                input_image = input_image.resize((self.image_size, self.image_size))
            
            input_path = output_dir / "input.png"
            input_image.save(input_path)
            
            # Generate multi-view images
            generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device)
            generator.manual_seed(random_seed)
            
            result = self.mvdiffusion_pipeline(
                input_image, None,
                prompt_embeds=self.color_prompt_embedding,
                height=self.image_size,
                width=self.image_size,
                guidance_scale=guidance_scale,
                num_images_per_prompt=1,
                num_inference_steps=num_steps,
                generator=generator,
                eta=1.0,
            )
            
            selected_views = result.images[:6]
            
            # Save multi-view composite
            multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size))
            for i, view in enumerate(selected_views):
                multiview_image.paste(view, (self.image_size * i, 0))
            
            multiview_path = output_dir / "multiview.png"
            multiview_image.save(multiview_path)
            
            # Move diffusion model to CPU to free GPU memory for GS-LRM
            print("Moving diffusion model to CPU to free memory...")
            self.mvdiffusion_pipeline.to("cpu")
            
            # Delete intermediate variables to free memory
            del result, generator
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
            
            # Prepare 3D reconstruction input
            view_arrays = [np.array(view) for view in selected_views]
            lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float()
            lrm_input = lrm_input[None].to(self.device) / 255.0
            lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w")
            
            # Prepare camera parameters
            selected_cameras = [self.cameras_data[i] for i in self.camera_indices]
            fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras]
            c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras]
            
            fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32))
            c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32))
            fxfycxcy = fxfycxcy[None].to(self.device)
            c2w = c2w[None].to(self.device)
            
            batch_indices = torch.stack([
                torch.zeros(lrm_input.size(1)).long(),
                torch.arange(lrm_input.size(1)).long(),
            ], dim=-1)[None].to(self.device)
            
            batch = edict({
                "image": lrm_input,
                "c2w": c2w,
                "fxfycxcy": fxfycxcy,
                "index": batch_indices,
            })
            
            # Ensure GS-LRM model is on GPU
            if next(self.gs_lrm_model.parameters()).device.type == "cpu":
                print("Moving GS-LRM model to GPU...")
                self.gs_lrm_model.to(self.device)
                torch.cuda.empty_cache()

            # Final memory cleanup before reconstruction
            torch.cuda.empty_cache()
            
            # Run 3D reconstruction
            with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16):
                result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True)
            
            comp_image = result.render[0].unsqueeze(0).detach()
            gaussians = result.gaussians[0]
            
            # Clear CUDA cache after reconstruction
            torch.cuda.empty_cache()
            
            # Save filtered gaussians
            filtered_gaussians = gaussians.apply_all_filters(
                cam_origins=None,
                opacity_thres=0.04,
                scaling_thres=0.2,
                floater_thres=0.75,
                crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0],
                nearfar_percent=(0.0001, 1.0),
            )
            
            # Generate random filename to support multiple concurrent users
            random_id = random.randint(0, 999)
            ply_filename = f"gaussians_{random_id:03d}.ply"
            ply_path = output_dir / ply_filename
            filtered_gaussians.save_ply(str(ply_path))
            
            # Save output image
            comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c")
            comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
            output_path = output_dir / "output.png"
            Image.fromarray(comp_image).save(output_path)
            
            # Generate turntable video
            turntable_resolution = 512
            num_turntable_views = 180
            turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution, 
                                               num_views=num_turntable_views)
            turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views)
            turntable_frames = np.ascontiguousarray(turntable_frames)
            
            turntable_path = output_dir / "turntable.mp4"
            imageseq2video(turntable_frames, str(turntable_path), fps=30)
            
            # Log the viewer file for quick debugging
            _log_viewer_file(ply_path)
            
            # Upload PLY to HuggingFace for public access
            hf_ply_url = upload_ply_to_hf(ply_path)
            
            # Final CUDA cache clear
            torch.cuda.empty_cache()
            
            # Create viewer HTML
            if hf_ply_url:
                # Successfully uploaded - show iframe viewer
                viewer_url = f"https://www.wlyu.me/FaceLift/splat/index.html?url={hf_ply_url}"
                
