Qwen3-VL-30B-A3B-Instruct (Abliterated)

A vision-language model based on Qwen3-VL architecture, abliterated for enhanced instruction following and creative capabilities. This 30B parameter multimodal model processes both images and text to generate contextual responses.

Model Description

Qwen3-VL-30B-A3B-Instruct is a large-scale vision-language model that combines visual understanding with natural language processing. The "abliterated" variant has undergone targeted removal of safety filters and restrictions, enabling more flexible and creative responses while maintaining model coherence.

Key Capabilities:

  • Multimodal Understanding: Process and understand images with text prompts
  • Vision-Language Tasks: Image captioning, visual question answering, image-based reasoning
  • Instruction Following: Fine-tuned for following complex instructions with visual context
  • Creative Generation: Enhanced creative capabilities through abliteration process
  • 30B Parameters: Large model size for high-quality understanding and generation

Repository Contents

qwen3-vl-30b-a3b-instruct/
โ”œโ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated.safetensors    58 GB   (Full precision)
โ”œโ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated-f16.gguf       57 GB   (FP16 GGUF)
โ”œโ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated-q8-0.gguf      31 GB   (Q8 quantized)
โ”œโ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated-q6-k.gguf      24 GB   (Q6_K quantized)
โ”œโ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated-q5-k.gguf      21 GB   (Q5_K quantized)
โ”œโ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated-q4-k-m.gguf    18 GB   (Q4_K_M quantized)
โ”œโ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated-q3-k.gguf      14 GB   (Q3_K quantized)
โ””โ”€โ”€ qwen3-vl-30b-a3b-instruct-abliterated-q2-k.gguf      11 GB   (Q2_K quantized)

Total Repository Size: ~234 GB (all formats)

Format Options:

  • SafeTensors (58 GB): Full precision for use with Transformers, Diffusers
  • GGUF Formats (11-57 GB): Quantized formats for llama.cpp, Ollama, LM Studio

Hardware Requirements

VRAM Requirements by Format

Format VRAM Required Quality Recommended GPU
SafeTensors (Full) 60+ GB Highest A100 80GB, H100
F16 GGUF 57+ GB Highest A100 80GB, H100
Q8_0 GGUF 32-35 GB Excellent 2x RTX 4090, A6000 48GB
Q6_K GGUF 25-28 GB Very Good 2x RTX 3090, A5000 24GB
Q5_K GGUF 22-25 GB Good RTX 4090 + RTX 3090
Q4_K_M GGUF 19-22 GB Moderate Single RTX 4090 24GB
Q3_K GGUF 15-18 GB Lower RTX 4080 16GB
Q2_K GGUF 12-15 GB Minimal RTX 3060 12GB

System Requirements

  • RAM: 32-64 GB system memory (more for larger quantizations)
  • Disk Space: 11-58 GB per format (234 GB for all formats)
  • CPU: Modern multi-core processor (8+ cores recommended)
  • OS: Windows, Linux, or macOS with CUDA support (for GPU inference)

Usage Examples

Basic Usage with Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch

# Load model and tokenizer
model_path = "E:/huggingface/qwen3-vl-30b-a3b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    device_map="auto"  # Automatic device placement
)

# Load image
image = Image.open("your_image.jpg")

# Prepare input
prompt = "Describe this image in detail."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

# Generate response
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.9,
        do_sample=True
    )

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Visual Question Answering

from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch

model_path = "E:/huggingface/qwen3-vl-30b-a3b-instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Load image
image = Image.open("scene.jpg")

# Ask question about image
question = "What objects are visible in this image and what are they doing?"
inputs = tokenizer(question, return_tensors="pt").to(model.device)

# Generate answer
outputs = model.generate(
    **inputs,
    max_new_tokens=256,
    temperature=0.3,  # Lower temperature for factual answers
    top_p=0.95
)

answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Q: {question}")
print(f"A: {answer}")

8-bit Quantized Loading (For Lower VRAM)

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_path = "E:/huggingface/qwen3-vl-30b-a3b-instruct"

