CrossEncoder based on sentence-transformers/all-mpnet-base-v2
This is a Cross Encoder model finetuned from sentence-transformers/all-mpnet-base-v2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("varadsrivastava/findocranker-mpnet-base-v2")
# Get scores for pairs of texts
pairs = [
['What did Fifth Third Bancorp’s leadership say about Fifth Third Bancorp’s dividend policy?', '[DOC=10-K | annual report | comprehensive business overview, risks, financials | 100-300 pages]'],
['What did Fifth Third Bancorp’s leadership say about Fifth Third Bancorp’s dividend policy?', '[DOC=10-Q | quarterly report | interim financials, MD&A updates | 30-60 pages]'],
['What did Fifth Third Bancorp’s leadership say about Fifth Third Bancorp’s dividend policy?', '[DOC=DEF-14A | proxy statement | governance, compensation, shareholder voting matters | annual filing]'],
['What did Fifth Third Bancorp’s leadership say about Fifth Third Bancorp’s dividend policy?', '[DOC=8-K | current report | material events, timely disclosures | ad-hoc filing]'],
['What did Fifth Third Bancorp’s leadership say about Fifth Third Bancorp’s dividend policy?', '[DOC=Earnings | earnings call transcript | forward guidance, Q&A, management commentary | quarterly]'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'What did Fifth Third Bancorp’s leadership say about Fifth Third Bancorp’s dividend policy?',
[
'[DOC=10-K | annual report | comprehensive business overview, risks, financials | 100-300 pages]',
'[DOC=10-Q | quarterly report | interim financials, MD&A updates | 30-60 pages]',
'[DOC=DEF-14A | proxy statement | governance, compensation, shareholder voting matters | annual filing]',
'[DOC=8-K | current report | material events, timely disclosures | ad-hoc filing]',
'[DOC=Earnings | earnings call transcript | forward guidance, Q&A, management commentary | quarterly]',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,943 training samples
- Columns:
query,docs, andlabels - Approximate statistics based on the first 1000 samples:
query docs labels type string list list details - min: 59 characters
- mean: 104.63 characters
- max: 181 characters
- size: 5 elements
- size: 5 elements
- Samples:
query docs labels What did Fifth Third Bancorp’s leadership say about Fifth Third Bancorp’s dividend policy?['[DOC=10-K | annual report | comprehensive business overview, risks, financials | 100-300 pages]', '[DOC=10-Q | quarterly report | interim financials, MD&A updates | 30-60 pages]', '[DOC=DEF-14A | proxy statement | governance, compensation, shareholder voting matters | annual filing]', '[DOC=8-K | current report | material events, timely disclosures | ad-hoc filing]', '[DOC=Earnings | earnings call transcript | forward guidance, Q&A, management commentary | quarterly]'][4, 3, 2, 1, 0]How did Qualcomm’s management describe forecasted capital allocation between developing new semiconductor technologies and potential acquisitions?['[DOC=10-K | annual report | comprehensive business overview, risks, financials | 100-300 pages]', '[DOC=10-Q | quarterly report | interim financials, MD&A updates | 30-60 pages]', '[DOC=8-K | current report | material events, timely disclosures | ad-hoc filing]', '[DOC=DEF-14A | proxy statement | governance, compensation, shareholder voting matters | annual filing]', '[DOC=Earnings | earnings call transcript | forward guidance, Q&A, management commentary | quarterly]'][4, 3, 2, 1, 0]What did GE HealthCare Technologies Inc.’s leadership say about GE HealthCare Technologies Inc.’s dividend policy?['[DOC=10-K | annual report | comprehensive business overview, risks, financials | 100-300 pages]', '[DOC=8-K | current report | material events, timely disclosures | ad-hoc filing]', '[DOC=Earnings | earnings call transcript | forward guidance, Q&A, management commentary | quarterly]', '[DOC=10-Q | quarterly report | interim financials, MD&A updates | 30-60 pages]', '[DOC=DEF-14A | proxy statement | governance, compensation, shareholder voting matters | annual filing]'][4, 3, 2, 1, 0] - Loss:
ListNetLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 4gradient_accumulation_steps: 4learning_rate: 2e-05weight_decay: 0.01num_train_epochs: 5lr_scheduler_type: cosinewarmup_ratio: 0.1data_seed: 42fp16: Truedataloader_num_workers: 2
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: 42jit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 2dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.1014 | 25 | 1.6085 |
| 0.2028 | 50 | 1.5942 |
| 0.3043 | 75 | 1.4848 |
| 0.4057 | 100 | 1.405 |
| 0.5071 | 125 | 1.4059 |
| 0.6085 | 150 | 1.3635 |
| 0.7099 | 175 | 1.3535 |
| 0.8114 | 200 | 1.3472 |
| 0.9128 | 225 | 1.3368 |
| 1.0122 | 250 | 1.3291 |
| 1.1136 | 275 | 1.2947 |
| 1.2150 | 300 | 1.3202 |
| 1.3164 | 325 | 1.3245 |
| 1.4178 | 350 | 1.321 |
| 1.5193 | 375 | 1.298 |
| 1.6207 | 400 | 1.307 |
| 1.7221 | 425 | 1.325 |
| 1.8235 | 450 | 1.3332 |
| 1.9249 | 475 | 1.301 |
| 2.0243 | 500 | 1.3106 |
| 2.1258 | 525 | 1.2973 |
| 2.2272 | 550 | 1.2995 |
| 2.3286 | 575 | 1.2978 |
| 2.4300 | 600 | 1.3109 |
| 2.5314 | 625 | 1.298 |
| 2.6329 | 650 | 1.307 |
| 2.7343 | 675 | 1.2969 |
| 2.8357 | 700 | 1.2762 |
| 2.9371 | 725 | 1.2917 |
| 3.0365 | 750 | 1.2545 |
| 3.1379 | 775 | 1.271 |
| 3.2394 | 800 | 1.2609 |
| 3.3408 | 825 | 1.2694 |
| 3.4422 | 850 | 1.2906 |
| 3.5436 | 875 | 1.2951 |
| 3.6450 | 900 | 1.2852 |
| 3.7465 | 925 | 1.2788 |
| 3.8479 | 950 | 1.283 |
| 3.9493 | 975 | 1.2727 |
| 4.0487 | 1000 | 1.263 |
| 4.1501 | 1025 | 1.2662 |
| 4.2515 | 1050 | 1.2628 |
| 4.3529 | 1075 | 1.2511 |
| 4.4544 | 1100 | 1.2788 |
| 4.5558 | 1125 | 1.2671 |
| 4.6572 | 1150 | 1.2648 |
| 4.7586 | 1175 | 1.2694 |
| 4.8600 | 1200 | 1.2648 |
| 4.9615 | 1225 | 1.2678 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ListNetLoss
@inproceedings{cao2007learning,
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
booktitle={Proceedings of the 24th international conference on Machine learning},
pages={129--136},
year={2007}
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for varadsrivastava/findocranker-mpnet-base-v2
Base model
sentence-transformers/all-mpnet-base-v2