                viewer_html = f"""
                <div style="width:100%; height:600px; position:relative; border-radius:8px; overflow:hidden; border:1px solid #333; background:#000;">
                    <iframe 
                        src="{viewer_url}" 
                        style="width:100%; height:100%; border:none;"
                        allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
                        allowfullscreen>
                    </iframe>
                </div>
                <div style="text-align:center; margin-top:10px; padding:10px;">
                    <a href="{viewer_url}" 
                       target="_blank" 
                       style="display:inline-block; color:#fff; background:#4CAF50; padding:10px 20px; text-decoration:none; font-size:14px; border-radius:6px; font-weight:500;">
                        🎮 Open Interactive Viewer in New Tab
                    </a>
                    <p style="color:#666; font-size:12px; margin-top:8px;">
                        Drag to rotate • Scroll to zoom • Right-click to pan
                    </p>
                </div>
                """
            else:
                # Upload failed - provide instructions to use viewer manually
                viewer_base_url = "https://www.wlyu.me/FaceLift/splat/index.html"
                
                viewer_html = f"""
                <div style="padding:40px; text-align:center; background:#f5f5f5; border-radius:8px; border:1px solid #ddd;">
                    <div style="font-size:48px; margin-bottom:20px;">🎮</div>
                    <h3 style="margin:0 0 15px 0; color:#333;">Interactive 3D Viewer</h3>
                    <p style="color:#666; margin-bottom:25px; line-height:1.6;">
                        Download the PLY file below, then drag and drop it into the viewer<br>
                        or use the viewer with a public URL
                    </p>
                    <a href="{viewer_base_url}" 
                       target="_blank" 
                       style="display:inline-block; color:#fff; background:#4CAF50; padding:12px 24px; text-decoration:none; font-size:15px; border-radius:6px; font-weight:500; margin-bottom:15px;">
                        🔗 Open Interactive Viewer
                    </a>
                    <p style="color:#888; font-size:13px; margin-top:15px;">
                        <strong>Controls:</strong> Drag to rotate • Scroll to zoom • Right-click to pan
                    </p>
                </div>
                """
            
            return (
                viewer_html,                   # Viewer HTML (top)
                str(output_path),              # Reconstruction grid
                str(turntable_path),           # Turntable video
                str(ply_path),                 # Download file
            )
            
        except Exception as e:
            import traceback
            error_details = traceback.format_exc()
            print(f"Error details:\n{error_details}")
            raise gr.Error(f"Generation failed: {str(e)}")

def main():
    """Run the FaceLift application."""
    pipeline = FaceLiftPipeline()

    # Prepare examples (same as before)
    examples = []
    if pipeline.examples_dir.exists():
        examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir()) 
                   if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]

    with gr.Blocks(title="FaceLift: Single Image 3D Face Reconstruction") as demo:

        gr.Markdown("## [ICCV 2025] FaceLift: Learning Generalizable Single Image 3D Face Reconstruction from Synthetic Heads")
        
        gr.Markdown("""
        ### 💡 Tips for Best Results
        - Works best with near-frontal portrait images.
        - The provided checkpoints were not trained with accessories (glasses, hats, etc.). Portraits containing accessories may produce suboptimal results.
        - If face detection fails, try disabling auto-cropping and manually crop to square.
        - Inference complete when the turntable video is generated, the interactive 3D gaussian might take several seconds to load.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                in_image  = gr.Image(type="filepath", label="Input Portrait Image")
                auto_crop = gr.Checkbox(value=True, label="Auto Cropping")
                guidance  = gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale")
                seed      = gr.Number(value=4, label="Random Seed")
                steps     = gr.Slider(10, 100, 50, step=5, label="Generation Steps")
                run_btn   = gr.Button("Generate 3D Head", variant="primary")

                # Examples (match input signature)
                if examples:
                    gr.Examples(
                        examples=examples,
                        inputs=[in_image, auto_crop, guidance, seed, steps],
                        examples_per_page=10,
                    )

            with gr.Column(scale=1):
                out_viewer = gr.HTML(label="🎮 Interactive 3D Viewer")
                out_recon  = gr.Image(label="3D Reconstruction Views")
                out_video  = gr.PlayableVideo(label="Turntable Animation (360° View)", height=600)
                out_ply    = gr.File(label="Download 3D Model (.ply)")

        # Wrapper: call the pipeline and forward outputs in the exact order expected
        def _generate_and_filter_outputs(image_path, auto_crop, guidance_scale, random_seed, num_steps):
            return pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps)

        # Run generation and display all outputs
        run_btn.click(
            fn=_generate_and_filter_outputs,
            inputs=[in_image, auto_crop, guidance, seed, steps],
            outputs=[out_viewer, out_recon, out_video, out_ply],
        )

        demo.queue(max_size=10)
        demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)

if __name__ == "__main__":
    main()