FaceLift / app.py
weijielyu's picture
demo
6132ce7
raw
history blame
23.5 kB
# Copyright (C) 2025, FaceLift Research Group
# https://github.com/weijielyu/FaceLift
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact: [email protected]
"""
FaceLift: Single Image 3D Face Reconstruction
Generates 3D head models from single images using multi-view diffusion and GS-LRM.
"""
import json
from pathlib import Path
from datetime import datetime
import uuid
import time
import shutil
import gradio as gr
import numpy as np
import torch
import yaml
from easydict import EasyDict as edict
from einops import rearrange
from PIL import Image
from huggingface_hub import snapshot_download
import spaces
# Install diff-gaussian-rasterization at runtime (requires GPU)
import subprocess
import sys
import os
# Outputs directory for generated files
OUTPUTS_DIR = Path.cwd() / "outputs"
OUTPUTS_DIR.mkdir(exist_ok=True)
# Copy viewer.js to outputs so it can be served as a static file
VIEWER_JS_SRC = Path(__file__).parent / "viewer.js"
if VIEWER_JS_SRC.exists():
shutil.copy2(VIEWER_JS_SRC, OUTPUTS_DIR / "viewer.js")
print(f"โœ“ Copied viewer.js to {OUTPUTS_DIR / 'viewer.js'}")
# -----------------------------
# Ensure diff-gaussian-rasterization builds for current GPU
# -----------------------------
try:
import diff_gaussian_rasterization # noqa: F401
except ImportError:
print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...")
env = os.environ.copy()
try:
import torch as _torch
if _torch.cuda.is_available():
maj, minr = _torch.cuda.get_device_capability()
arch = f"{maj}.{minr}" # e.g., "9.0" on H100/H200, "8.0" on A100
env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX"
else:
# Build stage may not see a GPU on HF Spaces: compile a cross-arch set
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
except Exception:
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
# (Optional) side-step allocator+NVML quirks in restrictive containers
env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1")
subprocess.check_call(
[sys.executable, "-m", "pip", "install",
"git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"],
env=env,
)
import diff_gaussian_rasterization # noqa: F401
from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
# HuggingFace repository configuration
HF_REPO_ID = "wlyu/OpenFaceLift"
def download_weights_from_hf() -> Path:
"""Download model weights from HuggingFace if not already present.
Returns:
Path to the downloaded repository
"""
workspace_dir = Path(__file__).parent
# Check if weights already exist locally
mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
if mvdiffusion_path.exists() and gslrm_path.exists():
print("Using local model weights")
return workspace_dir
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
print("This may take a few minutes on first run...")
# Disable fast transfer if hf_transfer is not installed
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER") == "1":
try:
import hf_transfer
except ImportError:
print("hf_transfer not available, disabling fast download")
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
# Download to local directory
snapshot_download(
repo_id=HF_REPO_ID,
local_dir=str(workspace_dir / "checkpoints"),
local_dir_use_symlinks=False,
)
print("Model weights downloaded successfully!")
return workspace_dir
class FaceLiftPipeline:
"""Pipeline for FaceLift 3D head generation from single images."""
def __init__(self):
# Download weights from HuggingFace if needed
workspace_dir = download_weights_from_hf()
# Setup paths
self.output_dir = workspace_dir / "outputs"
self.examples_dir = workspace_dir / "examples"
self.output_dir.mkdir(exist_ok=True)
# Parameters
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.image_size = 512
self.camera_indices = [2, 1, 0, 5, 4, 3]
# Load models (keep on CPU for ZeroGPU compatibility)
print("Loading models...")
try:
self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
torch_dtype=torch.float16,
)
# Don't move to device or enable xformers here - will be done in GPU-decorated function
self._models_on_gpu = False
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
config = edict(yaml.safe_load(f))
module_name, class_name = config.model.class_name.rsplit(".", 1)
module = __import__(module_name, fromlist=[class_name])
ModelClass = getattr(module, class_name)
self.gs_lrm_model = ModelClass(config)
checkpoint = torch.load(
workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt",
map_location="cpu"
)
# Filter out loss_calculator weights (training-only, not needed for inference)
state_dict = {k: v for k, v in checkpoint["model"].items()
if not k.startswith("loss_calculator.")}
self.gs_lrm_model.load_state_dict(state_dict)
# Keep on CPU initially - will move to GPU in decorated function
self.color_prompt_embedding = torch.load(
workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt",
map_location="cpu"
)
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
self.cameras_data = json.load(f)["frames"]
print("Models loaded successfully!")
