Qwen2.5-72B β Supervised Fine-Tuning (SFT) with LoRA Adapters
Model type: Causal Language Model
Base model: Qwen/Qwen2.5-72B
License: Apache 2.0
Framework: Axolotl + DeepSpeed ZeRO-1
Overview
qwen2.5-72b-sft is a supervised fine-tuned version of Qwen 2.5-72B, trained using LoRA adapters in 4-bit NF4 quantization for efficient adaptation.
This release contains only the LoRA adapters and training configuration, allowing users to load them on top of the official Qwen 2.5-72B base model.
The SFT objectiv refines the modelβs question-answering and conversational skills using synthetic QA data.
Training was performed on the Leonardo EuroHPC supercomputer using Axolotl 0.6 + DeepSpeed ZeRO-1 optimization with bfloat16 computation.
Training Setup
| Component | Specification |
|---|---|
| Objective | Supervised fine-tuning (chat QA pairs) |
| Adapter type | LoRA |
| Quantization | 4-bit NF4 (bnb) |
| Precision | bfloat16 |
| Hardware | 8 nodes Γ 2 Γ NVIDIA A100-64 GB GPUs |
| Framework | Axolotl + DeepSpeed ZeRO-1 (PyTorch 2.5.1 + CUDA 12.1) |
| Runtime | β 24 hours |
| Checkpoints | Saved every 1/10 of an epoch |
| Loss watchdog | threshold = 5.0, patience = 3 |
Dataset
Name: axolotl_deduplicated_synthetic_qa.jsonl
Type: Instruction-following synthetic QA dataset
Each sample follows a QA/chat format used in the alpaca_chat.load_qa schema.
Hyperparameters
| Parameter | Value |
|---|---|
| Sequence length | 2048 |
| Micro batch size | 1 |
| Gradient accumulation | 4 |
| Epochs | 1 |
| Learning rate | 0.0001 |
| LR scheduler | cosine |
| Optimizer | AdamW (8-bit) |
| Warmup steps | 20 |
| Weight decay | 0.0 |
| LoRA rank (r) | 16 |
| LoRA alpha | 32 |
| LoRA dropout | 0.05 |
| LoRA target modules | q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj |
| Gradient checkpointing | β |
| Flash attention | β |
| Auto resume | β |
| bnb 4-bit compute dtype | bfloat16 |
| bnb 4-bit quant type | nf4 |
| bnb double quant | true |
| Validation set size | 0.3 |
| Evals per epoch | 10 |
Tokenizer
Tokenizer type: AutoTokenizer
Special token: <|end_of_text|> as pad_token
Files Included
This repository hosts LoRA adapters and Axolotl metadata only.
Contents:
- adapter_config.json
- adapter_model.safetensors
- config.json
- special_tokens_map.json
- tokenizer_config.json
- tokenizer.json
- README.md
Usage β Load and Apply the Adapters
To use this SFT variant in Python:
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = "Qwen/Qwen2.5-72B"
sft_adapter = "ubitech-edg/qwen2.5-72b-sft"
# Load base and tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(
base_model, device_map="auto", torch_dtype="bfloat16"
)
# Load SFT LoRA adapters
model = PeftModel.from_pretrained(model, sft_adapter)
model.eval()
prompt = "What is the role of AI in renewable energy optimization?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 30
Model tree for ubitech-edg/qwen2.5-72b-sft
Base model
Qwen/Qwen2.5-72B