# Load with 8-bit quantization
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    load_in_8bit=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Use normally - reduced VRAM footprint (~30GB)

4-bit Quantized Loading (For Single GPU)

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch

model_path = "E:/huggingface/qwen3-vl-30b-a3b-instruct"

# Configure 4-bit quantization
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# Load model with 4-bit quantization
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    quantization_config=quantization_config,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Use normally - minimal VRAM footprint (~15GB)

Using GGUF with llama.cpp

# Install llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make

# Run inference with Q4_K_M quantization (18GB, good quality/performance balance)
./main -m "E:/huggingface/qwen3-vl-30b-a3b-instruct/qwen3-vl-30b-a3b-instruct-abliterated-q4-k-m.gguf" \
       -p "Describe the Eiffel Tower" \
       -n 512 \
       --temp 0.7 \
       --top-p 0.9 \
       -ngl 99  # Offload all layers to GPU

Using GGUF with Ollama

# Create Modelfile
cat > Modelfile << EOF
FROM E:/huggingface/qwen3-vl-30b-a3b-instruct/qwen3-vl-30b-a3b-instruct-abliterated-q4-k-m.gguf
TEMPLATE """{{ .System }}
{{ .Prompt }}"""
PARAMETER temperature 0.7
PARAMETER top_p 0.9
PARAMETER stop "<|im_end|>"
EOF

# Create Ollama model
ollama create qwen3vl-30b-abliterated -f Modelfile

# Run inference
ollama run qwen3vl-30b-abliterated "What is the capital of France?"

Using GGUF with LM Studio

  1. Open LM Studio
  2. Navigate to "My Models"
  3. Click "Import" and select GGUF file:
    • For 24GB VRAM: qwen3-vl-30b-a3b-instruct-abliterated-q4-k-m.gguf
    • For 48GB VRAM: qwen3-vl-30b-a3b-instruct-abliterated-q8-0.gguf
  4. Load model and start chatting through the UI

Python with llama-cpp-python

from llama_cpp import Llama

# Load GGUF model (Q4_K_M for single RTX 4090)
llm = Llama(
    model_path="E:/huggingface/qwen3-vl-30b-a3b-instruct/qwen3-vl-30b-a3b-instruct-abliterated-q4-k-m.gguf",
    n_ctx=4096,        # Context window
    n_gpu_layers=99,   # Offload all layers to GPU
    n_threads=8,       # CPU threads
    verbose=False
)

# Generate response
response = llm(
    "Explain quantum computing in simple terms.",
    max_tokens=512,
    temperature=0.7,
    top_p=0.9,
    echo=False
)

print(response['choices'][0]['text'])

Model Specifications

  • Architecture: Qwen3-VL (Vision-Language Model)
  • Parameters: 30 Billion
  • Model Type: Abliterated instruction-tuned variant
  • Modalities: Image + Text โ†’ Text
  • Context Length: Varies by configuration (typically 4K-32K tokens)

Available Formats

SafeTensors Format:

  • Full precision (FP32/BF16)
  • Compatible with Transformers, Diffusers
  • Secure and efficient loading
  • Size: 58 GB

GGUF Formats (llama.cpp compatible):

  • F16: Full FP16 precision (57 GB) - Highest quality, datacenter GPUs
  • Q8_0: 8-bit quantization (31 GB) - Excellent quality, minimal degradation
  • Q6_K: 6-bit K-quantization (24 GB) - Very good quality/size balance
  • Q5_K: 5-bit K-quantization (21 GB) - Good quality, consumer GPU friendly
  • Q4_K_M: 4-bit K-quantization medium (18 GB) - Moderate quality, single high-end GPU
  • Q3_K: 3-bit K-quantization (14 GB) - Lower quality, mid-range GPUs
  • Q2_K: 2-bit K-quantization (11 GB) - Minimal quality, maximum compression

Quantization Recommendations:

  • Best Quality: F16 or Q8_0 (minimal perceptual difference from full precision)
  • Best Balance: Q5_K or Q6_K (optimal quality/performance trade-off)
  • Consumer Hardware: Q4_K_M (fits single RTX 4090, good usability)
  • Budget Hardware: Q3_K or Q2_K (expect quality degradation)