except Exception as e:
print(f"Error loading models: {e}")
import traceback
traceback.print_exc()
raise
def _move_models_to_gpu(self):
"""Move models to GPU and enable optimizations. Called within @spaces.GPU context."""
if not self._models_on_gpu and torch.cuda.is_available():
print("Moving models to GPU...")
self.device = torch.device("cuda:0")
self.mvdiffusion_pipeline.to(self.device)
self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
self.gs_lrm_model.to(self.device)
self.gs_lrm_model.eval() # Set to eval mode
self.color_prompt_embedding = self.color_prompt_embedding.to(self.device)
self._models_on_gpu = True
torch.cuda.empty_cache() # Clear cache after moving models
print("Models on GPU, xformers enabled!")
@spaces.GPU(duration=120)
def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0,
random_seed=4, num_steps=50):
"""Generate 3D head from single image."""
try:
# Move models to GPU now that we're in the GPU context
self._move_models_to_gpu()
# Setup output directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = self.output_dir / timestamp
output_dir.mkdir(exist_ok=True)
# Preprocess input
original_img = np.array(Image.open(image_path))
input_image = preprocess_image(original_img) if auto_crop else \
preprocess_image_without_cropping(original_img)
if input_image.size != (self.image_size, self.image_size):
input_image = input_image.resize((self.image_size, self.image_size))
input_path = output_dir / "input.png"
input_image.save(input_path)
# Generate multi-view images
generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device)
generator.manual_seed(random_seed)
result = self.mvdiffusion_pipeline(
input_image, None,
prompt_embeds=self.color_prompt_embedding,
height=self.image_size,
width=self.image_size,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
num_inference_steps=num_steps,
generator=generator,
eta=1.0,
)
selected_views = result.images[:6]
# Save multi-view composite
multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size))
for i, view in enumerate(selected_views):
multiview_image.paste(view, (self.image_size * i, 0))
multiview_path = output_dir / "multiview.png"
multiview_image.save(multiview_path)
# Move diffusion model to CPU to free GPU memory for GS-LRM
print("Moving diffusion model to CPU to free memory...")
self.mvdiffusion_pipeline.to("cpu")
# Delete intermediate variables to free memory
del result, generator
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Prepare 3D reconstruction input
view_arrays = [np.array(view) for view in selected_views]
lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float()
lrm_input = lrm_input[None].to(self.device) / 255.0
lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w")
# Prepare camera parameters
selected_cameras = [self.cameras_data[i] for i in self.camera_indices]
fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras]
c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras]
fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32))
c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32))
fxfycxcy = fxfycxcy[None].to(self.device)
c2w = c2w[None].to(self.device)
batch_indices = torch.stack([
torch.zeros(lrm_input.size(1)).long(),
torch.arange(lrm_input.size(1)).long(),
], dim=-1)[None].to(self.device)
batch = edict({
"image": lrm_input,
"c2w": c2w,
"fxfycxcy": fxfycxcy,
"index": batch_indices,
})
# Ensure GS-LRM model is on GPU
if next(self.gs_lrm_model.parameters()).device.type == "cpu":
print("Moving GS-LRM model to GPU...")