Performance Tips and Optimization

SafeTensors / Transformers Optimization

Memory Optimization:

  • Gradient Checkpointing: Enable for training/fine-tuning to reduce memory
  • Flash Attention: Use Flash Attention 2 for faster inference (if supported)
  • Mixed Precision: Use torch.bfloat16 or torch.float16 for reduced memory
  • Model Parallelism: Distribute across multiple GPUs with device_map="auto"

Inference Optimization:

  • Static KV Cache: Enable for faster multi-turn conversations
  • Batch Processing: Process multiple images in batches when possible
  • Quantization: Use 8-bit or 4-bit quantization for consumer hardware
  • Compilation: Use torch.compile() for optimized inference (PyTorch 2.0+)

GGUF / llama.cpp Optimization

GPU Offloading:

  • Use -ngl 99 to offload all layers to GPU for maximum speed
  • Partial offload (e.g., -ngl 40) for mixed CPU/GPU inference
  • Monitor VRAM usage and adjust layer count accordingly

Context Window:

  • Default: 4096 tokens (-c 4096 or n_ctx=4096)
  • Extended: 8192-32768 tokens (increases VRAM usage)
  • Reduce for memory-constrained systems

Threading:

  • Set threads to CPU core count: -t 8 (llama.cpp) or n_threads=8 (Python)
  • Reduce if CPU usage is too high during GPU inference
  • More threads = faster prompt processing on CPU

Batch Size:

  • Increase batch size for faster processing: --batch-size 512
  • Higher batch = more VRAM but faster generation
  • Reduce if encountering OOM errors

Quality Settings

  • Temperature: 0.3-0.5 for factual tasks, 0.7-0.9 for creative tasks
  • Top-p Sampling: 0.9-0.95 for balanced diversity
  • Max Tokens: 256-512 for descriptions, 1024+ for detailed analysis
  • Repetition Penalty: 1.1-1.2 to reduce repetitive outputs

Format Selection Guide

Choose SafeTensors if:

  • Using Transformers/Diffusers pipeline
  • Need full precision for research or fine-tuning
  • Have 60GB+ VRAM (A100 80GB, H100)
  • Require maximum quality

Choose GGUF if:

  • Using llama.cpp, Ollama, or LM Studio
  • Consumer GPU (RTX 30XX/40XX series)
  • Need flexible quantization options
  • Want simple inference without Python dependencies
  • Running on CPU or mixed CPU/GPU systems

Abliteration Process

This model has been "abliterated" - a process that removes or reduces safety filters and content restrictions present in the base model. This enables:

  • More flexible and creative responses
  • Reduced refusal behaviors for edge cases
  • Enhanced instruction following without safety limitations
  • Greater output diversity and expressiveness

Important: Use responsibly and in accordance with applicable laws and ethical guidelines.

License

License information not specified in model files. Please verify licensing terms with the original model provider before commercial use.

Recommended: Check Qwen/Qwen3-VL official repository for licensing details.

Citation

If you use this model in your research or applications, please cite:

@misc{qwen3vl30b-abliterated,
  title={Qwen3-VL-30B-A3B-Instruct-Abliterated},
  author={Unknown},
  year={2024},
  howpublished={\url{https://huggingface.co/qwen3-vl-30b-a3b-instruct}},
}

Related Resources

Official Documentation

Quantization Resources

Inference Tools

Contact and Support

For issues, questions, or contributions related to this model:

  • Check Qwen official documentation and GitHub repository
  • Hugging Face community forums for vision-language models
  • Transformers library GitHub issues for technical problems

Model Storage Path: E:\huggingface\qwen3-vl-30b-a3b-instruct\

Last Updated: 2025-11-05

Downloads last month
561
GGUF
Model size
31B params
Architecture
qwen3vlmoe
Hardware compatibility
Log In to view the estimation

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including wangkanai/qwen3-vl-30b-a3b-instruct