self.gs_lrm_model.to(self.device)
torch.cuda.empty_cache()
# Final memory cleanup before reconstruction
torch.cuda.empty_cache()
# Run 3D reconstruction
with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16):
result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True)
comp_image = result.render[0].unsqueeze(0).detach()
gaussians = result.gaussians[0]
# Clear CUDA cache after reconstruction
torch.cuda.empty_cache()
# Save filtered gaussians
filtered_gaussians = gaussians.apply_all_filters(
cam_origins=None,
opacity_thres=0.04,
scaling_thres=0.2,
floater_thres=0.75,
crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0],
nearfar_percent=(0.0001, 1.0),
)
ply_path = output_dir / "gaussians.ply"
filtered_gaussians.save_ply(str(ply_path))
# Save output image
comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c")
comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
output_path = output_dir / "output.png"
Image.fromarray(comp_image).save(output_path)
# Generate turntable video
turntable_resolution = 512
num_turntable_views = 180
turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution,
num_views=num_turntable_views)
turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views)
turntable_frames = np.ascontiguousarray(turntable_frames)
turntable_path = output_dir / "turntable.mp4"
imageseq2video(turntable_frames, str(turntable_path), fps=30)
# Final CUDA cache clear
torch.cuda.empty_cache()
return str(input_path), str(multiview_path), str(output_path), \
str(turntable_path), str(ply_path)
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error details:\n{error_details}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create viewer HTML file that can be served by Gradio
def create_splat_viewer_html(ply_url: str, viewer_js_url: str, viewer_id: str) -> str:
"""Create a standalone HTML file with embedded viewer for the PLY file."""
# Read viewer.js content
viewer_js_path = Path(__file__).parent / "viewer.js"
viewer_js_content = viewer_js_path.read_text() if viewer_js_path.exists() else "console.error('viewer.js not found');"
# Create HTML file in outputs directory
output_dir = Path(ply_url.replace("/file=", "").rsplit("/", 1)[0])
viewer_html_path = output_dir / f"viewer_{viewer_id}.html"
html_content = f"""<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>3D Gaussian Splat Viewer</title>
<style>
body {{ margin: 0; overflow: hidden; background: #000; }}
#canvas {{ width: 100vw; height: 100vh; display: block; }}
#spinner {{
position: absolute; top: 50%; left: 50%;
transform: translate(-50%, -50%);
color: white; font-family: Arial; z-index: 10;
text-align: center; background: rgba(0,0,0,0.8);
padding: 20px; border-radius: 8px;
}}
#progress {{ background: #4CAF50; height: 4px; width: 0%; transition: width 0.3s; }}
#message {{
position: absolute; top: 50%; left: 50%;
transform: translate(-50%, -50%);
color: #ff4444; font-family: Arial; font-size: 14px;
background: rgba(0,0,0,0.9); padding: 20px;
border-radius: 8px; display: none; z-index: 11;
}}
#fps, #camid {{
position: absolute; right: 10px;
color: white; font-family: monospace; font-size: 11px;
background: rgba(0,0,0,0.7); padding: 6px 10px;
border-radius: 4px; display: none;
}}
#fps {{ top: 10px; }}
#camid {{ top: 40px; }}
#controls-info {{
position: absolute; bottom: 10px; left: 10px;
color: white; font-family: Arial; font-size: 11px;
background: rgba(0,0,0,0.7); padding: 8px 12px;
border-radius: 4px;
}}
</style>
</head>
<body>
<canvas id="canvas"></canvas>
<div id="spinner">
<div style="font-size:14px; margin-bottom:10px;">Loading 3D Viewer...</div>
<div style="background:#333; height:4px; width:200px; border-radius:2px; overflow:hidden;">
<div id="progress"></div>
</div>
</div>
<div id="message"></div>
<div id="fps"></div>
<div id="camid"></div>
<div id="controls-info">
<strong>Controls:</strong> Drag: Rotate | Scroll: Zoom | Right-drag: Pan
</div>
<script>
{viewer_js_content}
</script>
<script>
// Auto-load PLY after viewer initializes
const plyUrl = "{ply_url}";
console.log("=== Splat Viewer Init ===");
console.log("PLY URL:", plyUrl);
let attempts = 0;
const checkAndLoad = setInterval(function() {{
attempts++;
if (window.worker) {{
console.log("โœ“ Worker ready after", attempts * 100, "ms");
clearInterval(checkAndLoad);
fetch(plyUrl)
.then(r => {{ if (!r.ok) throw new Error("HTTP " + r.status); return r.arrayBuffer(); }})
.then(buffer => {{
console.log("โœ“ PLY loaded:", buffer.byteLength, "bytes");
const file = new File([buffer], "model.ply");
const reader = new FileReader();
reader.onload = () => {{
window.worker.postMessage({{ ply: reader.result }});
console.log("โœ“ Sent to worker");
}};
reader.readAsArrayBuffer(file);
}})
.catch(err => {{
console.error("โœ— Error:", err);
document.getElementById("spinner").style.display = "none";
const msg = document.getElementById("message");
msg.textContent = "Error: " + err.message;
msg.style.display = "block";
}});
}} else if (attempts >= 50) {{
console.error("โœ— Worker timeout");
clearInterval(checkAndLoad);
document.getElementById("spinner").style.display = "none";
const msg = document.getElementById("message");
msg.textContent = "Viewer failed to initialize.";
msg.style.display = "block";
}}
}}, 100);
</script>
</body>
</html>"""
# Write HTML file
viewer_html_path.write_text(html_content)
# Return iframe that loads this HTML file
viewer_html_url = f"/file={viewer_html_path}"
return f"""
<iframe id="viewer-frame-{viewer_id}" src="{viewer_html_url}" style="width:100%; height:600px; border:1px solid #333; border-radius:8px;" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<p style="font-size:11px; color:#666; margin-top:5px;">
<a href="{viewer_html_url}" target="_blank" style="color:#4CAF50;">Open in new tab</a> for better performance
</p>
"""
def main():
"""Run the FaceLift application."""
pipeline = FaceLiftPipeline()
# Prepare examples (same as before)
examples = []
if pipeline.examples_dir.exists():
examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir())
if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]
with gr.Blocks(title="FaceLift: Single Image 3D Face Reconstruction") as demo:
# Wrapper to return outputs for display
def _generate_and_filter_outputs(image_path, auto_crop, guidance_scale, random_seed, num_steps):
input_path, multiview_path, output_path, turntable_path, ply_path = \
pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps)
# Create Gradio-accessible URL for the PLY file
ply_url = f"/file={ply_path}"
# viewer.js is in the outputs directory
viewer_js_url = f"/file={OUTPUTS_DIR}/viewer.js"
# Generate unique viewer ID
viewer_id = str(uuid.uuid4())[:8]
viewer_html = create_splat_viewer_html(ply_url, viewer_js_url, viewer_id)
# Debug info showing the paths
debug_info = f"PLY Path: {ply_path}\nPLY URL: {ply_url}\nViewer JS URL: {viewer_js_url}\nFile exists: {Path(ply_path).exists()}\nViewer ID: {viewer_id}"
return viewer_html, output_path, turntable_path, ply_path, debug_info
gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction.")
gr.Markdown("""
### ๐Ÿ’ก Tips for Best Results
- Works best with near-frontal portrait images
- The provided checkpoints were not trained with accessories (glasses, hats, etc.). Portraits containing accessories may produce suboptimal results.
- If face detection fails, try disabling auto-cropping and manually crop to square
""")
with gr.Row():
with gr.Column(scale=1):
in_image = gr.Image(type="filepath", label="Input Portrait Image")
auto_crop = gr.Checkbox(value=True, label="Auto Cropping")
guidance = gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale")
seed = gr.Number(value=4, label="Random Seed")
steps = gr.Slider(10, 100, 50, step=5, label="Generation Steps")
run_btn = gr.Button("Generate 3D Head", variant="primary")
# Examples (match input signature)
if examples:
gr.Examples(
examples=examples,
inputs=[in_image, auto_crop, guidance, seed, steps],
examples_per_page=10,
)
with gr.Column(scale=1):
out_viewer = gr.HTML(label="๐ŸŽฎ Interactive 3D Viewer")
out_debug = gr.Textbox(label="๐Ÿ” Debug Info", lines=3, visible=True)
out_recon = gr.Image(label="3D Reconstruction Views")
out_video = gr.PlayableVideo(label="Turntable Animation (360ยฐ View)", height=400)
out_ply = gr.File(label="Download 3D Model (.ply)")
gr.Markdown("""
**๐Ÿ’ก Controls:** Drag to rotate | Scroll to zoom | Right-drag to pan
*Interactive viewer powered by [antimatter15/splat](https://github.com/antimatter15/splat)*
""")
# Run generation and display all outputs
run_btn.click(
fn=_generate_and_filter_outputs,
inputs=[in_image, auto_crop, guidance, seed, steps],
outputs=[out_viewer, out_recon, out_video, out_ply, out_debug],
)
demo.queue(max_size=10)
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
if __name__ == "__main__":
main()